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(b. Alexotas, Russia [now Lithuanian S.S.R.], 22 June 1864; d. Göttingen, Germany, 12 January 1909) 

mathematics. 

Minkowski was born of German parents who returned to Germany and settled in Königsberg [now 
Kaliningrad, R.S.F.S.R.] when the boy was eight years old. His older brother Oskar became a famous 
pathologist. Except for three semesters at the University of Berlin, he received his higher education at 
KOuml;nigsberg, where he became a lifelong friend of both Hilbert, who was a fellow student, and the 
slightly older Hurwitz, who was beginning his professorial career. In 1881 the Paris Academy of Sciences 
had announced a competition for the Grand Prix des Sciences Mathématiques to be awarded in 1883, the 
subject being the number of representations of an integer as a sum of five squares of integers; Eisenstein 
had given formulas for that number but without proof. The Academy was unaware that in 1867 H. J. Smith 
had published an outline of such a proof, and Smith now sent a detailed memoir developing his methods. 
Without knowledge of Smith’s paper, the eighteen-year-old Minkowski, in a masterly manuscript of 140 
pages, reconstructed the entire theory of quadratic forms in n variables with integral coefficients from 
Eisenstein’s sparse indications. He gave an even better formulation than Smith’s because he used a more 
natural and more general definition of the genus of a form, The Academy, unable to decide between two 
equally excellent, and substantially equivalent, works, awarded the Grand Prix to both Smith and 
Minkowski. 

Minkowski received his doctorate in 1885 at KOuml;nigsberg: he taught at Bonn until 1894, then returned 
to KOuml;nigsberg for two years, In 1896 he went to Zurich, where he was Hurwitz’ colleague until 1902; 
Hilben then obtained the creation of a new professorship for him at GOuml;tlingen, where Minkowski 
taught until his death. 

From his Grand Prix paper to his last work Minkowski never ceased to return to the arithmetic of quadratic 
forms in n variables (“n-ary forms”). Ever since Gauss’s pioneering work on binary quadratic forms at the 
beginning of the nineteenth century, the generalization of his results to n-ary forms had been the goal of 
many mathematicians, including Eisenstein, Hermite, Smith, Jordan, and Poincaré. Minkowski’s most 
important contributions to the theory were (1) for quadratic forms with rational coefficients, a 
characterization of equivalence of such forms under a linear transformation with rational coefficients, 
through a system of three invariants of the form and (2) in a paper of 1905, the completion of the theory of 
reduction for positive definite n-ary quadratic forms with real coefficients, begun by Hermite. The latter 
had defined a process yielding in each equivalence class (for transformations with integral coefficients) a 
finite set of “reduced” forms; but it was still possible for this set to consist in more than one form. 
Minkowski presented a new process of “reduction” giving a unique reduced form in each class. In the space 
of n-ary quadratic forms (of dimension n(n + 1)/2), the “fundamental domain” of all reduced forms proves 
to be a polyhedron; Minkowski made a detailed investigation of the relation of this domain to its neighbors 
and computed its volume, which enabled him to obtain asymptotic formulas for the number of equivalence 
classes of a given determinant, when the value of that determinant tends to infinity. 



This 1905 paper was greatly influenced by the geometric outlook that Minkowski had developed fifteen 
years earlier—the “geometry of numbers,” as he called it, his most original achievement. He was led to it 
by the theory of ternary quadratic forms. Following brief indications given by Gauss, Dirichlet had 
developed a geometrical method of reduction of positive definite ternary forms; Minkowski’s brilliant idea 
was to use the concept of volume in conjunction with this geometric method, thus obtaining far better 
estimates than had been possible before. To make matters simpler, consider a binary positive definite 
quadratic form F(x, y) = ax2 + 2bxy + cy2. To say that F takes a value m when x = p, y = q are integers, 
means, geometrically, that the ellipse Em of equation F(x, y)= m passes through the point (p, q). To find the 
minimum M of all such values m, obtained for p, q not both 0, Minkowski observed that for small α, 
certainly the ellipse Eα will not contain any such points; if one considers the ellipse ½Eα and translates it by 
sending its center to every point (p, q) with integral coordinates, one obtains an infinite pattern of ellipses 
which do not touch each other. When α increases and reaches the value M, some of the corresponding 
ellipses will touch each other but no two will overlap. Now, if A = ac − b2 is the area of the ellipse E1, the 
ellipse ½EM has area AM2│4, AM2│4 and the total area of the nonoverlapping ellipses which are translations 
of ½EM and which have centers at the points (p, q) with │p│ ≤ n and │q│ ≤ n is (2n + l)2(AM2│4). It is easy 
to see, however, that there is a constant c > 0 independent of n, such that all these ellipses are contained in a 
square of center 0 and of side 2n + 1 + c , so that 

(2n + l)2AM2│4) ≤ (2n + 1 + c)2; 

letting n grow to infinity gives the inequality 

Not only can this argument be at once extended to spaces of arbitrary finite dimension, but Minkowski had 
a second highly original idea: He observed that in the preceding geometric argument, ellipses could be 
replaced by arbitrary convex symmetric curves (and, in higher-dimensional spaces, by symmetric convex 
bodies). By varying the nature of these convex bodies with extreme ingenuity (polyhedrons, cylinders), he 
immediately obtained far-reaching discoveries in many domains of number theory. For instance, by 
associating to an algebraic integer x in a field of algebraic numbers K of degree n over the rationals, the 
point in ndimensions having as coordinates the rational integers which are the coefficients of x with respect 
to a fixed basis, Minkowski gave lower bounds for the discriminant of K, which in particular proved that 
when n > 1, the discriminant may never be equal to 1 and thai there are only a finite number of fields of 
discriminants bounded by a given number. 

Minkowski’s geometric methods also enabled him to reach a far better understanding of the theory of 
continued fractions and to generalize it into an algorithm which, at least theoretically, gives a criterion for a 
number to be algebraic. It was similar in principle to Lagrange’s well-known criterion that quadratic 
irrationals are characterized by periodic continued fractions; but Minkowski also showed that, for his 
criterion, periodicity occurs in only a small number of cases, which he characterized completely. Finally, if, 
for instance, one considers (as above, but in three dimensions) an ellipsoid F(x, y, z) = 1 in relation to the 
lattice L of points with integral coordinates, the largest possible number M will be obtained when the 
translated ellipsoids are “packed together” as closely as possible. If one makes a linear transformation of 
the space transforming the ellipsoid in a sphere, L is transformed into another lattice consisting of linear 
combinations with integral coefficients of three vectors. The problem of finding the largest M, then, is 
equivalent to the “closest packing of spheres” in space, when the centers are at the vertices of a 

lattice L′ one has to find the lattice L′ that gives this closest packing. Minkowski began the study of that 
difficult problem (which extends to any n-dimensional space) and of corresponding problems when spheres 
are replaced by some other type of convex set (particularly polyhedrons); they have been the subject of 
fruitful research ever since. 

The intensive use of the concept of convexity in his “geometry of numbers” led Minkowski to investigate 
systematically the geometrical properties of convex sets in n-dimensional space, a subject that had barely 
been considered before. He was the first to understand the importance of the notion of hyperplane of 
support (both geometrically and analytically), and he proved the existence of such hyperplanes at each 



point of the boundary of a convex body. Long before the modern conception of a metric space was 
invented, Minkowski realized that a symmetric convex body in an n-dimensional space defines a new 
notion of “distance” on that space and, hence, a corresponding “geometry.” His ideas thus paved the way 
for the founders of the theory of normed spaces in the 1920’s and became the basis for modern functional 
analysis. 

The evaluation of volumes of convex bodies led Minkowski to the very original concept of “mixed 
volume” of several convex bodies: when K1, K2, K3 are three convex bodies in ordinary space and t1, t2, t3 
are three real numbers ≥0, the points t1x1 + t2x2 + t3x3, when xj varies in Kj for j = 1, 2, 3, fill a new convex 
body, written t1K1 + t2K2 + t3K3. When the volume of this new convex body is computed, it is seen to be a 
homogeneous polynomial in t1, t2, t3 and the mixed volume V(K1, K2, K3) is the coefficient of t1t2t3 in that 
polynomial. Minkowski discovered remarkable relations between these new quantities and more classical 
notions: if K1 is a sphere of radius 1, then V(K1, K, K) is one third of the area of the convex surface 
bounding K; and V(K1, K1, K) is one third of the mean value of the mean curvature of that surface. He also 
proved the inequality between mixed volumes V(K1, K2, K3)2 ≥ V(K1, K1, K3) V(K2, K2, K3), from which he 
derived a new and simple proof of the isoperimetric property of the sphere. As a beautiful application of his 
concepts of hyperplane of support and of mixed volumes, Minkowski showed that a convex polyhedron 
having a given number m of faces is determined entirely by the areas and directions of the faces, a theorem 
that he generalized to convex surfaces by a passage to the limit. He also determined all convex bodies 
having constant width. 

Minkowski was always interested in mathematical physics but did not work in that field until the last years 
of his life, when he participated in the movement of ideas that led to the theory of relativity. He was the 
first to conceive that the relativity principle formulated by Lorentz and Einstein led to the abandonment of 
the concept of space and time as separate entities and to their replacement by a fourdimensional “space-
time,” of which he gave a precise definition and initiated the mathematical study; it became the frame of all 
later developments of the theory and led Einstein to his bolder conception of generalized relativity. 
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