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Erdös was a Hungarian mathematician who spent much of his life traveling and working with 
colleagues around the world on mathematical problems of many kinds. He published some 
1500 papers, making him the most prolific major mathematician of the twentieth century, and 
had more than 450 collaborators and coauthors. His work falls into a number of fields, some 
of which he created, but which can mostly be embraced under the general heading of discrete 
mathematics, one of the major developments of twentieth-century mathematics. It also 
exerted a major influence on computer science, a field in which Erdös himself never worked. 

Early Life . Erdös’s parents, Anna and Lajos Erdös, were both mathematics teachers, and he 
was brought up by his very protective mother, who was ever mindful of the fact that she had 
lost two daughters to scarlet fever just before Paul was born. His father was taken prisoner by 
the Russians during the World War I and sent to Siberia for six years. His parents kept Paul 
out of school after a few years to foster his evident talent, and at age twenty he became well 
known for finding an elegant new proof of a famous theorem in mathematics. This was 
Tchebychev’s theorem, which states that for every natural number n there is always a prime 
number between n and 2n. Erdös retained a lifelong interest in prime numbers; one of his 
best-known achievements is the so-called elementary proof of the prime number theorem that 
he and Atle Selberg published in 1949. The theorem says that the number of prime numbers 
less than x is approximately x/log x, as x gets larger and larger. Their proof is far from simple; 
it is elementary because it avoids the use of complex function theory, which is not needed for 
the statement of the theorem but is a central feature of most of its proofs. He and Selberg had 
planned to publish their proof in two papers in the same issue of a journal, but at the last 
minute Erdös changed his mind and published first. The next year, however, Selberg was 
awarded a Fields Medal for this and other achievements. 

Erdös obtained his PhD from the University of Budapest in 1934 and came to the University 
of Manchester in England on a post-doctoral fellowship. It was by now clear that the Nazi 
takeover in Germany threatened the lives of Jews in Europe, and Erdös was able to leave for 
the United States. In the 1950s his political naivety caused him problems with the 
immigration authorities of the United States, and he emigrated to Israel, where he remained 
until the 1960s. Then, joined by his mother who was now in her eighties, Erdös began the 
extremely peripatetic life for which he became famous. He would arrive at a friend’s home, 
stay with him for a few days working exclusively on mathematics and talking about nothing 
else, and then move on by mutual agreement. Close friends, such as Ronald L. Graham, the 
director of the information sciences research center at AT&T Laboratories, who set aside a 
room in his house for Erdös, took care of the financial side of Erdös’s life; Graham was one 
of a number of people who provided Erdös with food and clothes and sorted out his tax 
returns. Erdös earned money from invitations to give lectures and work with mathematicians 
around the world, and usually donated it to struggling young mathematicians or gave it away 
in the form of prizes for the solution of problems he found particularly noteworthy. For 
example, when he won the Wolf Prize in 1983, which was then the most lucrative award 
available to mathematicians, he kept only $720 of the $50,000 prize. 



Relations with Contemporaries . Erdös spoke of the world in a private language that 
reflected his cosseted upbringing. Thus SF (for Supreme Fascist) was his name for God, 
whom he regarded as a malign deity he believed had created the universe and tormented 
people; “epsilon” (traditionally a very small quantity in mathematics) was his name for a 
child—Erdös was very fond of children; and “bosses” his name for women, with whom he 
was less comfortable and who occasionally protested at the way people attracted to the cult 
around Erdös glossed over the sexism inherent in the term. Men were called “slaves” and 
people who had given up mathematics were said to have “died.” Erdös often spoke of what he 
called “The Book,” supposedly in the possession of the SF, in which were collected all the 
best proofs of all the important results in 

mathematics, and which it was the job of mathematicians to discover. After his death 
mathematicians began to publish a book called Proofs from the Book, a compilation of 
exceptionally elegant proofs of various results. 

It is fair to say that Erdös divided the mathematical community more than any other 
mathematician of his stature. To his friends and admirers, especially those who worked with 
him and who regarded their collaboration as a rare opportunity to experience a first-rate 
mathematical mind close up, he was one of the great mathematicians of the century if not of 
all time, to be compared with Leon-hard Euler for his originality. Others, while impressed, 
were less convinced. The disagreement goes back to a familiar tension in twentieth-century 
mathematics between the theory builders and the problem solvers. Much of the mathematics 
of the twentieth century, and indeed the nineteenth century, was conceptual and highly 
structured. Elaborate and profound general theories were constructed that are admired as 
much for their breadth of insight as for the problems they solve. The mathematicians most 
associated with this kind of mathematics, David Hilbert and his followers, especially Emmy 
Noether, and then the successive members of the Bourbaki group after World War II, not only 
promoted this style of mathematics through their own work but maintained it as the core 
activity of the mathematician. Erdös’s obsessive interest in problems that seemed to lack a 
general theory was completely the opposite of this and led some to see his contributions as 
remarkable and yet somehow marginal. 

To make matters worse, his problems were mostly combinatorial and can be difficult without 
seeming deep. The large and difficult topic of differential equations, especially partial 
differential equations, is similarly full of difficult problems that yield only to delicate and 
often ad hoc analysis. It, too, is a branch of mathematics that has not been overwhelmed by 
the structural style of mathematics, but here no one disputes its depth or importance: Almost 
all of mathematical physics is written and studied in the language of partial differential 
equations. Lacking, apparently, depth and applications, Erdös’s problems could seem shallow 
and artificial, and his success in attracting interest in them even counterproductive. It was 
even suggested that by attracting so many Hungarian mathematicians to the pursuit of his 
problems he had unbalanced the whole study of mathematics in Hungary, which, 
before World War II, had been remarkable for its breadth and vigor. Erdös compounded the 
issue by his prizes and the fame that attached to anyone who solved one of his more 
challenging problems. The underlying significance of Erdös’s work seems likely to lie in 
concepts that he articulated only imperfectly and that his flurry of problem solving partly 
obscured. 

Analytic Number Theory . The easiest way to see the depth of Erdös’s problems is to 
approach them via one of the most difficult and delicate branches of classical mathematics, 



analytic number theory, in which Erdös was profoundly immersed. The prime number 
theorem is just one of a large collection of results that make claims about the number of 
numbers less than some bound n with a specific property as the bound n increases 
indefinitely. It says, as was noted above, that the number of prime numbers less than x is well 
approximated by x / log x . It is well known that the sum of the reciprocals of the integers is 
infinite, but the sum of the reciprocals of the squares (1/1 + 1/4 + 1/9 + …) is finite (a result 
first established by Euler). This gives a way of saying that although there are infinitely many 
square numbers they form a rather sparse subset of the set of all integers. What about the 
prime numbers? In fact, as Euler also showed, the sum of the reciprocals of the primes is also 
infinite, which says not only that there are infinitely many primes but that they are rather 
numerous, and more numerous than the squares, according to the ways in which number 
theorists distinguish between the “sizes” of infinite sets. 

Now consider an arithmetic progression, which is a set of numbers of the form a+ bk, k = 0, 1, 
2,… where a and b are positive integers with no common factor (so for example one might 
have a = 6 and b = 35). In 1927 Bartel van der Waerden proved that if the natural numbers are 
divided into k subsets then at least one of these sets contains arbitrarily long arithmetic 
progressions. Erdös and Paul Turan then conjectured in 1936 that any subset of the natural 
numbers that has positive density contains arbitrarily long arithmetic progressions. (To say 
that a subset A of the natural numbers has positive density is to say that as nincreases 
indefinitely, the ratio of the number of numbers less than n that are in A to the number of 
numbers less than n tends to a limit greater than zero.) This result was proved in 1974 by the 
Hungarian mathematician Emre Szemeredi, for which he was awarded $1,000 by Erdös. But 
the prime numbers thin out; they do not form a set of positive density, and in 1936 Erdös and 
Turan had also asked if any subset of the natural numbers with the property that the sum of its 
reciprocals is infinite also contains arbitrarily long arithmetic progressions. This is a profound 
generalization of the earlier conjecture, one that would locate a deep property of prime 
numbers in a more general setting. 

In 2006 the young mathematician Terence Tao was awarded a Fields Medal for solving many 
remarkable problems in diverse areas of mathematics; one of these was his work with Ben 
Green that shows that the set of prime numbers does indeed contain arbitrarily long arithmetic 
progressions. Erdös and Turan’s question remains unsolved in general. 

So Erdös reminded mathematicians of how little they know about prime numbers despite all 
their grand theorems. The prime numbers are the building blocks of arithmetic, and Erdös’s 
remarkable insights into their properties led not only to good theorems but directed 
mathematicians back to the task of exploring this core part of their subject. 

Erdös’s understanding of analytic number theory also helped create what has come to be 
called probabilistic number theory. In September 1939 he was at Princeton 
University listening to a lecture by Mark Kac on the behavior of the function that counts the 
number of prime divisors of a number. Heuristically, Kac regarded divisibility by 2, 3, 5 and 
so on as independent events and treated this function using ideas from probability theory. He 
suggested that the distribution of the number of prime divisors was a normal distribution, 
which would considerably sharpen some classical results in number theory, but was unable to 
prove it. Before the lecture was over Erdös had used his knowledge of what are called sieve 
methods to establish Kac’s conjecture. Ever since, probabilistic methods have spread in 
analytic number theory to the mutual advantage of both subjects. Ironically, Erdös’s 



knowledge of probability theory matched Kac’s grasp of number theory: Erdös did not even 
know the central limit theorem at that time. 

Combinatorics . Another of Erdös’s major achievements is that he established combinatorial 
questions in mathematics as a central, new field of enquiry. The subject was reinvented in the 
decades after World War II, having become unfashionable. Whereas others may have done as 
much to reinvigorate the connections between combinatorics and other branches of 
mathematics that have their roots in the work of the previous two centuries, Erdös directed 
attention to novel but equally significant questions in the subject. Here two topics stand out: 
Ramsey theory and Random graphs. 

Ramsey theory was initiated by the English mathematician Frank Plumpton Ramsey, and 
concerns problems that ask for the smallest set of objects in which a certain pattern must 
appear. For example, how many people must there be in a room together before one can be 
certain that at least two have the same sex? Here the answer is obviously three. How many 
people must there be in a room together before one can be certain that either three know each 
other or three do not (assuming that if Jack knows Jill then Jill knows Jack)? Here the answer 
is six, but the way to prove this is not to list all the sets of three there can be, because there are 
a lot. The same problem can be asked for foursomes, and here Erdös, Graham, and others 
proved that the answer is 18, but all that is known for fivesomes is that the answer lies 
between 43 and 49. Erdös discovered profound implications of Ramsey theory in the study of 
graphs, both finite graphs and, perhaps more remarkably, infinite graphs. 

Whenever it is asked if an infinite graph has a certain property, it is likely that the question 
turns into one about the independence, or otherwise, of this or a related property from the 
fundamental axioms of set theory (usually ZFC or Zermelo-Frankel set theory with the axiom 
of choice). In 1943 Erdös and Alfred Tarski wrote a joint paper that showed that some of 
these questions led to the construction of what are called inaccessible cardinals (sets of a 
vastly greater size than are usually encountered in mathematics). The theory of these and 
other huge sets is today an active branch of modern set theory. 

Random graph theory is the application of probabilistic methods to combinatorial questions, 
and combines numerical estimates with probability theory to establish the existence of graphs 
with properties that ought to occur quite often. It was created in a series of papers by Erdös 
and Alfréd Rényi in the 1960s. The basic idea is that a graph with a certain number, n, of 
vertices is specified by assigning the edges at random. When a suitable number of edges have 
been specified, the graph ought to have certain properties. For example, after a time one 
expects all the vertices to be connected, and Erdös and Rényi gave sharp estimates of when 
this will occur (roughly n log (n/2) edges have to be assigned). More remarkably, they 
showed that after about n/2 edges have been chosen one can expect a giant component to 
appear, which then steadily absorbs the remaining components as the number of edges further 
increases. This is a good model for a phase transition, such as occurs in percolation theory, 
and in many branches of physics. 
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