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(b. Chios; fl. Athens, second half of the fifth century b.c.) 

mathematics, astronomy. 

The name by which Hippocrates the mathematician is distinguished from the contemporary physician of Cos1 implies that he 
was born in the Greek island of Chios; but he spent his most productive years in Athens and helped to make it, until the 
foundation of Alexandria, the leading center of Greek mathematical research. According to the Aristotelian commentator John 
Philoponus, he was a mercahnt who lost all his property through being captured by pirates.2 Going to Athens to prosecute 
them, he ws obliged to stay a long time. He attended lectures and became so proficient in geometry that he tried to square the 
circle. Aristotle’s own account is less flatering3. It is well known, he observes, that persons stupid in one respect are by no 
means so in others. “Thus Hippocrates, though a competent geometer, seems in other respects to have been stupid and lacking 
in sense; and by his simplicity, they say, he was defrauded of a large sum of money by the customs officials at Byzantium.” 
Plutarch confirms that Hippocrates, like Thales, engaged in commerce4. The “Eudemian summary” of the history of geometry 
reproduced by Proclus states that Oenopides of Chios was somewhat younger than Anaxagoras of Clazomenae; and “after 
them Hippocrates of Chios, who found out how to square the lune, and Theodore of Cyrene beame distinguished in geometry. 
Hippocrates is the earliest of those who are recorded as having written Elements.”5 Since Anaxgoras was born about 500 b.c. 
and Plato went to Cyrene to hear Theodore after the death of Socrates in 399 b.c., the active life of Hippocrates may be placed 
in the second half of the fifth century b.c. C. A. Bretschneider has pointed out that the accounts of Philoponus and Aristotle 
could be reconciled by supposing that Hippocrates’ ship was captured by Athenian pirates during the Samian War of 440 b.c., 
in which Byzantium took part6. 

Paul Tannery, who is followed by Maria Timpanaro Cardini, ventures to doubt that Hippocrates needed to learn his 
mathematics at Athens.7 He thinks it more likely that Hippocrates taught in Athens what he had already learned in Chios, 
where the fame of Oenopides suggests that there was already a flourishing school of mathematics. Pointing out the Pythagoras, 
Timpanaro Cardini makes a strong case for regarding Hippocrate as coming under Pythagorean influence even though he had 
no Pythagorean teacher in the formal sense. Although lamblichus does not include Hippocrates’ name in his catalog of 
Pythagoreans, he, like Eudemus, links him with Theodore, who was undoubtedly in the brotherhood.8 

Mathematics, he notes, advanced after it had been published; and these two men were the leaders. He adds that mathematics 
came to be divulged by the Pythagoreans in the following way: One of their number lost his fortune, and because of this 
tribulation he was allowed to make money by teaching geometry. Although Hippocrates is not named, it would, as Allman 
points out, accord with the accounts of Aristotle and Philoponus if he were the Pythagorean in question.9 The belief that 
Hippocrates stood in the Pythagorean tradition is supported by what is known of his astronomical theories, which have 
affinities with those of Pythagoras and his followers. He was, in Timpanaro Cardini’s phrase, a para-Pythagorean, or, as we 
might say, a fellow traveler.10 

When Hippocrates arrived in Athens, three special problems—the duplication of the cube, the squaring of the circle, and the 
trisection of an angle—were already engaging the attention of mathematicians, and he addressed himself at least to the first 
two. In the course of studying the duplication of the cube, he used the method of reduction or analysis. He was the first to 
compose an Elements of Geometry in the manner of Euclid’s famous work. In astronomy he propounded theories to account 
for comets and the galaxy. 

Method of Analysis. Hippocrates is said by Proclus to have been the first to effect the geometrical reduction of problems 
difficult of solution.11 By reduction (άπαγωγή) Proclus explains that he means"a transition from one problem or theorem to 
another, which being known or solved, that which is propounded is also manifest.”12 It has sometimes been supposed, on the 
strength of a passage int he Republic, that Plato was the inventor of this method; and this view has been supported by passages 
from Proclus and Diogenes Laertius.13 But Plato is writing of philosophical analysis, and what Proclus and Diogenes Laertius 
say is that Plato “communicated” or “explained” to Leodamas of Thasos the method of analysis (άναλύσις)—the context 
makes clear that this is geometrical analysis—which takes the thing sought up to an acknowledged first principle. There would 
not appear to be any difference in meaning between “reduction” and “analysis,” and there is no claim that Plato invented the 
method. 

Duplication of the Cube. Proclus gives as an example of the method the reduction of the problem of doubling the cube to the 
problem of finding two mean proportionals between two straight lines, after which the problem was pursued exclusively in that 
form.14 He does not in so many words attribute this reduction to Hippocrates; but a letter purporting to be from Eratosthenes tp 
Ptolemy Euergetes, which is preserved by Eutocius, does specifically attribute the discovery to him.15 In modern notation, if 



a:x = x:y = y:b, then a3:x3 =a:b; and if b = 2 a, it follows that a cube of side x is double a cube of side a. The problem of 
finding a cube that is double acube with side a is therefore reduced to finding two mean proportionals, x, y between a and 2 a 
(The pseudo-Eratosthenes observes with some truth that the problem was thus turned into one no less difficult.)16 There is no 
reason to doubt that Hippocrates was the first to effect this reduction; but is does not follow that he, any more than Plato, 
invented the method. It would be surprising if it were not in use among the Pythagoreans before him. 

The suggestion was made by Bretschneider, and has been developed by Loria and Timpanaro Cardini,17 that since the problem 
of doubling a square could be reduced to that of finding one mean proportional between two lines,18 Hipporcrates conceived 
that the doubling of a cube might require the finding of two mean proportionals. Heath has made the fur ther suggestion that 
the idea may have come to him from the theory of numbers.19 In the Timaeus Plato states that between two square numbers 
there is one mean proportional number but that two mean numbers in continued proportion are required to connect two cube 
numbers.20 These propositions are proved as Euclid VII.11, 12, and may very well be Pythagorean. If so, Hippocrates had only 
to give a geometrical adaptation to the second. 

Quadrature of Lunes. The “Eudemian summary” notes that Hippocrates squared the lune—so called from its resemblance to 
a crescent moon—that is, he found a rectilineal figure equal in area to the area of the figure bounded by two intersecting arcs 
of circles concave in the same direction.21 This is the achievement on which his fame chiefly rests. The main source for our 
detailed knowledge of what he did is a long passage in Simplicius’ commentary on Aristotle’s Physics22 Simplicius 
acknowledges his debt to Eudemus’ History of Geometry and says that he will set out word for word what Eudemus wrote, 
adding for the sake of clarity only a few things taken from Euclid’s Elements because of Eudemus’ summary style. The task of 
separating what Simplicius added has been attempted by many writers from Allman to van der Waerden. When Simplicius 
uses such archaic expressions as τò σημεϮον έϕ’ ώ̂ (or έϕ’ ού̂) A for the point A, with corresponding expressions for the line 
and line and triangle, it is generally safe to presume that he is quoting; but it is not a sufficient test to distinguish the words of 
Hippocrates from those of Eudemus, since Aristotle still uses such pre Euclidean forms. Another stylistic test is the earlier 
form which Eudemus would have used, δυνάµει εί̂ναι (“to be equal to when square”), for the form δύνασθαι, which 
Simplicius would have used more naturally. Although there can be no absolute certainty about the attribution, what remains is 
of great interest as the earliest surviving example of Greek mathematical reasoning; only propositions are assigned to earlier 
mathematicians, and we have to wait for some 125 years after Hippocrates for the oldest extant Greek mathematical text 
(Autolycus). 

Before giving the Eudemian extract, Simplicius reproduces two quadratures of lunes attributed to Hippocrates by Alexander of 
Aphrodisias, whose own commentary has not survived. In the first, AB is the diameter of a semicircle, AC, CB are sides of a 
square inscribed in the circle, and AEC is a semicircle inscribed on AC. Alexander shows that the lune AEC is equal to the 
triangle ACD. 

In the second quadrature AB is the diameter of a semicircle; and on CD, equal to twice AB, a semicircle 

is described. CE, EF, FD are sides of a regular hexagon; and CGE, EHF, FKD are semicircles. Alexander proves that the sum 
of the lunes CGE, EHF, FKD and the semicircle AB is equal to the trapezium CEFD. 

Alexander goes on to say that if the rectilinear figure equal to the three lunes is subtracted (“for a rectilinear figure was proved 
equal to a lune”), the circle will be squared. There is an obvious fallacy here, for the lune which was squared was one standing 
on the side of a square and it does not follow that the lune standing on the side of the hexagon can be squared. John 
Philoponus, as already noted, says that Hippocrates tried to square the circle while at Athens. There is confirmation in 
Eutocius, who in his commentary on Archimedes’ Measurement of a Circle notes that Archimedes wished to show that a circle 
would be equal to a certain rectilinear area, a matter investigated of old by eminent philosophers before him.23 “For it is clear,” 
he continues, “that the subject of inquiry is that concerning which Hippocrates of Chios and Antiphon, who carefully 
investigated it, invented the paralogisms which, I think, are accurately known to those who have examined the History of 
Geometry by Eudemus and have studied the Ceria of Aristotle.” This is probably a reference 

to a passage in the Sophistici Elenchi where Aristotle says that not all erroneous constructions are objects of controversy, either 
because they are formally correct or because they are concerned with something true, “such as that of Hippocrates or the 
quadrature by means of lunes.”24 In the passage in Aristotle’s physics on which both Alexander and Simplicius are 
commenting,25 Aristotle rather more clearly makes the point that it is not the task of the exponent of a subject to refute a fallacy 
unless it arises from the accepted principles of the subject. “Thus it is the business of the geometer to refute the quadrature of a 
circle by means of segments but it is not his business to refute that of Antiphon.” 26 

The ancient commentators are probably right in identifying the quadrature of a circle by means of segments with Hippocrates’ 
quadrature of lunes; mathematical terms were still fluid in Aristotle’s time, and Aristotle may well have thought there was 
some fallacy in it. We may be confident, though, that a mathematician of the competence of Hippocrates would not have 
thought that he had squared the circle when in fact he had not done so. It is likely that when Hippocrates took up mathematics, 
he addressed himself to the problem of squaring the circle, which was much in vogue; it is evident that in the course of his 
researches he found he could square certain lunes and, if this had not been done before him, probably effected the two easy 
quadratures described by Alexander as well as the more sophisticated ones attributed to him by Eudemus. He may have hoped 
that in due course these quadratures would lead to the squaring of the circle; but it must be a mistake on the part of the ancient 
commentators, probably misled by Aristotle himself, to think that he claimed to have squared the circle. This is better than to 



suppose, with Heiberg, that in the state of logic at that time Hippocrates may have thought he had done so; or, with Bjö;rnbo, 
that he deliberately used language calculated to mislead; or, with Heath, that he was trying to put what he had discovered in the 
most favorable light. 27 Lets us trun to what Hippocrates actually did, according to Eudemus, who, as Simplicius notes, is to be 
preferred to Alexander as being nearer in date to the Chian geometer. 

Hippocrates, says Eudemus, “made his starting point, and laid down as the first of the theorems useful for the discussion of 
lunes, that similar segments of circles have the same ratio as the squares on their bases; and this he showed from the 
demonstration that the squares on the diameters are in the same ratio as the circles.” (This latter proposition is Euclid XII.2 and 
is the starting point also of Alexander’s quadratures; the signficance of what Eudemus says 

is discussed below.) In his first quadrature he takes a right-angled isosceles triangle ABC, describes a semicircle about it, and 
on the base describes a segment of a circle similar to those cut off by the sides. Since AB2 = AC2 + CB2, it follows that the 
segment about the base is equal to the sum of those about the sides; and if the part of the triangle above the segment about the 
base is added to both, it follows that the lune ACB is equal to the triangle. 

Hippocrates next squares a lune with an outer circumference greater than a semicircle.BA, AC, CD are equal sides of a 
trapezium; BD is the side parallel to AC and BD2 = 3AB2. About the base BD there is described a segment similar to those cut 
off by the equal sides. The segment on BD is equal to the sum of the segments on the other three sides; and by adding the 
portion of the trapezium about the segment about the base, we see that the lune is equal to the trapezium. 

Hippocrates next takes a lune with a circumference less than a semicircle, but this requires a preliminary construction of some 
interest, it being the first known example of the Greek construction known as a “νεύσις, or “verging,”28 Let AB be the diameter 
of a circle and K its center. Let C be the midpoint of KB and let CD bisect BK at right angles. Let the straight line EF be placed 
between the bisector CD and the circumference “verging toward B” so that the square on EF is 1.5 times the square on one of 
the radii, that is, EF2 = 3/2 KA2. If FB = x and KA = a, it can easily be shown that x = a2, so that 

the problem is tantamount to solving a quadratic equation. (Whether Hippocrates solved this theoretically or empirically is 
discussed below.) 

After this preliminary construction Hippocrates circumscribes a segment of a circle about the trapezium EKBG and describes a 
segment of a circle about the triangle EFG. In this way there is formed a lune having its outer circumference less than a 
semicircle, and its area is easily shown to be equal to the sum of the three triangles BFG, BFK, EKF. 

Hippocrates finally squares a lune and a circle together. Let K be the center of two circles such that the square on the diameter 
of the outer is six times the square on the diameter of the inner. ABCDEF is a regular hexagon in the inner circle.GH, HI are 
sides of a regular hexagon in the outer circle. About GI let there be drawn a segment similar to that cut off by GH. Hippocrates 
shows that the lune GHI and the inner circle are together equal to the triangle GHI and the inner hexagon. 

This last quadrature, rather than that recorded by Alexander, may be the source of the belief that Hippocrates had squared the 
circle, for the deduction is not so obviously fallacious. It would be easy for someone unskilled in mathematics to suppose that 
because Hippocrates had squared lunes with outer circumferences equal to, greater than, and less than a semicircle, and 
because he had squared a lune and a circle together, by subtraction he would be able to 

square the circle. The fallacy, of course, is that the lune which is squared along with the circle is not one of the lunes 
previously squared by Hippocrates; and although Hippocrates squared lunes having outer circumferences equal to, greater 
than, and less than a semicircle, he did not square all such lunes but only one in each class. 

What Hippocrates succeeded in doing in his first three quadratures may best be shown by trigonometry. Let O, C be the centers 
of arcs of circles forming the lune AEBF, let r, R be their respective radii and θ, ϕ the halves of the angles subtended by the 
arcs at their centers. 

It is a sufficient condition for the lune to be squarable that sector OAFB = sector CAEB, for in that case the area will be equal 
to Δ CAB−Δ OAB, that is, the quadrilateral AOBC. In trigonometrical notation, if r2θ = R2ϕ, the area of the lune will be 1/2(R2 
sin2ϕ – r2 sin2θ). Let θ = kϕ. Then and the area of the lune is 1/2 r2 (k sin 2ϕ-r2 sin2θ). Let θ = kϕ. Now rsinθ = 1/2AB = R sin 
ϕ, so that . This becomes a quadratic equation in sin ϕ, and therefore soluble by plane methods, when k = 2, 3, 3/2, 5, or 5/3. 
Hippocrates’ three solutions correspond to the values 2, 3, 3/2 for k.29 

Elements of Geometry. Proclus explains that in geometry the elements are certain theorems having to those which follow the 
nature of a leading principle and furnishing proofs of many properties; and in the summary which he has taken over from 
Eudemus he names Hippocrates, Leon, Theudius of Magnesia, and Hermotimus of Colophon as writers of elements.30 In 
realizing the distinction between theorems which are merely interesting in themselves and those which lead to something else, 
Hippocrates made a significant discovery and started a famous tradition; but so complete was Euclid’s success in this field that 
all the earlier efforts were driven out of circulation. What Proclus says implies that Hippocrates’ book had the shortcomings of 
a pioneering work, for he tells us that Leon was able to make a collection of the elements in which he was more careful, in 
respect both of the number and of the utility of the things proved. 



Although Hippocrates’ work is no longer extant, it is possible to get some idea of what it contained. It would have included the 
substance of Books I and II of Euclid’s Elements, since the propositions in these books were Pythagorean discoveries. 
Hippocrates’ research into lunes shows that he was aware of the following theorems: 

1. In a right-angled triangle, the square on the side opposite the right angle is equal to the sum of the squares on the other two 
sides (Euclid I.47). 

2. In an obtuse-angled triangle, the square on the side subtending the obtuse angle is greater than the sum of the squares on the 
sides containing it (cf. II.12). 

3. In any triangle, the square on the side opposite an acute angle is less than the sum of the squares on the sides containing it 
(cf. II.13). 

4. In an isosceles triangle whose vertical angle is double the angle of an equilateral triangle (that is, 120°), the square on the 
base is equal to three times the square on one of the equal sides. 

5. In equiangular triangles, the sides about the equal angles are proportional. 

Hippocrates’ Elements would have included the solution of the following problems: 

6. To construct a square equal to a given rectilinear figure (II.14). 

7. To find a line the square on which shall be equal to three times the square on a given line. 

8. To find a line such that twice the square on it shall be equal to three times the square on a given line. 

9. To construct a trapezium such that one of the parallel sides shall be equal to the greater of two given lines and each of the 
three remaining sides equal to the less. 

The “verging” encountered in Hippocrates’ quadrature of lines suggests that his Elements would have included the “geometrial 
algebra” developed by the Pythagoreans and set out in Euclid I.44, 45 and 11.5, 6, 11. It has been held that Hippocrates may 
have contented himself with an empirical solution, marking on a ruler a length equal to KA in Figure 5 and moving the ruler 
about until the points marked lay on the circumference and on CD, respectively, while the edge of the ruler also passed through 
B. In support, it is pointed out that Hippocrates first places EF without producing it to B and only later joins BF.31 But it has to 
be admitted that the complete theoretical solution of the equation , having been developed by the Pythagoreans, was well 
within the capacity of Hippocrates or any other mathematician of his day. In Pythagorean language it is the problem “to apply 
to a straight line of length rectangle exceeding by a square figure and equal to a2 in area,” and it would be solved by the use of 
Euclid II. 6. 

Hippocrates was evidently familiar with the geometry of the circle; and since the Pythagoreans made only a limited incursion 
into this field, he may himself have discovered many of the theorems contained in the third book of Euclid’s Elements and 
solved many of the problems posed in the fourth book. He shows that he was aware of the following theorems: 

1. Similar segments of a circle contain equal angles. (This implies familiarity with the substance of Euclid III.20–22.) 

2. The angle of a semicircle is right, that of a segment greater than a semicircle is acute, and that of a segment less than a 
semicircle is obtuse. (This is Euclid III.31, although there is some evidence that the earlier proofs were different.)32 

3. The side of a hexagon inscribed in a circle is equal to the radius (IV. 15, porism). He knew how to solve the following 
problems: (1) about a given triangle to describe a circle (IV.5); (2) about the trapezium drawn as in problem 9, above, to 
describe a circle; (3) on a given straight line to describe a segment of a circle similar to a given one (cf.III.33). 

Hippocrates would not have known the general theory of proportion contained in Euclid’s fifth book, since this was the 
discovery of Eudoxus, nor would he have known the general theory of irrational magnitudes contained in the tenth book, 
which was due to Theaetetus; but his Elements may be presumed to have contained the substance of Euclid VI-IX, which is 
Pythagorean. 

It is likely that Hippocrates’ Elements contained some of the theorems in solid geometry found in Euclid’s eleventh book, for 
his contribution to the Delian problem (the doubling of the cube) shows his interest in the subject. It would be surprising if it 
did not to some extent grapple with the problem of the five regular solids and their inscription in a sphere, for this is 
Pythagorean in origin; but it would fall short of the perfection of Euclid’s thirteenth book. The most interesting question raised 
by Hippocrates’ Elements is the extent to which he may have touched on the subjects handled in Euclid’s twelfth book. As we 
have seen, his quadrature of lunes is based on the theorem that circles are to one another as the squares on their diameters, with 
its corollary that similar segments of circles are to each other as the squares on their bases. The former proposition is Euclid 



XII.2, where it is proved by inscribing a square in a circle, bisecting the arcs so formed to get an eight-sided polygon, and so 
on, until the difference between the inscribed polygon and the circle becomes as small as is desired. If similar polygons are 
inscribed in two circles, their areas can easily be proved to be in the ratio of the sqaures on the diameters; and when the 
number of the squares on the diameters; and when the number of the sides is increased and the polygons approximate more and 
more closely to the circles, this suggests that the ares of the two circles are in the ratio of the squares on their diameters. 

But this is only suggestion, not proof, for the ancient Greeks never worked out a rigorous procedure for taking the limits. What 
Euclid does is to say that if the ratio of the squares on the diameters is not equal to the ratio of the circles, let it be equal to the 
ratio of the first place to be less than the second circle. He then lays down that by continually doubling the number of sides in 
the inscribed polygon, we shall eventually come to a point where the residual segments of the second circle over S. For this he 
relies on a lemma, which is in fact the first proposition of Book X: “If two unequal magnitudes be set out, and if from the 
greater there be subtracted a magnitude greater than its half, and from the remainder a magnitude greater than its half, and so 
on continually, there will be left some magnitude which is less than the lesser magnitude set out.” On this basis Euclid is able 
to prove rigorously by reductio ad absurdum that S cannot be less than the second circle. Similarly, he proves that it cannot be 
greater. Therefore S must be equal to the second circle, and the two circles stand in the ratio of the squares on their diameters. 

Could Hippocrates have proved the proposition in this way? Here we must turn to Archimedes, who in the preface to his 
Quadrature of the Parabola33 says that in order to find the area of a segment of a parabola, he used a lemma which has 
accordingly become known as “the lemma of Archimedes” but is equivalent to Euclid X.I; “Of unequal areas the excess by 
which the greater exceeds the less is capable, when added continually to itself, of exceeding any given finite area.” 34 
Archimedes goes on to say: 

The earlier geometers have also used this lemma. For it is by using this same lemma that they have proved (1) circles are to 
one another in the same ratio as the squares on their diameters; (2) spheres are to one another as the cubes on their diameters; 
(3) and further that every pyramid is the third part of the prism having the same base as the pyramid and equal height; and (4) 
that every cone is a third part of the cylinder having the same base as the cone and equal height they proved by assuming a 
lemma similar to that above mentioned. 

In his Method Archimedes states that Eudoxus first discovered the proof of (3) and (4) but that no small part of the credit 
should be given to Democritus, who first enunciated these theorems without proof.35 

In the light of what has been known since the discovery of Archimedes’ Method, it is reasonable to conclude that Hippocrates 
played the same role with regard to the area of a circle that Democritus played with regard to the volume of the pyramid and 
cone; that is, he enunciated the proposition, but it was left to Eudoxus to furnish the first rigorous proof. Writing before the 
discovery of the Method, Hermann Hankel thought that Hippocrates must have formulated the lemma and used it in his proof; 
but without derogating in any way from the genius of Hippocrates, who emerges as a crucial figure in the history of Greek 
geometry, this is too much to expect of his age.36 It is not uncommon in mathematics for the probable truth of a proposition to 
be recognized intuitively before it is proved rigorously. Reflecting on the work of his contemporary Antiphon, who inscribed a 
square (or, according to another account, an equilateral triangle) in a circle and kept on doubling the number of sides, and the 
refinement of Bryson in circumscribing as well as inscribing a regular polygon, and realizing with them that the polygons 
would eventually approximate very closely to the circle, Hippocrates must have taken the further step of postulating that two 
circles would stand to each other in the same ratio as two similar inscribed polygons, that is, in the ratio of the squares on their 
diameters. 

A question that has been debated is whether Hippocrates’ quadrature of lunes was contained in his Elements or was a separate 
work. There is nothing about lunes in Euclid’s Elements, but the reason is clear: an element is a proposition that leads to 
something else; but the quadrature of lunes, although interesting enough in itself, proved to be a mathematical dead end. 
Hippocrates could not have foreseen this when he began his investigations. The most powerful argument for believing the 
quadratures to have been contained in a separate work is that of Tannery: that Hippocrates’ argument started with the theorem 
that similar segments of circles have the same ratio as the squares on their bases. This depends on the theorem that circles are 
to one another as the squares on their bases, which, argues Tannery, must have been contained in another book because it was 
taken for granted.37 

Astronomy. What is known of Oenopides shows that Chios was a center of astronomical studies even before Hippocrates; and 
he, like his contemporaries, speculated about the nature of comets and the galaxy. According to Aristotle, 38 certain Italians 
called Pythagoreans said that the comet—it was apparently believed that there was only one—was a planet which appeared 
only at long intervals because of its low elevation above the horizon, as was the case with Mercury.39 The circle of Hippocrates 
and his pupil Aeschylus40 expressed themselves in a similar way save in thinking that the comet’s tail did not have a real 
existence of its own; rather, the comet, in its wandering through space, occasionally assumed the appearance of a tail through 
the deflection of our sight toward the sun by the moisture drawn up by the comet when in the neighborhood of the sun.41 A 
second reason for the rare appearance of the comet, in the view of Hippocrates, was that it retrogressedc so slowly in relation 
to the sun, and therefore took a long time to get clear of the sun. It could get clear of the sun to the north and to the south, but it 
was only in the north that the conditions for the formation of a tail were favorable; there was little moisture to attract in teh 
space between the tropics, and although there was plenty of moisture to the south, when the comet was in teh south only a 
small part of its circuit was visible. Aristotle proceeds to give five fairly cogent objections to these theories.42 



After recounting the views of two schools of Pythagoreans, and of Anaxagoras and Democritus on the Milky Way, Aristotle 
adds that there is a third theory, for “some say that the galaxay is a deflection of our sight toward the sun as is the case with the 
comet.” He does not identify the third school with Hippocrates; but the commentators Olympiodorus and Alexander have no 
hesitation in so doing, the former noting that the deflection is caused by the stars and not by moisture.43 
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