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(b. Miletus, Ionia, 625 B.C. [?] d. 547 B.C. [?]) 

natural philosophy. 

Thales is considered by Aristotle to be the “founder” (ἀρχηγός) of Ionian natural philosophy.1 He was the son of Examyes and 
Cleobuline, who were, according to some authorities, of Phoenician origin. But the majority opinion considered him a true 
Milesian by descent (ἰυαγєνής Mιλήσιος), and of a distinguished family. This latter view is probably the correct one since his 
father’s name seems to be Carian rather than Semitic, and the Carians had at this time been almost completely assimilated by 
the Ionians. According to Diogenes Laèrtius, Apollodorus put Thales’ birth in Olympiad 35.1 (640 B.C.) and his death at the 
age of 78 in Olympiad 58 (548–545 B.C.). There is a discrepancy in the figures here; probably 35.1 is a mistake for 39.1 (624), 
since the confusion of є ̄and ῡ is a very common one. Apollodorus would in that case characteristically have made Thales’ 
death correspond with the date of the fall of Sardis, his floruit coincide with the eclipse of the sun dated at 585 B.C.–which he 
is alleged to have predicted–and assumed his birth to be the conventional forty years before his prime.2 

Even in antiquity there was considerable doubt concerning Thales’ written works. It seems clear that Aristotle did not have 
access to any book by him, at least none on cosmological matters. Some authorities declare categorically that he left no book 
behind. Others, however, credit him with the authorship of a work on navigation entitled “The Nautical Star Guide,” but in 
spite of a tradition suggesting that Thales defined the Little Bear and recommended its navigational usefulness to Milesian 
sailors,3 it is extremely doubtful that he was the actual author of this work, since Diogenes Laërtius informs us that this book 
was also attributed to a certain Phokos of Samos. It is most unlikely that a work of Thales would have been ascribed to 
someone of comparative obscurity, but not the converse. 

Much evidence of practical activities associated with Thales has survived, testifying to his versatility as statesman, tycoon, 
engineer, mathematician, and astronomer. In the century after his death he became an epitome of practical ingenuity.4 
Herodotus records the stories that Thales advised the Ionians to establish a single deliberative chamber at Teos and that he 
diverted the river Halys so that Croesus’ army might be able to cross. (Herodotus is skeptical about the latter explanation.)5 
Aristotle preserves another anecdote that credits Thales with considerable practical knowledge. According to this account, 
Thales, when reproached for his impracticality, used his skill in astronomy to forecast a glut in the olive crop, went out and 
cornered the market in the presses, and thereby made a large profit. Aristotle disbelieves the story and comments that this was 
a common commercial procedure that men attributed to Thales on account of his wisdom.6 Plato, on the other hand, whose 
purpose is to show that philosophy is above mere utilitarian considerations, tells the conflicting anecdote that Thales, while 
stargazing, fell into a well and was mocked by a pretty Thracian servant girl for trying to find out what was going on in the 
heavens when he could not even see what was at his feet.7 It is clear that these stories stem from separate traditions–the one 
seeking to represent the philosopher as an eminently practical man of affairs and the other as an unworldly dreamer. 

Thales achieved his fame as a scientist for having predicted an eclipse of the sun. Herodotus, who is our oldest source for this 
story, tells us that the eclipse (which must have been total or very nearly so) occurred in the sixth year of the war between the 
Lydians under Alyattes and the Medes under Cyaxares, and that Thales predicted it to the Ionians, fixing as its term the year in 
which it actually took place.8 This eclipse is now generally agreed to have occurred on 28 May 585 B.C. (–584 by 
astronomical reckoning). It has been widely accepted that Thales was able to perform this striking astronomical feat by using 
the so-called “Babylonian saros,” a cycle of 223 lunar months (18 years, 10 days, 8 hours), after which eclipses both of the sun 
and moon repeat themselves with very little change. Neugebauer, however, has convincingly demonstrated that the 
“Babylonian saros” was, in fact, the invention of the English astronomer Edmond Halley in rather a weak moment.9 The 
Babylonians did not use cycles to predict solar eclipses but computed them from observations of the latitude of the moon made 
shortly before the expected syzygy. As Neugebauer says, 

. . . there exists no cycle for solar eclipses visible at a given place; all modern cycles concern the earth as a whole. No 
Babylonian theory for predicting a solar eclipse existed at 600 B.C., as one can see from the very unsatisfactory situation 400 
years later, nor did the Babylonians ever develop any theory which took the influence of geographical latitude into account.10 

Accrodingly, it must be assumed that if Thales did predict the eclipse he made an extremely lucky guess and did not do so 
upon a scientific basis, since he had no conception of geographical latitude and no means of determining whether a solar 
eclipse would be visible in a particular locality. He could only have said that an eclipse was possible somewhere at some time 
in the (chronological) year that ended in 585 B.C. But a more likely explanation seems to be simply that Thales happened to be 
the savant around at the time when this striking astronomical phenomenon occurred and the assumption was made that as a 
savant he must have been able to predict it. There is a situation closely parallel to this one in the next century. In 468–467 B.C. 



a huge meteorite fell at Aegospotami. This event made a considerable impact, and two sources preserve the absurd report that 
the fall was predicted by Anaxagoras, who was the Ionian savant around at that time.11 

The Greeks themselves claim to have derived their mathematics from Egypt.12 Eudemus, the author of the history of 
mathematics written as part of the systematization of knowledge that went on in the Lyceum, is more explicit. He tells us that it 
was “Thales who, after a visit to Egypt, first brought this study to Greece” and adds “not only did he make numerous 
discoveries himself, but he laid the foundations for many other discoveries on the part of his successors, attacking some 
problems with greater generality and others more empirically.” Proclus preserves for us some of the discoveries that Eudemus 
ascribed to Thales, namely, that the circle is bisected by its diameter,13 that the base angles of an isosceles triangle are equal,14 
and that vertically opposed angles are equal.15 In addition he informs us that the theorem that two triangles are equal in every 
respect if they have two angles and one side respectively equal was referred by Eudemus to Thales with the comment that the 
latter’s measuring the distance of ships out at sea necessarily involved the use of this theorem.16 

From the above it can be seen that Eudemus credited Thales with full knowledge of the theory behind his discoveries. He also 
held that Thales introduced geometry into Greece from Egypt. Our surviving sources of information about the nature of 
Egyptian mathematics, however, give us no evidence to suggest that Egyptian geometry had advanced beyond certain rule–of–
thumb techniques of practical mensuration. Nowhere do we find any attempt to discover why these techniques worked, nor 
anything resembling a general and theoretical mathematics. It seems most unlikely, then, that the Greeks derived their 
mathematics from the Egyptians. But could Thales have been the founder of theoretical mathematics in Greece, as Eudemus 
claimed? Here again the answer must be negative. The first three discoveries attributed to him by the Peripatetic most probably 
represent “just the neatest abstract solutions of particular problems associated with Thales.”17 Heath points out that the first of 
these propositions is not even proved in Euclid.18 As for the last of them, Thales could very easily have made use of a primitive 
angle–measurer and solved the problem in one of several ways without necessarily formulating an explicit theory about the 
principles involved. 

Van der Waerden, on the other hand, believes that Thales did develop a logical structure for geometry and introduced into this 
study the idea of proof.19 He also seeks to derive Greek mathematics from Babylon. This is a very doubtful standpoint. 
Although Babylonian mathematics, with its sexagesimal place–value system, had certainly developed beyond the primitive 
level reached by the Egyptians, here too we find nowhere any attempt at proof. Our evidence suggests that the Greeks were 
influenced by Babylonian mathematics, but that this influence occurred at a date considerably later than the sixth century B.C. 
If the Greeks had derived their mathematics from Babylonian sources, one would have expected them to have adopted the 
much more highly developed place-value system. Moreover, the Greeks themselves, who are extremely generous, indeed 
overgenerous, in acknowledging their scientific debts to other peoples, give no hint of a Babylonian source for their 
mathematics. 

Our knowledge of Thales’ cosmology is virtually dependent on two passages in Aristotle. In the Metaphysics (A3, 983b6) 
Aristotle, who patently has no more information beyond what is given here, is of the opinion that Thales considered water to 
be the material constituent of things, and in the De caelo (B13, 294a28), where Aristotle expressly declares his information to 
be indirect, we are told that Thales held that the earth floats on water. Seneca provides the additional information (Naturales 
quaestiones, III , 14) that Thales used the idea of a floating earth to explain earthquakes. If we can trust this evidence, which 
seems to stemultimately from Theophrastus via a Posidonian source, the implication is that Thales displays an attitude of mind 
strikingly different from anything that had gone before. Homer and Hesiod had explained that earthquakes were due to the 
activity of the god Poseidon, who frequently bears the epic epithet “Earth Shaker,” Thales, by contrast, instead of invoking any 
such supernatural agency, employs a simple, natural explanation to account for this phenomenon. Cherniss, however, has 
claimed that Aristotle’s knowledge of Thales’ belief that the earth floats on water would have been sufficient to induce him to 
infer that Thales also held water to be his material substrate.20 But it is impossible to believe that Aristotle could have been so 
disingenuous as to make this inference and then make explicit conjectures as to why Thales held water to be his άpρχή. 
Aristotle’s conjectured reasons for the importance attached by Thales to water as the ultimate constituent of things are mainly 
physiological. He suggests that Thales might have been led to this conception by the observation that nutriment and semen are 
always moist and that the very warmth of life is a dampwarmth. Burnet has rejected these conjectures by Aristotle on the 
ground that in the sixth century interests were meteorological rather than physiological.21 But, as Baldry has pointed out, an 
interest in birth and other phenomena connected with sex is a regular feature even of primitive societies long before other 
aspects of biology are thought of.22 However this may be, it is noteworthy that, in view of the parallels to be found between 
Thales’ cosmology and certain Near Eastern mythological cosmogonies,23 there exists the possibility that Thales’ emphasis 
upon water and his theory that the earth floats on water were derived from some such source, and that he conceived of water as 
a “remote ancestor” rather than as a persistent substrate. But even it Thales was influenced by mythological precedents24 and 
failed to approximate to anything like the Aristotelian material cause, our evidence, sparse and controversial though it is, 
nevertheless seems sufficient to justify the claim that Thales was the first philosopher. This evidence suggests that Thales’ 
thought shared certain basic characteristics with that of his Ionian successors. These Milesian philosophers, abandoning 
mythopoeic forms of thought, sought to explain the world about them in terms of its visible constitutents. Natural explanations 
were introduced by them, which took the place of supernatural and mystical ones.25 Like their mythopoeic predecessors, the 
Milesians firmly believed that there was an orderliness inherent in the world around them. Again like their predecessors, they 
attempted to explain the world by showing how it had come to be what it is. But, instead of invoking the agency of 
supernatural powers, they sought for a unifying hypothesis to account for this order and, to a greater or lesser extent, proceeded 
to deduce their natural explanations of the various phenomena from it. Two elements, then, characterize early Greek 
philosophy, the search for natural as opposed to supernatural and mystical explanations, and secondly, the search for a unifying 



hypothesis. Both of these elements proved influential in paving the way for the development of the sciences, and it is in the 
light of this innovation that Thales’s true importance in the history of science must be assessed. 

NOTES 
1.Metaphysics, A3, 983b17 ff. (DK, 11A12). 

2. These datings are now approximately in accordance with the figures given by Demetrius of Phalerum, who placed the 
canonization of the Seven Sages (of whom Thales was universally regarded as a member) in the archonship of Damasias at 
Athens (582–581 B.C.). 

3. Callimachus, Iambus, 1, 52 f. 191 Pfeiffer (DK, 11A3a). 

4. See Aristophanes, Birds 1009; Clouds 180. 

5. Herodotus, I, 170; I, 75 (DK, 11A4, 11A6). 

6.Politics, A11, 1259a6 (DK, 11A10). 

7.Theaetetus, 174A (DK, 11A9). It is odd that Plato should have applied this story to someone as notoriously practical in his 
interests as Thales. It makes one think that there may be at least a grain of truth in the story. See my review of Moraux’s Budé 
edition of the De caelo, in Classical Review, n.s., 20 (1970), 174, and M. Landmann and J. O. Fleckenstein, 
“Tagesbeobachtung von Sternen in Altertum.” in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 88 (1943), 
98, notwithstanding Dicks’ scornful dismissal of their suggestion. Certainly the motive for this story is clear, but it could have 
been Thales’ practice that determined its form. In general Dicks is far too skeptical in his treatment of the stories told of Thales 
and relegates them to the status of “the famous story of the First World War about the Russians marching through England 
with ‘snow on their boots.’” But on this latter story see Margo Lawrence, Shadow of Swords (London, 1971), in which she 
reveals that soldiers from Russia, wearing Russian uniform, carrying balalaikas, and singing Slavonic songs, did in fact 
disembark in 1916 at Newcastle upon Tyne. Admittedly the snow on their boots must be left to folklore. 

8. I, 74 (DK, 11A5). 

9. O. Neugebauer, The Exact Sciences in Antiquity, 141. 

10.Ibid., 142. 

11. See Diogenes Laërtius, II, 10 (DK, 59A1), and Pliny, Historia naturalis, II , 149 (DK, 59A11), See also Cicero, 
Dedivinatione, I .50.112 (DK, 12A5a), and Pliny, ibid., II , 191, for a sixth–century parallel, where Anaximander is alleged to 
have predicted an earthquake. 

12. See Herodotus, II , 109, who believes that geometry originated from the recurrent need to remeasure land periodically 
flooded by the Nile: Aristotle, Metaphysics, A3, 98Ib20–25, who believes that mathematics evolved in a highly theoretical way 
as the invention of a leisured class of Egyptian priests: and Eudemus, who, in spite of being a Peripatetic, sides with Herodotus 
rather than with Aristotle (see Proclus, Commentary on Euclid’s Elements, I, 64, 16 “Friedlein”) 

13.Commentary on Euclid’s Elements, 157.10 (DK, 11A20) 

14.Ibid., 250.20. 

15.Ibid., 299.1. 

16.Ibid., 352.14. 

17. G. S. Kirk, The Presocratic Philosophers, 84. 

18. T. L. Heath, Greek Mathematics, I , 131. 

19. B. L. van der Waerden, Science Awakening, 89. 

20. H. Cherniss, “The Characteristics and Effects of Presocratic Philosophy,” in Journal of the History of Ideas, 12 (1951), 
321. 



21. J. Burnet, Early Greek Philosophy, 48. 

22. H. C. Baldry, “Embryological Analogies in Early Greek Philosophy,” in Classical Quarterly, 26 (1932), 28. 

23. For an excellent account of Egyptian and Mesopotamian cosmogonies, see H. Frankfort, ed., Before Philosophy (Penguin 
Books, London, 1949), pub. orig. as The Intellectual Adventure of Ancient Man (Chicago, 1946). 

24. Aristotle, it may be noted, cites the parallel in Greek mythology of Oceanus and Tethys, the parents of generation 
(Metaphysics, A3, 983b27ff. [DK,1B10]). But the Greek myth may itself be derived from an oriental source. 

25. The gods of whom Thales thought everything was full (see Aristotle. De anima, A5, 411a7 [DK, 11A22]) are manifestly 
different from the personal divinities of traditional mythology. 
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(b. Samos, ca. 560 b.c.; d.Metapontum, ca. 480 b.c.) 

mathematics, theory of music, astronomy. 

Most of the sources concerning Pythagoras’ life, activities, and doctrines date from the third and fourth centuries a.d., while the 
few more nearly contemporary (fourth and fifth centuries b.c.) records of him are often contradictory, due in large part to the 
split that developed among his followers soon after his death. Contemporary references, moreover, scarcely touch upon the 
points of Pythagoras’ career that are of interest to the historian of science, although a number of facts can be ascertained or 
surmised with a reasonable degree of certainty. 

It is, for example, known that in his earlier years Pythagoras traveled widely in Egypt and Babylonia, where he is said to have 
become acquainted with Egyptian and Babylonian mathematics. In 530 b.c. (or, according to another tradition, 520 b.c.) he left 
Samos to settle in Croton, in southern Italy, perhaps because of his opposition to the tyrant Polycrates. At Croton he founded a 
religious and philosophical society that soon came to exert considerable political influence throughout the Greek cities of 
southern Italy. Pythagoras’ hierarchical views at first pleased the local aristocracies, which found in them a support against the 
rising tide of democracy, but he later met strong opposition from the same quarter. He was forced to leave Croton about 500 
b.c., and retired to Metapontum, where he died. During the violent democratic revolution that occurred in Magna Greacia in 
about 450 b.c., Pythagroas’ disciples were set upon, and Pythagorean meetinghouses were destroyed. Many Pythagoreans 



thereupon fled to the Greek mainland, where they found a new center for their activities at Phleius; others went to Tarentum, 
where they continued as a political power until the middle of the fourth century B.C. 

The political vicissitudes of Pythagoras and his followers are significant in the reconstruction of their scientific activities. True 
to his hierarchical principles, Pythagoras seems to have divided his adherents into two groups, the ἀκоυσματικоί, or 
“listeners” who were enjoined to silence, in which they memorized the master’s words, and the μαθηματικоί, who, after a 
long period of training, were allowed to ask questions and express opinions of their own. (The term μαθηματικоί originally 
meant merely those who had attained a somewhat advanced degree of knowledge, although it later came to imply “scientist” or 
“mathematician.”) 

A few decades after Pythagoras’ death, these two groups evolved into sharp factions and began a controversy over which of 
them was most truly Pythagorean. The ἀκоυσματικоί based their claim on their literal adherence to Pythagoras’ own words 
(αὺτо̀ς ἔφα, “he himself has spoken”); the ἀκоυσματικоί, on the other hand, seem to have developed Pythagoras’ ideas to 
such an extent that they were no longer in complete agreement with their originals. The matter was further complicated 
because, according to ancient tradition, Pythagoras chose to reveal his teachings clearly and completely to only his most 
advanced disciples, so that the ἀκоυσματικоί received only cryptic, or even mysterious, hints. The later Pythagorean tradition 
thus includes a number of strange prescriptions and doctrines, which the ἀκоυσματικоί interpreted with absolute literalness; 
the more rationalistic group (led at one time by Aristoxenus, who was also a disciple of Plato and Aristotle) preferred a 
symbolic and allegorical interpretation. 

This obscurity concerning Pythagoras’ intent has led historians of science into differences of opinion as to whether Pythagoras 
could really be considered a scientist or even an initiator of scientific ideas. It is further debatable whether those ancient 
authors who made real contributions to mathematics, astronomy, and the theory of music can be considered to have been true 
Pythagoreans, or even to have been influenced by authentically Pythagorean ideas. Nonetheless, apart from the theory of 
metempsychosis (which is mentioned by his contemporaries), ancient tradition assigns one doctrine to Pythagoras and the early 
Pythagoreans that can hardly have failed to influence the development of mathematics. This is the broad generalization, based 
on rather restricted observation (a procedure common in early Greek science), that all things are numbers. 

Pythagoras’ number theory was based on three observations. The first of these was the mathematical relationships of musical 
harmonies—that is, that when the ratio of lengths of sound-producing instruments (such as strings or flutes) is extended to 
other instruments in which one-dimensional relations are involved, the same musical harmonies result. Secondly, the 
Pythagoreans noted that any triangle formed of three sticks in the ratio 3:4:5 is always a right triangle, whatever the length of 
its segments. Their third important observation derived from the fixed numerical relations of the movements of heavenly 
bodies. It was thereby apparent to them that since the same musical harmonies and geometric shapes can be produced in 
different media and sizes by the same combination of numbers, the numbers themselves must express the harmonies and 
shapes and even the things having those harmonies and shapes. It could thus be said that these things—or, as they were later 
called, the essences (оὐσν́µ) of these things—actually were numbers. The groups of numbers that embodied the essence of a 
thing, and by which it might be reproduced, were called λо́γоι (“words”), a term that later came to mean “ratio.” 

The translation of philosophical speculation into mathematics is thus clear. This speculation about numbers as essences was 
extended in several directions; as late as the end of the fifth century b.c., philosophers and mathematicians were still seeking 
the number of justice, or marriage, or even of a specific man or horse. (Attempts were made to discover the number of, for 
example, a horse, by determining the number of small stones necessary to produce something like the outline of it.) By this 
time, however, the Pythagoreans had split into a set of groups holding highly differing viewpoints, so it would be inaccurate to 
assume that all Pythagorean speculations about numbers were of this primitive, unscientific kind. 

The theory of special types of numbers, which lay somewhere between these mystical speculations and true science, was 
developed by the Pythagoreans during the fifth century B.C. The two aspects of the theory are apparent in that the 
Pythagoreans distinguished between two types of “perfect” numbers. The number ten was the only example of the first group, 
and its perfection derived from its fundamental role in the decimal system and in its being composed of the sum of the first 
four numbers, 1 + 2 + 3 + 4 = 10. Because of this second quality it was called the tetractys, and represented by the figure ; it 
was considered holy, and the Pythagoreans swore by it. The second type of perfect numbers consisted of those equal to the 
sum of their factors, as, for example, six (1 + 2 + 3) or twenty-eight (1 + 2 + 4 + 7 + 14). Euclid, in the Elements (IX. 36) gave 
the general theory for this numerical phenomenon, stating that if 2n — 1 is a prime number, then (2n—1)2n-1 is a perfect 
number. 

Similar speculations prompted the search for “amicable” numbers—that is, numbers of which each equals the sum of the 
factors of the other—and for integers satisfying the Pythagorean formula a2 + b2 = c2 (as, for example, 32 + 42 = 52, or 52 + 122 
= 132). Only one pair of amicable numbers, 284 and 220, was known by the end of antiquity, and its discovery is attributed by 
lamblichus to Pythagoras himself, who is said to have derived it from the saying that a friend is an alter ego. Proclus (in 
Friedlein’s edition of Euclid’s Elements, p. 426) also attributes to Pythagoras himself the general formula by which any 
number of integers satisfying the equation a2 + b2 = c2 may be found, 

where n is an odd number. If this tradition is correct (and it is doubtful), Pythagoras must have learned the formula in 
Babylonia, where it was known, according to O. Neugebauer and A. Sachs (in Mathematical Cuneiform Texts [New Haven, 
1945], p. 38). 



Figured numbers were of particular significance in Pythagorean arithmetic. These included triangular numbers, square 
numbers, and pentagonal numbers, as well as heteromeke numbers (numbers forming rectangles with unequal sides), 
stereometric numbers (pyramidal numbers forming pyramids with triangular or square bases), cubic numbers, and altar 
numbers (stereometric numbers corresponding to heteromeke numbers). These numbers were represented by points, with., , for 
example, for the triangular numbers, and for the square numbers. The triangular numbers thus occur in the series 1, 3, 6, 10, 
15, …, which can be expressed by the formula n(n + 1)/2, while square numbers have the value n2 and pentagonal numbers 
may be given the value n(3n — 1)/2. Hetromeke numbers may be expressed as n(n + 1), n(n + 2), and so on; pyramidal 
numbers with triangular bases are formed by the successive sums of the triangular numbers 1, 4, 10, 20, 35, …. Pythagorean 
authors gave only examples of the various kinds of figured numbers until the second century A.D., and it was only in the third 
century a.d. that Diophantus developed a systematic mathematical theory based upon Pythagorean speculations. 

The theory of μεσо́τητες, or “means,” is also undoubtedly Pythagorean and probably of considerable antiquity. Iamblichus 
asserts (in Pistelli’s edition of lamblichus’ commentary on Nicomachus’ Introductio arithmetica, p. 118) that Pythagoras 
learned of arithmetic means during his travels in Babylonia, but this cannot be definitely proved. The theory was at first 
concerned with three means; the arithmetic, of the form a — b = b — c; the geometric, of the form a:b = b:c; and the 
harmonic, of the form (a — b):a = (b — c):c. Other means were added at later dates, particularly by the Pythagorean Archytas 
of Tarentum, in the first half of the fourth century b.c. 

It would seem likely, as O. Becker (in Quellen und Studien zur Geschichte der Mathematik, III B, pp. 534 ff.) and B. L. van 
der Waerden have pointed out, that Euclid took the whole complex of theorems and proofs that are based upon the distinction 
between odd and even numbers from the Pythagoreans, and that these reflect the Pythagorean interest in perfect numbers. This 
adaptation would seem to be particularly apparent in the Elements, IX. 30, and IX. 34, which lay the groundwork for the proof 
of IX. 36, the general Euclidean formula for perfect numbers. The proofs given in Euclid are strictly deductive and scientific, 
however, and would indicate that one group of Pythagoreans had quite early progressed from mysticism to true scientific 
method. 

Although the contributions made by Pythagoras and his early successors to arithmetic and number theory can be determined 
with some accuracy, their contributions to geometry remain problematic. O. Neugebauer has shown (in Mathematiker 
Keilschrifttexte, I, 180, and II, 53) that the so-called Pythagorean theorem had been known in Babylonia at the time of 
Hammurabi, and it is possible that Pythagoras had learned it there. It is not known whether the theorem was proved during 
Pythagoras’ lifetime, or shortly thereafter. The pentagram, which played an important role in Pythagorean circles in the early 
fifth century b.c., was also known in Babylonia, and may have been imported from there. This figure, a regular pentagon with 
its sides extended to intersect in the form of a five-pointed star, has the interesting property that its sides and diagonals 
intersect everywhere according to the golden section; the Pythagoreans used it as a symbol by which they recognized each 
other. 

Of the mathematical discoveries attributed by ancient tradition to the Pythagoreans, the most important remains that of 
incommensurability. According to Plato’s Theaetetus, this discovery cannot have been made later than the third quarter of the 
fifth century b.c., and although there has been some scholarly debate concerning the accuracy of this assertion, there is no 
reason to believe that it is not accurate. It is certain that the Pythagorean doctrine that all things are numbers would have been a 
strong incentive for the investigation of the hidden numbers that constitute the essences of the isosceles right-angled triangle or 
of the regular pentagon; if, as the Pythagoreans knew, it was always possible to construct a right triangle given sides in the 
ratio 3 : 4 : 5, then it should by analogy be possible to determine the numbers by which a right-angled isosceles triangle could 
be constructed. 

The Babylonians had known approximations to the ratio of the side of a square to its diagonal, but the early Greek 
philosophers characteristically wished to know it exactly. This ratio cannot be expressed precisely in integers, as the early 
Pythagoreans discovered. They chose to approach the problem by seeking the greatest common measure—and hence the 
numerical ratio of two lengths—through mutual subtraction. In the case of the regular pentagon, it may easily be shown that 
the mutual subtraction of its diagonals and sides can be continued through an infinite number of operations, and that its ratio is 
therefore incommensurable. Ancient tradition credits this discovery to Hippasus of Metapontum, who was living at the period 
in which the discovery must have been made, and who could easily have made it by the method described. (Hippasus, one of 
the μαθηματικоί, who is said to have been set apart from the other Pythagoreans by his liberal political views, is also 
supposed to have been concerned with the “sphere composed by regular pentagons,” that is, the regular dodecahedron.) 

An appendix to book X of the Elements incorporates a proof of the incommensurability of the diagonal of a square with its 
side. This proof appears to be out of its proper order, and is apparently much older than the rest of the theorems contained in 
book X; it is based upon the distinction between odd and even numbers and closely resembles the theorems and proofs of book 
IX. Like the proofs of book IX, the proof offered in book X is related to the Pythagorean theory of perfect numbers; an ancient 
tradition states that it is Pythagorean in origin, and it would be gratuitous to reject this attribution simply because other 
members of the same sect were involved in nonscientific speculations about numbers. It is further possible that the ingenious 
process by which the theory of proportions (which had been conceived in the form of ratios of integers) had been applied to 
incommensurables—that is, by making the process of mutual subtraction itself the criterion of proportionality—was also a 
Pythagorean invention. But it is clear that the later elaboration of the theory of incommensurability and irrationality was the 
work of mathematicians who no longer had any close ties to the Pythagorean sect. 



Pythagoras (or, according to another tradition, Hippasus) is also credited with knowing how to construct three of the five 
regular solids, specifically the pyramid, the cube, and the dodecahedron. Although these constructions can hardly have been 
identical to the ones in book XIII of the Elements, which a credible tradition attributes to Theaetetus, it is altogether likely that 
these forms, particularly the dodecahedron, had been of interest not only to Hippasus (as has been noted) but also to even 
earlier Pythagoreans. Their curiosity must have been aroused by both its geometrical properties (since it is made up of regular 
pentagons) and its occurrence in nature, since iron pyrite crystals of this form are found in Italy. An artifact in the form of a 
carved stone dodecahedron, moreover, dates from the tenth century b.c., and would seem to have played some part in an 
Etruscan cult. 

The notion that all things are numbers is also fundamental to Pythagorean music theory. Early Pythagorean music theory 
would seem to have initially been of the same speculative sort as early Pythagorean mathematical theory. It was based upon 
observations drawn from the lyre and the flute, the most widely used instruments; from these observations it was concluded 
that the most beautiful musical harmonies corresponded to the most beautiful (because simplest) ratios or combinations of 
numbers, namely the octave (2:1), the fifth (3:2), and the fourth (4:3). It was thus possible to assign the numbers 6, 8, 9, and 12 
to the four fixed strings of the lyre, and to determine the intervals of the diatonic scale as 9:8, 9:8, and 256:243. From these 
observations and speculations the Pythagoreans built up, as van der Waerden has pointed out, a deductive system of musical 
theory based on postulates or “axioms” (a term that has a function similar to its use in mathematics). The dependence of 
musical intervals on mathematical ratios was thus established. 

The early music theory was later tested and extended in a number of ways. Hippasus, perhaps continuing work begun by the 
musician Lasos of Hermione, is said to have experimented with empty and partially filled glass vessels and with metal discs of 
varying thicknesses to determine whether the same ratios would produce the same harmonies with these instruments. (Contrary 
to ancient tradition, it would have been impossible to achieve sufficient accuracy by these means for him to have been 
altogether successful in this effort.) The systematic deductive theory was later enlarged to encompass the major and minor 
third (5:4 and 6:5), as well as the diminished minor third (7:6) and the augmented whole tone (8:7). The foundation for the 
enharmonic and chromatic scales was thus laid, which led to the more complex theory of music developed by Archytas of 
Tarentum in the first half of the fourth century b.c. 

In addition to its specifically Pythagorean elements, Pythagorean astronomy would seem to have comprised both Babylonian 
observations and theories (presumably brought back by Pythagoras from his travels) and certain theories developed by 
Anaximander of Miletus, whose disciple Pythagoras is said to have been. It is not known precisely when Babylonian 
astronomy had begun, or what state it had reached at the time of Pythagoras, although ancient documents indicate that regular 
observations of the appearances of the planet Venus had been made as early as the reign of King Amisadaqa (about 1975 b.c.). 
The mul apin texts of about 700 b.c. give a summary of Babylonian astronomy up to that time, moreover, and contain divisions 
of the heavens into “roads of the fixed stars” (similar to the divisions of the zodiac), statements on the courses of the planets, 
and data on the risings and settings of stars that are obviously based on observations carried out over a considerable period of 
time. In addition, Ptolemy stated that regular observations of eclipses had been recorded since the time of King Nabonassar, 
about 747 b.c. The Babylonians of this time also knew that lunar eclipses occur only at full moon and solar eclipses at new 
moon, and that lunar eclipses occur at intervals of approximately six months; they knew seven “planets” (including the sun and 
moon), and therefore must have known the morning and evening star to be identical. 

The Babylonians also knew that the independent motions of the planets occur in a plane that intersects the equator of the 
heavenly sphere at an angle. Greek tradition attributes the determination of this angle as 24° to Pythagoras, although the 
computation was actually made by Oenopides of Chios, in the second half of the fifth century b.c. Oenopides was not a 
Pythagorean, but he obviously drew upon Pythagorean mathematics and astronomy, just as the Pythagoreans drew upon the 
body of Babylonian knowledge. 

Anaxirnander’s contributions to Pythagorean astronomy were less direct. The Pythagoreans rejected his chief theory, whereby 
the stars were in fact rings of fire that encircled the entire universe; according to Anaximander these fiery rings were obscured 
by “dark air,” so that they were visible only through the holes through which they breathed. Pythagoras and his adherents, on 
the other hand, accepted the Babylonian notion of the stars as heavenly bodies of divine origin. They did, however, make use 
of Anaximander’s assumption that the planets (or, rather, the rings in which they appear) are at different distances from the 
earth, or at any rate are nearer to the earth than are the fixed stars. This idea became an important part of Pythagorean 
astronomy (see Heiberg’s edition, Eudemus of Rhodes in Simplicius’ Commentary on Aristotle’s De caelo, p. 471, and Diels 
and Kranz’s edition of Die Fragmente der Vorsokratiker, sec. 12, 19). 

Their knowledge of the periodicity of the movements of the stars undoubtedly strengthened the Pythagoreans in their belief 
that all things are numbers. They attempted to develop astronomical theory by combining it with this general principle, among 
others (including the principle of beauty that had figured in their axiomatic foundations of the theory of music). Their concern 
with musical intervals led them to try to determine the sequence of the planets in relation to the position of the earth (compare 
Eudemus, in the work cited, and Ptolemy, Syniaxis, IX, I). According to their theory, probably the earliest of its kind, the order 
of the planets, in regard to their increasing distance from the earth, was the moon. Mercury, Venus, the sun, Mars, Jupiter, and 
Saturn—a sequence that was later refined by placing Mercury and Venus above the sun, since no solar transits of these bodies 
had been observed. 



Further theories by which the distances and periods of revolution of the heavenly bodies are correlated with musical intervals 
are greatly various, if not actually contradictory. Indeed, according to van der Waerden (in “Die Astronomie der Pythagoreer” 
pp. 34 ff.), a number of them make very little sense in the context of musical theory. It is almost impossible to tell what the 
original astronomical-musical theory on which these variants are based actually was, although it was almost certainly of 
considerable antiquity. It may be assumed, however, that in any original theory the celestial spheres were likened to the seven 
strings of a lyre, and were thought to produce a celestial harmony called the music of the spheres. Ordinary mortals could not 
hear this music (Aristotle suggested that this was because they had been exposed to it continuously since the moment of their 
birth), but later Pythagoreans said that it was audible to Pythagoras himself. 

Another mystical notion, this one adopted from the Babylonians, was that of the great year. This concept, which was used by 
the Pythagoreans and probably by Pythagoras, held that since the periods of revolution of all heavenly bodies were in integral 
ratio, a least common multiple must exist, so that exactly the same constellation of all stars must recur after some definite 
period of time (the “great year” itself). It thereupon followed that all things that have occurred will recur in precisely the same 
way; Eudemus is reported to have said in a lecture (not without irony) that “then I shall sit here again with this pointer in my 
hand and tell you such strange things.” 

Pythagorean ideas of beauty required that the stars move in the simplest curves. This principle thus demanded that all celestial 
bodies move in circles, the circle being the most beautiful curve, a notion that held the utmost importance for the development 
of ancient astronomy. If van der Waerden’s ingenious interpretation of the difficult ancient texts on this subject is correct (in 
“Die Astronomie der Pythagoreer,” pp. 42 ff.), there may have been—even before Plato asked the non-Pythagorean 
mathematician Eudoxus to create a model showing the circular movements of all celestial bodies—a Pythagorean theory that 
explained the movements of Mercury and Venus as epicycles around the sun, and thus represented the first step toward a 
heliocentric system. 

Ancient tradition also refers to an entirely different celestial system, in which the earth does not rest in the center of the 
universe (as in the theories of Anaximander, the Babylonians of the fifth century b.c., and the other Pythagoreans), but rather 
revolves around a central fire. This fire is invisible to men, because the inhabited side of the earth is always turned away from 
it. According to this theory, there is also a counter-earth on the opposite side of the fire. Pythagorean principles of beauty and 
of a hierarchical order in nature are here fundamental; fire, being more noble than earth, must therefore occupy a more noble 
position in the universe, its center (compare Aristotle, De caelo, II, 13). This theory is sometimes attributed to Philolaus, a 
Pythagorean of the late fifth century b.c., and he may have derived the epicyclic theory from it, although the surviving 
fragments of Philolaus’ work indicate him to have been a man of only modest intellectual capacities, and unlikely to have been 
the inventor of such an ingenious system. Other ancient sources name Hicetas of Syracuse, a Pythagorean of whom almost 
nothing else is known, as its author. 

The decisive influence of this theory in the history of astronomy lies in its explanation of the chief movements of the celestial 
bodies as being merely apparent. The assumption that the solid earth, on which man lives, does not stand still but moves with 
great speed (since some Pythagoreans according to Aristotle explained the phenomenon of day and night by the movement of 
the earth around the central fire) was a bold one, although the paucity and vagueness of ancient records make it impossible to 
determine with any certainty how far this notion was applied to other celestial phenomena. Further details on this theory are 
also difficult to ascertain; van der Waerden (in “Die Astronomie der Pythagoreer,” pp. 49. ff.) discusses the problem at length. 
It is nevertheless clear that this daring, and somewhat unscientific, speculation was a giant step toward the development of a 
heliocentric system. Once the idea of an unmoving earth at the center of the universe had been overcome, the Pythagorean 
Ecphantus and Plato’s disciple Heraclides were, in about 350 b.c., able to teach that the earth revolves about its own axis 
(Aetius, III, 13). A fully heliocentric system was then presented by Aristarchus of Samos, in about 260 b.c., although it was 
later abandoned by Ptolemy because its circular orbits did not sufficiently agree with his careful observations. 

It is thus apparent that the tendency of some modern scholars to reject the unanimous and plausible ancient tradition 
concerning the Pythagoreans and their discoveries—and to attribute these accomplishments instead to a number of unknown, 
cautious, and pedestrian observers and calculators—obscures one of the most interesting aspects of the early development of 
Greek science. 
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