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(b. Nancy, France, 29 April 1854; d. Paris. France, 17 July 1912) 

mathematics, mathematical physics, celestial mechanics. 

The development of mathematics in the nineteenth century began under the shadow of a giant, Carl Friedrich Gauss; it ended 
with the domination by a genius of similar magnitude, Henri Poincaré. Both were universal mathematicians in the supreme 
sense. and both made important contributions to astronomy and mathematical physics. If Poincaré’s discoveries in number 
theory do not equal those of Gauss, his achievements in the theory of functions are at least on the same level—even when one 
takes into account the theory of elliptic and modular functions, which must be credited to Gauss and which represents in that 
field his most important discovery, although it was not published during his lifetime. If Gauss was the initiator in the theory of 
differentiable manifolds, Poincaré played the same role in algebraic topology. Finally, Poincaré remains the most important 
figure in the theory of differential equations and the mathematician who after Newton did the most remarkable work in 
celestial mechanics. Both Gauss and Poincaré had very few students and liked to work alone; but the similarity ends there. 
Where Gauss was very reluctant to publish his discoveries, Poincaré’s list of papers approaches five hundred, which does not 
include the many books and lecture notes he published as a result of his teaching at the Sorbonne. 

Poincaré’s parents both belonged to the upper middle class, and both their families had lived in Lorraine for several 
generations. His paternal grandfather had two sons: Léon, Henri’s father, was a physician and a professor of medicine al the 
University of Nancy; Antoine had studied at the École Polytechnique and rose to high rank in the engineering corps. One of 
Antoine’s sons, Raymond, was several times prime minister and was president of the French Republic during World War I; the 
other son, Lueien, occupied high administrative functions in the university. Poincaré’s mathematical ability became apparent 
while he was still a student in the lycee, He won first prizes in the concours général (a competition between students from all 
French lycées) and in 1873 entered the École Polytechnique at the top of his class; his professor al Nancy is said to have 
referred to him as a “monster of mathematics.” After graduation he followed courses in engineering at the EcoIe des Mines and 
worked briefly as an engineer while writing his thesis for the doctorate in mathematics which he obtained in 1879. Shortly 
afterward he started teaching at the University of Caen, and in 1881 he became a professor at the University of Paris, where he 
taught until his untimely death in 1912. At the early age of thirty-three he was elected to the Académie des Sciences and in 
1908 to the Académie Française. He was also the recipient of innumerable prizes and honors both in France and abroad. 

Function Theory. Before he was thirty years of age, Poincaré became world famous with his epoch-making discovery of the 
“automorphic functions” of one complex variable (or, as he called them, the “fuchsian” and “kleinean” functions). The study 
of the modular function and of the solutions of the hypergcomctric equation had given examples of analytic functions defined 
in an open connected subset D of the complex plane, and “invariant” under a group G of transformations of D onto itself, of 
the form 

G being “properly discontinuous,” that is, such that no point z of D is the limit of an infinite sequence of transforms (distinct 
from z) of a point z′ ε D by a sequence of elements. Tn ε G. For instance, the modular group consists of transformations (1), 
where a, b, c, d are integers and ad — bc = 1; D is the upper half plane ℐ z > 0, and it can be covered, without overlapping, by 
all transforms of the fundamental domain defined by. │z│ ≥ 1, │ ℬ z │ ≤ 1/2. Using non-Euclidean geometry in a very 
ingenious way, Poincard was able to show that for any properly discontinuous group G of transformations of type (1), there 
exists similarly a fundamental domain, bounded by portions of straight lines or circles, and whose transforms by the elements 
of G cover D without overlapping. Conversely, given any such “circular polygon” satisfying some explicit conditions 
concerning its angles and its sides, it is the fundamental domain of a properly discontinuous group of transformations of type 
(1). The open set D may be the half plane ℐ z > 0, or the interior or the exterior of a circle; when it is not of this type, its 
boundary may be a perfect non-dense set, or a curve that has either no tangent at any point or no curvature at any point. 

Poincaré next showed—by analogy with the Weierstrass series in the theory of elliptic functions—that for a given group G, 
and a rational function H having no poles on the boundary of D, the series 

where the transformations 

are an enumeration of the transformations of G, and m is a large enough integer, converges except at the transforms of the 
poles of H by G; the meromorphic function Θ thus defined in D, obviously satisfies the relation 



for any transformation (1) of the group G. The quotient of two such functions, which Poincaré called thetafuchsian, 
corresponding to the same integer m, gives an automorphic function (meromorphic in D). It is easy to show that any two 
automorphic functions X, Y (meromorphic in D and corresponding to the same group G) satisfy an “algebraic” relation P(X, Y) 
= 0, where the genus of the curve P(x, y) = 0 is equal to the topological genus of the homogeneous space D/G and can be 
explicitly computed (as Poinearé showed) from the fundamental domain of G. Furthermore, if ν1 = (dX/dz)1/2, ν2 = zu1, ν1, and 
ν2 are solutions of a linear differential equation of order 2: 

d2ν/dX2 = φ(X, Y)ν, 

where φ is rational in X and Y, so that the automorphic function X is obtained by “inverting” the relation z = ν1(X)/ν2(X). This 
property was the starting point of Poincaré’s researches, following a paper by I. L. Fuchs investigating second-order equations. 
y″ + P(x)y′ + Q(x)y = 0, with rational coefficients P, Q, in which the inversion of the quotient of two solutions would give a 
meromorphic function; hence the name be chose for his automorphic functions. 

But Poincaré did not stop there. Observing that his construction of fuchsian functions introduced many parameters susceptible 
of continuous variation, he conceived that by a suitable choice of these parameters, one could obtain for an “arbitrary” 
algebraic curve P(x, y) = 0, a parametric representation by fuchsian functions, and also that for an arbitrary homogeneous 
linear differential equation of any order 

y(n) + P1(x)y(n-1) + … + Pn(x)y = 0, 

where the Pj, are algebraic functions of x, one could express the solutions of that equation by “zetafuchsian” functions (such a 
function F takes its value in a space C p; in other words, it is a system of p scalar meromorphic functions and is such that, for 
any transformation (1) of the fuchsian group G to which it corresponds, one has F (T · z) = ρ(T) · F (z), where ρ is a linear 
representation of G into C p). The “continuity method” by which he sought to prove these results could not at that time be 
made rigorous, due to the tact, of proper topological concepts and results in the early 1880’s; but after Brouwer’s fundamental 
theorems in topology, correct proofs could be given using somewhat different methods. 

Much has been written on the “competition” between C. F. Klein and Poincaré in the discovery of automorphic functions. 
Actually there never was any real competition, and Klein was miles behind from the start. In 1879 Klein certainly knew 
everything that had been written on special automorphic functions, a theory to which he had contributed by several beautiful 
papers on the transformation of elliptic functions. He could not have failed in particular to notice the connection between the 
fundamental domains of these functions, and non Euclidean geometry, since it was he who, after Cayley and Beltrami, had 
clarified the concept of Euclidean “models” for the various non Euclidean geometries, of which the “Poincaré half plane” was 
a special example. 

On the other hand, Poincaré’s ignorance of the mathematical literature, when he started his researches, is almost unbelievable. 
He hardly knew anything on the subject beyond Hermite’s work on the modular functions; he certainly had never read 
Riemann, and by his own account had not even heard of the “Dirichlet principle,” which he was to use in such imaginative 
fashion a few years later. Nevertheless, Poincaré’s idea of associating a fundamental domain to any fuchsian group does not 
seem to have occurred to Klein, nor did the idea of “sing” non Euclidean geometry, which is never mentioned in his papers on 
modular functions up to 1880. One of the questions Klein asked Poincaré in his letters was how he had proved the convergence 
of the “theta” series. It is only after realizing that poincaré was looking for a theorem that would give a parametric 
representation by meromorphic functions of all algebraic curves that Klein set out to prove this by himself and succeeded in 
sketching a proof independently of Poincaré. He used similar methods (suffering from the same lack of rigor). 

The general theory of automorphic functions of one complex variable is one of the few branches of mathematics where 
Poincaré left little for his successors to do. There is no “natural” generalization of automorphic functions to several complex 
variables. Present knowledge suggests that the general theory should be linked to the theory of symmetric spaces G/K of E. 
Cartan (G semisimple real Lie group, K maximal compact subgroup of G), and to the discrete subgroups I’ of G operating on 
G/K and such that G/I’ has finite measure (C. L. Siegel), But from that point of view, the group G = SL (2, R ), which is at the 
basis of Poincaré’s theory, appears as very exceptional, being the only simple Lie group where the conjugacy classes of 
discrete subgroups I’ depend on continuous parameters (A. Weil’s rigidity theorem). The “continuity” methods dear to 
Poincaré are therefore ruled out; in fact the known discrete groups I Ì G for which G/I’ has finite measure are defined by 
arithmetical considerations, and the automorphic functions of several variables are thus much closer to number theory than for 
one variable (where Poincaré very early had noticed the particular “fuchsian groups” deriving from the arithmetic theory of 
ternary quadratic forms, and the special properties of the corresponding automorphic functions). 

The theory of automorphic functions is only one of the many contributions of Poincaré to the theory of analytic functions, each 
of which was the starting point of extensive Théories. In a short paper of 1883 he was the first to investigate the links between 
the genus of an entire function (defined by properties of its Weierstrass decomposition in primary factors) and the coefficients 
of its Taylor development or the rate of growth of the absolute value of the function; together with the Picard theorem, this was 
to lead, through the results of Hadamard and E. Borel, to the vast theory of entire and meromorphic functions that is not yet 
exhausted after eighty years. 



Automorphic functions had provided the first examples of analytic functions having singular points that formed a perfect non 
dense set, as well as functions having curves of singular points. Poincaré gave another general method to form functions of this 
type by means of series of rational functions, leading to the theory of monogenic functions later developed by E. Bore] and A. 
Denjoy. 

It was also a result from the theory of automorphic functions, namely the parametrization theorem of algebraic cones, that in 
1883 led Poincaré to the general “uniforinization theorem,” which is equivalent to the existence of a conformal mapping of en 
arbitrary simply connected noncompact Riemann surface on the plane or on an open disc. This time he saw that the problem 
was a generalization of Dirichlet’s problem, and Poincaré was the first to introduce the idea of “exhausting” the Riemann 
surface by an increasing sequence of compact regions and of obtaining the conformal mapping by a limiting process. Here 
again it was difficult at that time to build a completely satisfactory proof, and Poincaré himself and Koebe had to return to the 
question in 1907 before it could be considered as settled. 

Poincaré was even more an initiator in the theory of analytic functions of several complex variables—which was practically 
nonexistent before him. His first result was the theorem that a meromorphic function F of two complex variables is a quotient 
of two entire functions, which in 1883 he proved by a very ingenious use of the Dirichlet principle applied to the function log 
│F│; in a later paper (1898) he deepened the study of such “pluriharmonic” functions for any number of complex variables 
and used it in the theory of Abelian functions. Still later (1907) after the publication of F. M. Hartogs’ theorems, he pointed out 
the completely new problems to which led the extension of the concept of “conformal mapping” for functions of two complex 
variables. These were the germs of the imposing “analytic geometry” (or theory of analytic manifolds and analytic spaces) 
which we know today, following the pioneering works of Cousin, Hartogs, and E. E. Levi before 1914; H. Carton, K. Oka, H. 
Behnke, and P. Lelong in the 1930’s; and the tremendous impulse given to the theory by cohomological ideas after 1945. 

Finally, Poincaré was the first to give a satisfactory generalization of the concept of “residue” for multiple integrals of 
functions of several complex variables, after earlier attempts by other mathematicians had brought to light serious difficulties 
in this problem. Only quite recently have his ideas come to full fruition in the work of J. Leray, again using the resources of 
algebraic topology. 

Abelian Functions and Algebraic Geometry. As soon as he came info contact with the work of Riemann and Weierstrass on 
Abelian functions and algebraic geometry, Poincaré was very much attracted by those fields. His papers on these subjects 
occupy in his complete works as much space as those on automorphic functions, their dates ranging from 1881 to 1911. One of 
the main ideas in these papers is that of “reduction” of Abelian functions. Generalizing particular cases studied by Jacobi, 
Weierstrass, and Picard, Poincaré proved the general “complete reducibility” theorem, which is now expressed by saying that 
if A is an Abelian variety and B an Abelian subvariety of A, then there exists an Abelian subvariety C of A such that A = B + C 
and B Ç C is a finite group. Abelian varieties can thus be decomposed in sums of “simple” Abelian varieties having finite 
intersection. Poincaré noted further that Abelian functions corresponding to reducible varieties (and varieties products of 
elliptic curves, that is, Abelian varieties of dimension 1) are “dense” among all Abelian functions—a result that enabled him to 
extend and generalize many of Riemann’s results on theta functions, and to investigate the special properties of the theta 
functions corresponding to the Jacobian varieties of algebraic curves. 

The most remarkable contribution of Poincaré to algebraic geometry is in his papers of 1910–1911 on algebraic curves 
contained in an algebraic surface F(x, y, z) = 0. Following the general method of Picard, Poincaré considers the sections of the 
surface by planes y = coast.; the genus p of such a curve Cy is constant except for isolated values of y. 

It is possible to define p Abelian integrals of the first kind on Cy, ν1, . . .,νp, which are analytic functions on the surface (or 
rather, on its universal covering). Now, to each algebraic curve, I’ on the surface, meeting a generic Cy in m points, Poinecaré 
associates p functions ν1 . . . ,νp of y, uj(y) being the sum of the values of the integral νj at the m points of intersection of C y 
and I ’; furthermore, he is able to characterize these “normal functions” by properties where the curve � does not appear 
anymore, and thus he obtains a kind of analytical “subatitue” for the algebraic curve. This remarkable method enabled him to 
obtain simple proofs of deep results of Picard and Severi, as well as the first correct proof of a famous theorem stated by 
Castelnuovo, Enriques, and Severi, showing that the irregularity q = pg — pa of the surface (pg and pa being the geometric and 
the arithmetic genus) is exactly the maximum dimension of the “continuous nonlinear systems“of curves on the surface. The 
method of proof suggested by the Italian geometers was later found to be defective, and no proof other than Poincaré ’s was 
obtained until 1965. His method has also shown its value in other recent questions (Igusa, Griffiths), and it is very likely that 
its effectiveness is far front exhausted. 

Number Theory. Poincaré was a student of Hermite, and some of his early work deals with Hermite’s method of “continuous 
reduction” in the arithmetic theory of forms, and in particular the finiteness theorem for the classes of such forms (with 
nonvanishing discriminant) that had just been proved by C. Jordan. These papers bring sonic complements and precisions to 
the results of Hermite and Jordan, without introducing any new idea. In connection with them Poincaré gave the first general 
definition of the genus of a form with integral coefficients, generalizing those of Gauss and Eisenstein; Minkowski had arrived 
independently at that definition at the same time. 

Poincaré’s last paper on number theory (1901) was most influential and was the first paper on what we now call “algebraic 
geometry over the field of rationale” (or a field of algebraic numbers). The subject matter of the paper is the Diophantine 
problem of finding the points with rational coordinates on a curve f(x, y) = 0, where the coefficients of, f are rational numbers. 



Poincaré observed immediately that the problem is invariant under birational transformations, provided the latter have rational 
coefficients. Thus he is naturally led to consider the genus of the curve f(x, y) = 0, and his main concern is with the case of 
genus 1; using the parametric representation of the curve by elliptic functions (or, as we now say, the Jacobian of the curve), he 
observes that the rational points correspond on tile Jacobian to a subgroup, and he defines the “rank” of the curve as the rank of 
that subgroup. It is likely that Poincaré conjectured that the rank is always finite; this fundamental fact was proved by L. J. 
Mordell in 1922 and generalized to curves of arbitrary genus by A. Weil in 1929. These authors used a method of “auoinfinite 
descent” based upon the bisection or elliptic (or Abelian) functions; Poincaré had developed in his paper similar computations 
related to the trisection of elliptic functions, and it is likely that these ideas wore at the origin of Mordell’s proof. The 
MordellWeil theorem has become fundamental in the theory of Diophantine equations, but many questions regarding the 
concept of rant, introduced by Poincaré remain unanswered, and it is possible that a deeper study of his paper may lead to new 
results. 

Algebra. It is not certain that Poincaré knew Kronecker’s dictum that algebra is only the handmaiden of mathematics, and has 
no right to independent existence. At any rate Poincaré never studied algebra for its own sake, but only when he needed 
algebraic results in problems of arithmetic or analysis. For instance, his work on the arithmetic theory of forms led him to the 
study of forms of degree ≥ 3, which admit continuous groups of automorphisms. It seems that it is in connection with this 
problem that his attention was drawn to the relation between hypercomplex systems (over R or C ) and the continuous group 
defined by multiplication of invertible elements of the system; the short note he published on the subject in 1884 inspired later 
work of Study and E. Cartan oil hypercomplex systems. A little-known fact is that Poincaré returned to noncommutative 
algebra in a 1903 paper on algebraic integrals of linear differential equations. His method led him to introduce the group 
algebra of the group of the equation (which then is finite), and to split it (according to H. Maschke’s theorem, which apparently 
he did not know but proved by referring to a theorem of Frobenius) into simple algebras over C (that is, matrix algebras). He 
then introduced for the first time the concepts of left and right ideals in an algebra, and proved that any left ideal in a matrix 
algebra is a direct sum of minimal left ideals (a result usually credited to Wedderburn or Artin). 

Poincaré was one of the few mathematicians of his time who understood and admired the work of Lie and his continuators on 
“continuous groups.” and in particular the only mathematician who in the early 1900’s realized the depth and scope of E. 
Cartan’s papers. In 1899 Poincaré became interested in a new way to prove Lie’s third fundamental theorem and in what is 
now called the Campbell-Hausdorff formula; in his work Poincaré substantially defined for the first time what we now call the 
“enveloping algebra” of a Lie algebra (over the complex field) and gave a description of a “natural” basis of that algebra 
deduced from a given basis of the Lie algebra; this theorem (rediscovered much later by G. Birkhoff and E. Witt, and now 
called the “Poincaré Birkhoff-Witt theorem”) has become fundamental in the modern theory of Lie algebras. 

Differential Equations and Celestial Mechanics . The theory of differential equations and its applications to dynamics was 
clearly at the center of Poincaré’s mathematical thought; from his first (1878) to his last (1912) paper, he attacked the theory 
from all possible angles and very seldom let a year pass without publishing a paper on the subject. We have seen already that 
the whole theory of automorphic functions was from the start guided by the idea of integrating linear differential equations 
with algebraic coefficients. Poincaré simultaneously investigated the local problem of a linear differential equation in the 
neighborhood of an “irregular” singular point, showing for the first time how asymptotic developments could be obtained for 
the integrals. A little later (1884) he took up the question, also started by I. L . Fuchs, of the determination of all differential 
equations of the first order (in the complex domain) algebraic in y and y′ and having fixed singular points; his researches were 
to be extended by Picard for equations of the second order, and to lead to the spectacular results of Painlevé and his school at 
the beginning of the twentieth century. 

The most extraordinary production of Poincaré, also dating from his prodigious period of creativity (1880–1883) (reminding us 
of Gauss’s Tagebuch of 1797–1801), is the qualitative theory of differential equations. It is one of the few examples of a 
mathematical theory that sprang apparently from nowhere and that almost immediately reached perfection in the hands of its 
creator. Everything was new in the first two of the four big papers that Poincaré published on the subject between 1880 and 
1886. 

The Problems . Until 1880, outside of the elementary types of differential equations (integrable by “quadratures”) and the 
local “existence theorems,” global general studies had been confined to linear equations, and (with the exception of the Sturm-
Liouville theory) chiefly in the complex domain. Poincaré started with general equations dx/X = dy/Y, where X and Y, are 
“arbitrary” polynomials in x, y, everything being real, and did not hesitate to consider the most general problem possible, 
namely a qualitative description of all solutions of the equation. In order to handle the infinite branches of the integral curves, 
he had the happy idea to project the (x, y) plane on a sphere from the center of the sphere (the center not lying in the phane), 
thus dealing for the first trine with the integral curves of a vector field on a compact manifold. 

The Methods . The starting point was the consideration of the “critical points” of the equation, satisfying X = Y = 0. Poincaré 
used the classification of these points due to Cauchy and Briot-Bouquet (modified to take care of the restriction to real 
coordinates) in the well-known categories of “nodes,” “saddles,” “spiral points,” and “centers.” In order to investigate the 
shape of an integral curve, Poincaré introduced the fundamental notion of “transversal” arcs, which are not tangent to the 
vector field at any of their points. Functions F(x, y) such that F(x, y) = C is a transversal for certain values of C also play an 
important part (their introduction is a forerunner of the method later used by Liapunov for stability problems). 



The Results . The example of the “classical” differential equations had led one to believe that “general” integral curves would 
be given by an equation Φ(x, y) = C, where Φis analytic, and the constant C takes arbitrary values. Poincaré showed that on 
the contrary this kind of situation prevails only in “exceptional” cases, when there are no nodes nor spiral points among the 
critical points. In general, there are no centers—only a finite number of nodes, saddles, or spiral points; there is a finite number 
of closed integral curves, and the other curves either join two critical points or are “asymptotic” to these closed curves. Finally, 
he showed how his methods could be applied in explicit cases to determine a subdivision of the sphere into regions containing 
no closed integral or exactly one such curve. 

In the third paper of that series Poincaré attacked the more general case of equations of the first order F(x, y, y′) = 0, where F is 
a polynomial. By the consideration of the surface F(x, y, z) = 0, he showed that the problem is a special case of the 
determination of the integral curves of a vector field on a compact algebraic surface S. This immediately led him to introduce 
the genus p of S as the fundamental invariant of the problem, and to discover the relation 

N + F — C = 2 — 2p (3) 

where N, F, and C are the numbers of nodes, spiral points, and saddles. He then proceeded to show how his previous results for 
the sphere partly extend to the general case, and then made a detailed and beautiful study of the case when S is a torus (p = 1), 
so that there may be no critical point; in that case, he is confronted with a new situation—the appearance of the “ergodic 
hypothesis” for the integral curves. He was not able to prove that the hypothesis holds in general (under the smoothness 
conditions imposed on the vector field), but later work of Denjoy showed that this is in fact the case. 

In the fourth paper Poincaré finally inaugurated the qualitative theory for equations of higher order, or equivalently, the study 
of integral curves on manifolds of dimension ≥3. The number of types of critical points increases with the dimension, but 
Poincaré saw how his relation (3) for dimension 2 can be generalized, by introducing the “Kronecker index” of a critical point, 
and showing that the sum of the indices of the critical points contained in a bounded domain limited by it transversal 
hypersurface Σ depends only on the Betti numbers of Σ. It seems hopeless to obtain in general a description of all integral 
curves as precise as the one obtained for dimension 2. Probably inspired by his first results on the three-body problem (dating 
from 1883), Poincaré limited himself to the integral curves that are “near” a closed integral curve C0. He considered a point M 
on C0. and a small portion Σ of the hypersurface normal to C0 at M. If point P of Σ is close enough to M, the integral curve 
passing through P will cut Σ again for the first time at a point T(P), and one thus defines a transformation T of Σ into itself, 
leaving M invariant, which can be proved to be continuously differentiable (and even analytic if one starts with analytic data). 
Poincaré then showed how the behavior of integral curves “near C0” depends on the eigenvalues of the linear transformation 
tangent to T at M, and the classification of the various types is therefore closely similar to the classification of critical points. 

After 1885 most of Poincaré’s papers on differential equations were concerned with celestial mechanics, and more particularly 
the three-body problem. It seems that his interest in the subject was first aroused by his teaching at the Sorbonne; then, in 
1885, King Oscar II of Sweden set up a competition among mathematicians of all countries on the n-body problem. Poincaré 
contributed a long paper, which was awarded first prize, and which ranks with his papers on the qualitative theory of 
differential equations as one of his masterpieces. Its central theme is the study of the periodic Solutions of the three body 
problem when the masses of two of the bodies are very small in relation to the mass of the third (which is what happens in the 
solar system). In 1878 G. W. Hill had given an example of such solutions; in 1883 Poincaré proved—by a beautiful application 
of the Kronecker index—the existence of a whole continuum of such solutions. Then in his prize memoir he gave another 
proof for the “restricted” three body problem, when one of the small masses is neglected, and the other μ is introduced as a 
parameter in the Hamiltonian of the system. Starting from the trivial existence of periodic solutions for μ = 0, Poincaré proved 
the existence of “neighboring” periodic solutions for small enough μ by an application of Cauchy’s method of majorants. He 
then showed that there exist solutions that are asymptotic to a periodic solution for values of the time tending to + ∞ or ∞, or 
even for both (“doubly asymptotic” solutions). It should be stressed that in order to arrive at these results, Poincaré first had to 
invent the necessary general tools: the “variational equation” giving the derivative of a vector solution f of a system of 
differential equations, with respect to a parameter, as a solution of a linear differential equation; the “characteristic exponents” 
corresponding to the case in which f is periodic; and the “integral invariants” of a vector field, generalizing the particular case 
of an invariant volume used by Lionville and Boltzmann. 

Celestial Mechanics . The works or Poincaré on celestial mechanics contrasted sharply with those of his predecessors. Since 
Lagrange, the mathematical and numerical study of the solar system had been carried out by developing the coordinates of the 
planets in series of powers of the masses of the planets or satellites (very small compared with that of the sun); the coefficients 
of these series would then be computed, as functions of the time t, by various processes of approximation, from the equations 
obtained by identifying in the equations of motion the coefficients of the powers of the masses. At first the functions of t 
defined in this manner contained not only trigonometric functions such as sin(at + b) (a, b constants) but also terms such as t · 
cos(at + b), and so forth, which for large t were likely to contradict the observed movements, and showed that the 
approximations made were unsatisfactory. Later in the nineteenth century these earlier approximations were replaced by more 
sophisticated ones, which were series containing only trigonometric functions of variables of type ant + bn; but nobody had 
ever proved that these series were convergent, although most astronomers believed they were. One of Poincaré’s results was 
that these series cannot be uniformly convergent, but may be used to provide asymptotic developments of the coordinates. 

Thus Poincaré inaugurated the rigorous treatment of celestial mechanics, in opposition to the semiempirical computations that 
had been prevalent before him. However, he was also keenly interested in the “classical” computations and published close to 



a hundred papers concerning various aspects of the theory of the solar system, in which he suggested innumerable 
improvements and new techniques. Most of his results were developed in his famous three-volume Les méthods nouvelles de 
la mécanique céleste and later in his Leçons de mécanique céleste. From the theoretical point of view, one should mention his 
proof that in the “restricted” three-body problem, where the Hamiltonian depends on four variables (x1, x2, y1, Y2) and the 
parameter μ, and where it is analytic in these five variables and periodic of period 2π in y1, and y2, then there is no “first 
integral” of the equations of motion, except the Hamiltonian, which has similar properties. Poincaré also started the study of 
“stability” of dynamical systems, although not in the various more precise senses that have been given to this notion by later 
writers (starting with Liapunov). The most remarkable result that he proved is now known as “Poincaré’s recurrence theorem” 
: for “almost all” orbits (for a dynamical system admitting a “positive” integral invariant), the orbit intersects an arbitrary 
nonempty open set for a sequence of values of the time tending to + ∞. What is particularly interesting in that theorem is the 
introduction, probably for the first time, of null sets in a question of analysis (Poincaré, of course, did not speak of measure, 
but of “probability”). 

Another famous paper of Poincaré in celestial mechanics is the one he wrote in 1885 on the shape of a rotating fluid mass 
submitted only to the forces of gravitation. Maclaurin had found as possible shapes some ellipsoids of revolution to which 
Jacobi had added other types of ellipsoids with unequal axes, and P. G. Tait and W. Thomson some annular shapes. By a 
penetrating analysis of the problem, Poincaré showed that still other “pyriform” shapes existed. One of the features of his 
interesting argument is that, apparently for the first time, he was confronted with the problem of minimizing a quadratic form 
in “infinitely” many variables. 

Finally, in one of his later papers (1905), Poincaré attacked for the first time the difficult problem of the existence of closed 
geodesics on a convex smooth surface (which he supposed analytic). The method by which he tried to prove the existence of 
such geodesics is derived from his ideas on periodic orbits in the three-body problem. Later work showed that this method is 
not conclusive, but it has inspired the numerous workers who finally succeeded in obtaining a complete proof of the theorem 
and extensive generalizations. 

Partial Differential Equations and Mathematical Physics . For more than twenty years Poincaré lectured at the Sorbonne on 
mathematical physics; he gave himself to that task with his characteristic thoroughness and energy, with the result that he 
became an expert in practically all parts of theoretical physics, and published more than seventy papers and books on the most 
varied subjects, with a predilection for the Théories of light and of electromagnetic waves. On two occasions he played an 
important part in the development of the new ideas and discoveries that revolutionized physics at the end of the nineteenth 
century. His remark on the possible connection between X rays and the phenomena of phosphorescence was the starting point 
of H. Becquerel’s experiments which led him to the discovery of radioactivity. On the other hand, Poincaré was active in the 
discussions concerning Lorentz’ theory of the electron from 1899 on; Poincaré was the first to observe that the Lorentz 
transformations form a group, isomorphic to the group leaving invariant the quadratic form x2 + y2 + z2 − t2; and many 
physicists consider that Poincaré shares with Lorentz and Einstein the credit for the invention of the special theory of relativity. 

This persistent interest in physical problems was bound to lead Poincaré into the mathematical problems raised by the partial 
differential equations of mathematical physics, most of which were still in a very rudimentary state around 1880. It is typical 
that in all the papers he wrote on this subject, he never lost sight of the possible physical meanings (often drawn from very 
different physical Théories) of the methods he used and the results he obtained. This is particularly apparent in the first big 
paper (1890) that he wrote on the Dirichlet problem. At that time the existence of a solution inside a bounded domain D 
limited by a surface S was established (for an arbitrary given continuous function on S) only under rather restrictive conditions 
on S, by two methods due to C. Neunmann and H. A. Schwarz. Poincaré invented a third method, the “sweeping out process”: 
the problem is classically equivalent to the existence of positive masses on S whose potential V is equal to 1 in D and 
continuous in the whole space. Poincaré started with masses on a large sphere Σ containing D and giving potential 1 inside Σ. 
He then observed that the classical Poisson formula allows one to replace masses inside a sphere C by masses on the surface of 
the sphere in such a way that the potential is the same outside C and has decreased inside C. By covering the exterior of D by a 
sequence (Cn) of spheres and applying repeatedly to each Cn (in a suitable order) the preceding remark, he showed that the 
limit of the potentials thus obtained is the solution V of the problem, the masses initially on Σ having been ultimately “swept 
out” on S. Of course he had to prove the continuity of V at the points of S, which he did under the only assumption that at each 
of these points there is a half-cone (with opening 2α > 0) having the point as vertex and such that the intersection of that half-
cone and of a neighborhood of the vertex does not meet D (later examples of Lebesgue showed that such a restriction cannot 
be eliminated). This very original method was later to play an important part in the renewal of potential theory that took place 
in the 1920’s and 1930’s, before the advent of modern Hilbert space methods. 

In the same 1890 paper Poincaré began the long, and only partly successful, struggle with what we now call the problem of the 
eigenvalues of the Laplacian. In several problems of physics (vibrations of membranes, cooling of a solid, theory of the tides, 
and so forth), one meets the problem of finding a function u satisfying in a hounded domain D an equation of the form 

and oil the boundary S of D the condition 

where du/dn is the normal derivative and λ and k are constants. Heuristic variational arguments (generalizing the method of 
Riemann for the Dirichlet principle) and the analogy with the Sturm Liouville problem (which is the corresponding problem 
for functions of a single variable) lead to the conjecture that for a given k there exists an increasing sequence of real numbers 
(“eigenvalues”) 



such that the problem is only solvable when. λ is equal to one of the λn, and then has only one solution un such that, the 
“eigenfunctions”, un forming an orthonormal system. In the case of the vibrating membrane, the corresponds to the 
experimentally detectable “harmonics.” But a rigorous proof of the existence of the λn and the had un not been found before 
Poincaré; for the case k = 0, Schwarz had proved the existence of λ1, by the following method: the analogy with the Sturm-
Liouovlle problem suggested that for any smooth function f, the equation 

would have for λ distinct from the λn a unique solution u(λ, x)satisfying(5), and which would be a meromorphic function of λ, 
having the λn as simple poles. Schwarz had shown that, as a function of λ, the solution u(λ, x) was equal to a power series with 
a finite radius of convergence. Picard had been able to prove also the existence of λ2. In 1894 Poincaré (always in the case k = 
0) succeeded in proving the above property of u(λ, x), by an ingenious adaptation of Schwarz’s method, using in addition an 
inequality of the type 

(C constant depending only on D) 

valid for all smooth functions V such that (the forerunner of numerous similar inequalities that play a fundamental part in the 
modern theory of partial differential equations). But he could not extend his method for k ≠ 0 on account of the difficulty of 
finding a solution of (6) having a normal derivative on S (he could only obtain what we now would call a “weak” derivative, or 
derivative in the sense of distribution theory). 

Two years later he met similar difficulties when he tried to extend Neumann’s method for the solution of the Dirichlet problem 
(which was valid only for convex domains D). Through a penetrating discussion of that method (based on so called “double 
layer” potentials), Poincaré linked it to the Schwarz process mentioned above, and was thus led to a new “boundary problem” 
containing a parameter λ: find a “single layer” potential φ defined by masses on S, such that (dφ/dn)i = − λ(dφ/dn)e, where the 
suffixes i and e mean normal derivatives taken toward the interior and toward the exterior of S. Here again, heuristic 
variational arguments convinced Poincaré that there should be a sequence of “eigenvalues” and corresponding 
“eigenfunctions” for this problem, but for the same reasons lit was not able to prove their existence. A few years later, 
Fredholm’s theory of integral equations enabled him to solve all these problems; it is likely that Poincareé’s papers had a 
decisive influence on the development of Fredholm’s method, in particular the idea of introducing a variable complex 
parameter in the integral equation. It should also be mentioned that Fredholm’s determinants were directly inspired by the 
theory of “infinite determinants” of H. von Koch, which itself was a development of much earlier results of Poincaré in 
connection with the solution of linear differential equations. 

Algebraic Topology . The main leitmotiv of Poincaré’s mathematical work is clearly the idea of “continuity”: whenever he 
attacks a problem in analysis, we almost immediately see him investigating what happens when the conditions of the problem 
are allowed to vary continuously. He was therefore bound to encounter at every turn what we now call topological problems. 
He himself said in 1901, “Livery problem 1 had attacked led me to Analysis situs,” particularly the researches on differential 
equations and on the periods of multiple integrals. Starting in 1894 he inaugurated in a remarkable series of six papers—
written during a period of ten years—the modern methods of algebraic topology. Until then the only significant step had been 
the generalizations of the concept of “order of connection” of a surface, defined independently by Riemann and Betti, and 
which Poincaré called “Betti numbers” (they are the numbers 1 + hj, where the hj are the present-day “Betti numbers”): but 
practically nothing had been done beyond this definition. The machinery of what we now call simplicial homology is entirely a 
creation of Poincaré: concepts of triangulation of a manifold, of a simplicial complex, of barycentric subdivision, and of the 
dual complex, of the matrix of incidence coefficients of a complex, and the computation of Betti numbers from that matrix. 
With the help of these tools, Poincaré discovered the generalization of the Euler theorem for polyhedra (now known as the 
Euler-Poincuré formula) and the famous duality theorem for the homology of a manifold; a little later he introduced the 
concept of torsion. Furthermore, in his first paper he had defined the fundamental group of a manifold (or first homotopy 
group) and shown its relations to the first Betti number. In the last paper of the series he was able to give an example of two 
manifolds having the same homology but different fundamental groups. In the first paper he had also linked the Betti numbers 
to the periods of integrals of differential forms (with which he was familiar through his work on multiple integrals and on 
invariant integrals), and stated the theorem which G. de Rham first proved in 1931. It has been rightly said that until the 
discovery of the higher homotopy groups in 1933, the development of algebraic topology was entirely based on Poincaré’s 
ideas and techniques. 

In addition, Poincaré also showed how to apply these new tools to some of the problems for which he had invented them. In 
two of the papers of the series on analysis situs, he determined the Betti numbers of an algebraic (complex) surface, and the 
fundamental group of surfaces defined by an equation of type z2 = F(x, y) (F polynomial), thus paving the way for the later 
generalizations of Lefschetz and Hodge. In his last paper on differential equations (1912). Poincaré reduced the problem of the 
existence of periodic solutions of the restricted three body problem (but with no restriction oil the parameter μ) to a theorem of 
the existence of fixed points for a Continuous transformation of the plane subject to certain conditions, which was probably the 
first example of an existence proof in analysis based on algebraic topology. He did not succeed in proving that fixed point 
theorem, which was obtained by G. D. Birkhoff a few months after Poincaré’s death. 

Foundations of Mathematics. With the growth of his international reputation, Poincaré was more and more called upon to 
speak or write on various topics of mathematics and science for a wider audience, a chore for which he does not seem to have 
shown great reluctance. (In 1910 he even was asked to comment on the influence of comets on the weather!) His vivid style 
and clarity of mind enhanced his reputation in his time as the best expositor of mathematics for the layman. His well-known 



description of the process of mathematical discovery remains unsurpassed and has been on the whole corroborated by many 
mathematicians, despite the fact that Poincaré’s imagination was completely atypical; and the pages he devoted to the axioms 
of geometry and their relation to experimental science are classical. Whether this is enough to dub him a “philosopher,” as has 
often been asserted, is a question which is best left for professional philosophers to decide, and we may limit ourselves to the 
influence of his writings on the problem of the foundations of mathematics. 

Whereas Poincaré has been accused of being too conservative in physics, he certainly was very openminded regarding new 
mathematical ideas. The quotations in his papers show that he read extensively, if not systematically, and was aware of all the 
latest developments in practically every branch of mathematics. He was probably the first mathematician to use Cantor’s 
theory of sets in analysis; he had met concepts such as perfect non-dense sets in his work on automorphic functions or on 
differential equations in the early 1880’s. Up to a certain point, he also looked with favor on the axiomatic trend in 
mathematics, as it was developing toward the end of the nineteenth Century, and he praised Hilbert’s Grundlagen der 
Geometrie. However, Poincaré’s position during the polemics of the early 1900’s about the “paradoxes” of set theory and the 
foundations of mathematics has made him a precursor of.the intuitionist School. He never stated his ideas on these questions 
very clearly and mostly confined himself to criticizing the schools of Russell, Peano, and Hilbert. Although accepting the 
“arithmetization” of mathematics, Poincaré did not agree to the reduction of arithmetic to the theory of sets nor to the Peano 
axiomatic definition of natural numbers. For Poincaré (as laser for L. E. J. Brouwer) the natural numbers constituted a 
fundamental intuitive notion, apparently to be taken for granted without further analysis; he several times explicitly repudiated 
the concept of an infinite set in favor of the “otential infinite,” but he never developed this idea systematically. He obviously 
had a blind spot regarding the formalization of mathematics, and poked fun repeatedly at the efforts of the disciples of Peano 
and Russell in that direction; but, somewhat paradoxically, his criticism of the early attempts of Hilbert was probably the 
starting point of some of the most fruitful of the later developments of matamathematics. Poincaré stressed that Hilbert’s point 
of view of defining objects by a system of axioms was only admissible if one could prove a priori that such a system did not 
imply contradiction, and it is well known that the proof of noncontradiction was the main goal of the theory which Hilbert 
founded after 1920. Poincaré seems to have been convinced that such attempts were hopeless, and K. Gödel’s theorem proved 
him right; what Poincaré failed to grasp is that all the work spent on matamathematics would greatly improve our 
understanding of the nature of mathematical reasoning. 
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