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(b. Berlin, Germany, 10 February 1901;d. Boston, Massachusetts, 17 April 1977) 

mathematics. 

Brauer was the youngest of three children of Max Brauer, an influential and wealthy businessman in the wholesale leather 
trade, and his wife, Lilly Caroline Jacob. He attended the Kaiser-Friedrich-Schule in Berlin-Charlottenburg and had an interest 
in science and mathematics as a young boy, an interest that owed much to the influence of his gifted brother Alfred, who was 
seven years older. 

In February 1919 Brauer enrolled in the Technische Hochschule in Berlin but soon realized that, in his own words, his interests 
were “more theoretical than practical.” He transferred to the University of Berlin after one term. He took his Ph.D. there in 
1925, under the guidance of the algebraist Issai Schur. 

On 17 September 1925 Brauer married Ilse Karger, a fellow student and the daughter of a Berlin physician. They had two sons, 
George Ulrich and Fred Günther, both of whom became research mathematicians. 

Brauer’s first academic post was at the University of Königsberg (now Kaliningrad), where he remained until dismissed by 
Hitler’s 1933 decree banning Jews from university teaching. He spent 1933 and 1934 at the University of Kentucky at 
Lexington, and 1934 and 1935 at the Institute for Advanced Study at Princeton, where he was assistant to Hermann Weyl. 
After this Brauer held professorships at the University of Toronto (1935–1948), the University of Michigan at Ann Arbor 
(1948–1952), and Harvard (1952–1971). He lived near Boston for the rest of his life. Weakened by aplastic anemia, he died of 
a generalized infection. 

Brauer was an elected member of the Royal Society of Canada, the American Acadenn of Arts and Sciences, the National 
Academy of Sciences, the London Mathematical Society, the Akademie der Wissenschaiten (Göttingen), and the American 
Philosophical Society. He was president of the Canadian Mathematical Congress (1957–1958) and of the American 
Mathematical Society (1959–1960). He received the Guggenheim Memorial Fellowship (1941–1942), the Cole Prize of the 
American Mathematical Society (1949), and ihe National Medal for Scientific Merit (1971). 

Brauer was one of the most influential algebraists of the twentieth century. He built on the foundations of the representation 
theory of groups that were laid by Georg Frobenius, William Burnside, and Issai Schur in the years 1895–1910; and over his 
long career he brought the representation theory of finite groups, in particular, to a remarkable depth and sophistication. His 
first important research, however, was concerned with the representations of a continuous (topological) group. 

By a representation of a given linear group Γ is meant a homomorphism H:Γ→GL(N, C), whereby each element s of Γ is 
represented by a nonsingular complex matrix or linear transformation H(s) of some finite degree N. If Γ is a topological group, 
it is assumed that H is continuous, that is, that each matrix coefficient of H (s) is a continuous function of s. Among topological 
groups the most important are the classical linear groups, such as the group O(n) of all real orthogonal transformations of n 
variables, or its subgroup SO(n) (often called the rotation group) consisting of the orthogonal transformations of determinant I. 

In 1897 Adolf Hurwitz introduced a new and fundamental idea into the study of such groups, that of an invariant integral. He 
defined such an integral for SO(n) and used it to calculate polynomial invariants for this group. Schur realized that his own 
treatment of Frobenius’ character theory of a finite group I could be extended to a continuous linear group I on which an 
invariant integral could be defined. In a series of papers published in 1924, he used Hurwitz’s integral to find the irreducible 
characters of O(n). Brauer was attending Schur’s seminar at this time, and Schur suggested to him that it might be possible to 
fuul a purely algebraic treatment of this work, that is, one that did not rely on the analytic notion of an integral. Brauer found 
such a treatment, and with it calculated the irreducible characters of the groups O(n) and SO(n); this became his dissertation, 
for which he was awarded the Ph.D. summa cum laude in 1926. 

While Brauer was writing his dissertation, Hermann Weyǀ was working on his papers on the representations of semisimple Lie 
groups (these include the classical linear groups). This work of Weyl’s has claim to he the finest single mathematical 
achievement of the twentieth century. It is based on Schur’s methods with the invariant integral and Élie Cartan’s construction 
of representations of a semisimple Lie group I by means of representations of its Lie algebra g: Schur’s and Brauer’s results on 
O(n) and SO(n) come out as special cases. Weyl’s results and methods have been the starting point of a huge amount of 
research in pure mathematics and in quantum physics. By contrast Brauer’s algebraic treatment for the orthogonal groups is 



little known—it uses difficult and (now) unfashionable techniques from the theories of determinants and invariants, and was 
published only as his Ph.D. dissertation. 

Brauer greatly admired Weyl and during his year as Weyl’s assistant at the Institute for Advanced Study, he briefly returned to 
the classical linear groups. From this period date a joint paper with Weyl on spinors and a paper in which Brauer calculates, by 
purely algebraic means, the Poinearé polynomials of the classical groups (unitary, symplectic, and orthogonal). Brauer’s last 
paper on continuous groups, published in 1937, hints at a general representation theory for continuous groups, strictly algebraic 
in nature and based on invariant theory. A promised sequel never appeared. 

Much of Brauer’s work while he was in Königsberg (1925–1933) was concerned with simple algebras and rooted in Schur’s 
theory of splitting fields. Suppose k is a given field, K an algebraically closed field that contains k, and that H:Γ→GL(f, K) is 
an irreducible representation of some group Γ. Then each elements of Γ is represented by a nonsingular f x f matrix H(s) whose 
coefficients lie in K; the condition that H be irreducible means that the set of all K-linear combinations of the H(s) s ∊ Γ, is the 
full matrix algebra Kf of all f x f matrices over K. We shall assume that the trace X(s) of each matrix H(s) lies in the ground 
field k. Then a field L (k ⊆ L ⊆ K) is a splitting field for H (or for its character X) if L is a finite extension of k and there exists 
a matrix P ∊ GL (f, K) such that all the coefficients of all the matrices P-1H(s) P, s∊Γ lie in L. The least degree mg (H) = mg (X) 
over k, among all such splitting fields L, is called the Schur index of H or X over k; Schur had initiated the study of splitting 
fields (in the case where k is an algebraic number field and k = ℂ) in the early 1900’s, and had proved a number of facts about 
the Schur index. 

Brauer and Emmy Noether (who was then at Göttingen) showed, in a paper published in 1927, how the splitting fields H are 
determined by the algebra A of all k-linear combinations of the matrices H(s), s ∊ I’. A is a finite dimensional simple algebra 
over k that is central; its center consists only of the scalar multiples of the identity. A given field L of finite degree (L:k) is a 
splitting field for H if and only if L ⊗b A is isomorphic to the full matrix algebra Lf over L. This last condition depends only on 
the algebra A, and a field L that satisfies it is called a splitting field for A. Brauer and Noether’s main result (proved under 
certain restrictions on the ground field k, which were later shown by Noether to be unnecessary) was that the splitting fields of 
a given central, simple k-algebra A are (up to isomorphism) the same as the maximal subfields of the algebras B in the same 
algebra class as A. The algebra class [A] of A is defined as follows. By Joseph Wedderburn’s structure theorem (1907). A is 
isomorphic to the algebra Di of all t x t matrices over a certain central division algebra D and for a certain positive integer t: the 
class [A] then consists of all central simple algebras over k that are isomorphic to Ds, for any positive integer s. Theset of all 
such algebra classes, with given ground field k, forms a group B(k), now known as the Brauer group of k; the product of 
classes [A], [B] is defined to be the class [A ⊗kB], and the identity clement of B(k) is the class [k]. It has turned out that B(k) is 
a fundamentally important invariant of the field k. Brauer studied it with the help of a technique of factor sets, and from this 
beginning has grown the theory of Galois cohomology and its many uses in number theory. In another direction. M. Auslander 
and O. Goldman showed in 1960 how to define B(R) for an arbitrary commutative ring R, thereby beginning a new chapter in 
commutative algebra. 

Brauer’s work with Emmy Noether brought him into contact not only with this influential algebraist and her school in 
Göttingen but also with the famous conjecture of L. E. Dickson that every central simple algebra A over an algebraic number 
field k contains a maximal subfield L that is a Galois extension of k with cyclic Galois group. This conjecture was proved in 
1931 in a joint paper by Brauer. Noether, and H. Hasse that is the culmination of a long development in the theory of algebras. 
Brauer’s association with this work secured his reputation as one of the best mathematicians of the rising generation in 
Germany. 

Brauer was abruptly dismissed in 1933, along with all other Jewish university teachers in Germany. The disadvantages and 
disruptions of a forced emigration at the age of thirty-two were offset to some extent by the new contacts Bruer made, not only 
with American mathematicians but also with other German scientists who found refuge in America in the 1930’s Theyear 
1934–1935, when Brauer was Weyl’s assistant at the Institute for Advanced Study, saw an extraordinary gathering of 
mathematicians and physicists of the first rank: J. W. Alexander, Albert Einstein John von Neumann, Oswald Veblen, and 
Weyl were permanent professors at the Institute; and the mathematics faculty at Princeton University included Salomon 
Bochner. S. Lefschetz, and Joseph H. M. Wedderburn. Among the visiting members of the Institute that year were, besides 
Brauer, W. Magnus, C. L. Siegel, and Oscar Zariski. 

In 1935 Brauer took up a post as assistant professor at the University of Toronto, where he remained until 1948. becoming in 
due course associate and then full professor. Here he developed his modular representation theory of finite groups, which will 
probably continue to be regarded as his most original and characteristic contribution to mathematics. 

Representation theory began with Frobenius paper “Über Gruppencharaktere,” published in 1896. In Frobenius’ theorem the 
irreducible characters of a group were defined in terms of what can now be described as the representations of the center of the 
group algebra ℂG (ℂG is the linear algebra over the complex field ℂ having the elements of G as basis). Schur (who had been 
Frobenius’ pupil) reformulated Frobenius’ character theory in a beautiful paper published in 1905 that became the basis of all 
subsequent expositions of the subject. Schur defined the character X H of an arbitrary representation H:G→GL(N, ℂ) of G to be 
the complexvalued function XH:Gℂ given by XH (s), = trace H(s), s ∊ G. If H is an irreducible representation, then XH is said to 
be a simple, or irreducible, character. Schur rederived Frobenius’ orthogonality relations for the irreducible characters, from 
which follows the fundamental theorem: Two representations H, H’ of the group G are equivalent if, and only if, their 
characters are equal, XH= XH. 



It was recognized very soon that Frobeniusk arguments do not hold when ℂ is replaced by an algebraically closed field k of 
finite characteristic p, although L. E, Dickson proved in 1902 that the orthogonality relations for the characters are still true, 
provided p does not divide the order ǀGǀ of G. In two later papers Dickson considered the case where p divides ǀGǀ. In this case 
the group algebra kG is not semisimple. A representation F:G→GL(n, k) is no longer determined up to equivalence by the 
natural character XF = trace F. After Dickson’s papers were published in 1907, little more was done on representations over 
fields of finite characteristic until the mid 1930’s, when Brauer laid the foundations of his modular representation theory in 
three fundamental papers, the last two of which were written with C. Nesbitt, who took his Ph.D. at Toronto under Brauer’s 
supervision. 

Let G0 denote the set of all p′-elements (or p-regular elements) of G; these are the elements whose order is prime to p. Let ǀGǀ = 
p0m, where a ≥ 0 and p does not divide m. Then each element of G0 satisfies the equation gm=1, so if F:G→GL(n, k) is a 
representation, the eigenvalues α1, …αn of F[g] are mth roots of unit in the field k. Theset Um(k) of all mth roots of unit in k 
forms a cyclic group of order m. the group operation being multiplication in k. But the multiplicative group Um (ℂ) of all 
complex mth roots of unity is also cyclic of order m. Therefore one can find a multiplicative isomorphism c:Um (k)→Um (ℂ); in 
general this can be done in many ways. Choose any such isomorphism c. Brauer defines the modular character (later known as 
the Brauer character) of the representation F to be the function βF:G0→ ℂ given by 

This gives a complex valued function in place of the k-valued natural character Xf, for which 

by the daring—almost impudent—device of complexifying the eigenvalues α1, …, αn That definition (l), and not the natural 
definition (2), is the correct basis for a modular character theory soon becomes clear. If F1….F1 is a full set of irreducible 
representations of G over k, then their Brauer characters β1, …, βi are linearly independent functions on G0. For any 
representation F:G → GL(n, k) one has βF = Σni (F)βi where n(F) is the multiplicity with which Fi appears as a composition 
factor in F. Brauer characters (like natural characters) are class functions, that is. βF (g) = βF (g´) whenever g, g´ belong to the 
same conjugacy class of G. Frobenius had shown that the number of irreducible ordinary characters of G is equal to the 
number of conjugacy classes of G; Brauer showed that the number l of irreducible modular characters is equal to the number of 
p-regular classes, that is, to the number of conjugaey classes lying in G0. 

From the beginning, Brauer saw the modular character theory—which is based on representations of G over a field k of finite 
characteristic p—as a source of information on the ordinary characters— which is based on representations on ℂ or some other 
field of characteristic zero. If X1….X0 are the irreducible ordinary characters of G. and β1…, β1 are the irreducible modular 
characters, there exist nonnegative integers dai such that the equations 

hold for all elements g in G0. To explain these equations, we need some technical preliminaries. Let L be a field of 
characteristic zero that is a splitting field for G; this means that for each σ = 1, …, s, the character Xσ can be obtained from a 
matrix representation Xσ such that all the coefficients of the matrices Xσ lie in L. This is to say that L is a splitting field for all 
the Xσ in the sense we used earlier. We assume that L has a subring R that is a principal ideal domain, such that L is the field of 
quotients of R: moreover, R should have aprime ideal v containing the integer p. We identify R ̄ = R/p (which is a field of 
characteristic p) with a subfield of the field k. The matrix representations Xσ can be chosen so that the matrix coefficients of Xσ 
(g) all lie in R. 

Taking these mod p, we get a modular representation of G, that is, a representation over the field k. The Brauer character of X ̄σ 
is (suitably identifying a part of L with a part of ℂ, so that the character values Xσ[g] can be regarded as elements of ℂ) 
identical with the restriction of Xσ to G0. Equations (3) therefore say that dσi is the multiplicity of Fi as composition factor of 
X ̄σ: Brauer called the di decomposition numbers; they record the decomposition that the ordinary irreducible representations Xσ 
of G undergo when they are reduced mod v. But these numbers have another, quite separate interpretation. Brauer found that 
the modular irreducibles F1, …, F1 are in natural correspondence with the indecomposable direct summands U1, …, U1 of the 
regular representation of the group algebra A = kG. (He showed, in fact, in joint work with Nesbitt, that this holds for any 
finite-dimensional k-algebra A. U1 is what is now called the projective cover of F1. Brauer’s ideas from this period—the late 
1930’s—pervade much modern research on algebras and their representations.) If splitting field L is taken to be complete with 
respect to a suitable discrete valuation, with R as the ring of valuation integers, then each U1 can be lifted to a representation 
U1 of G over R, that is, to a representation in characteristic zero, which therefore has an ordinary character ηi, say. 

There hold then the remarkable equations 

that are in some sense dual to (3), From (3) and (4) one deduces equations 

where the cij are the Cartan invariants of the algebra A = kG: cij a may be defined as the multiplicity (as composition factor) of 
Fi in Ui Cartan invariants exist for any algebra A, but equations (5) show that for a group algebra A = kG, the l x l matrix C = 
(cij) has special properties: it is symmetric and positive definite. Brauer also discovered the deep theorem that det C is a power 
of the characteristic p of k. This was published in the first of a remarkable series of papers appealing in 1941 and 1942. In 
these Brauer introduced new and sophisticated methods for the study of group characters, and began to give applications of his 
theory to the structure theory of finite groups. 



Fundamental to this work was the idea of a block. Blocks are most easily defined by taking a decomposition 1 = e1 +… +e1 1 
as sum of orthogonal primitive idempotents of eτ, of the center Z(kG) of kG. This can be lifted to a corresponding 
decomposition I = ê1 +… + ê in Z(RG). An ordinary (or modular) irreducible character ψ of G is said to belong to the block Bi 
of G if êi (or ei) is represented by the identity matrix in a representation corresponding to ψ. In this way both sets {Xi, …, Xs} 
and {β1, …, β1 fy} are partitioned among the t blocks B1, …, B1 of G. Block theory aims to give information about the ordinary 
characters of a given block B1 of G, in terms of information available for a block b in some p-local subgroup H of G (H is 
usually the normalizer or centralizer in G of some p-subgroup of G) 

In the most favorable cases, Brauer’s methods show that a part of the character tabic for H is almost identical with a part of the 
character table for G: this is now much used in the computation of character tables for known finite groups. Brauer saw in his 
theory a potential tool for studying finite simple groups. (We shall return to this later.) 

The main facts about blocks of a group G and their relation to blocks of subgroups H of G as well as the important refinement 
to equations (3) involving coefficients called the generalized decomposition numbers, had been published (sometimes without 
proofs, which appeared years later) by 1947. In that year Brauer also published a solution to Emil Artin’s conjecture that the 
sums of the Artin L-series are entire functions. Brauer had field a Guggenheim fellowship in 1941 and 1942 and spent a part of 
this time visiting Artin in Bloomington, Indiana. They both knew that the solution of Artin’s conjecture rested on the validity 
of a certain statement about group characters; and at some point in the next few years Brauer realized that this statement could 
be proved, using methods he had developed for his modular character theory. 

By 1953 he embodied the essential idea from these methods in a theorem—perhaps his most widely known—that if θ is a 
complex valued class function on a finite group G, then θ is a generalized character of G, if its restriction θ is a generalized 
character of E, for every elementary subgroup E of G. (If X1, …, Xs are the irreducible ordinary characters of a group G, then 
functions of form z 1X1 +… + zsXs with the z1integers—not necessarily positive—are called generalized characters of G. A 
group E is elementary if. for some prime p, E is the direct product of a p-group and a cyclic group, ) From this theorem Brauer 
also obtained a new proof of a much older conjecture (which he had first solved a few years earlier): that if ∊ is a primitive gth 
root of unity, where g is the order of G, then Q(∊) is a splitting field for G (that is, for all the irreducible characters of G). 

In 1948 Brauer moved from Toron to the University of Michigan at Ann Arbor, and four years later to Harvard. From this 
period can be dated the first systematic attack on the problem of describing (or classifying) all finite simple groups. In a paper 
written with his pupil K. A. Fowler. Brauer proved by very elementary means a striking fact: Let G be a simple group of even 
order, and let x be an involution in G (that is, an element satisfying the conditions x2 = 1, x Let H = CG (x) be the centralizer of 
x and let n be the order of H. Then G has a proper subgroup of index less than 1/2n(n + 1). This gives hope to a general 
program announced by Brauer in 1954: Given an abstract group H with an involution x in its center, to find all simple groups 
G containing H as a subgroup in such a way that H = CG (x). For the theorem above shows that (with H and x given) the 
number of isomorphism types of such groups G is finite—although it does not provide practical means of constructing them. It 
is natural to take for H the centralizer of an involution in some known simple group G0. It may happen that G0is—up to 
isomorphism— the only simple group having an involution x such that CG (x) ≊ H; we have then a characterization of G0 by an 
internal property. 

By 1954 Brauer (and independently M. Suzuki and G. E. Wall) had found characterizations of this kind for groups of type 
PSL(2, q). The method in such problems is to build up knowledge of the ordinary character table of G from what is given 
about H. This is exactly the kind of work for which Brauer’s modular methods were designed, and he used these methods 
successfully on many simple group characterizations during the next twenty-five years, constantly refining and developing his 
modular theory. But now new actors began to appear in the drama of the simple groups. Suzuki and Wall used only ordinary 
character theory in their work on PSL(2.q), and their methods—still following Brauer’s program—led eventually to the 
discovery of new simple groups. Around 1960 J. G. Thompson began a powerful attack on the internal structure of simple 
groups, using new group-theoretical methods. In 1963 he and W. Feit verified the long-standing conjecture that every simple 
(noncyclic) group G has even order—which showed that G must possess involutions. so that Brauer’s general program will 
always apply, The Feit-Thompson paper, remarkable for its length and difficulty, again used only ordinary character theory, 
based on an old theorem of Frobenius. 

In the period 1960–1980 dozens of people joined the common effort to find all finite simple groups. Many new simple groups 
were found. some by application of Brauer’s program and others from quite different sources. Brauer was deeply involved in 
this effort right up to the end of his life but did not see its final success, of which he must be counted one of the chief 
architects. 
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