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(b Saluzzo, Italy, 20 August 1863; d. Turin, Italy, 18 May 1924) 

mathematics. 

Segre studied under Enrico D’Ovidio at the University of Turin, where he formed a long friendship with his 
fellow student Gino Loria. Segre submitted his doctoral dissertation in 1883, when he was only twenty; and 
in the same year he was named assistant to the professor of algebra and to the professor of analytic 
geometry. Two years later he became an assistant in descriptive geometry, and from 1885 to 1888 he 
replaced Giuseppe Bruno in the courses on projective geometry. In 1888 he succeeded D’Ovidio in the 
chair of higher geometry, a post he held without interruption until his death. 

Segre was much influenced by D’Ovidio’s course on the geometry of ruled spaces (1881–1882). D’Ovidio 
started from the ideas of Plücker, which had been taken up and developed by Felix Klein. According to 
these ideas, the geometry of ruled space is equivalent to the study of a quadratic variety of four dimensions 
imbedded in a linear space of five dimensions. In his lectures D’Ovidio examined the works of Veronese 
on the projective geometry of hyperspaces and those of Weierstrass on bilinear and quadratic forms. These 
topics inspired much of Segre’s research, beginning with his thesis. The latter consists of two parts: a study 
of the quadrics in a linear space of arbitrary dimension and an examination of the geometry of the right line 
and of its quadratic series. Before completing his thesis, Segre collaborated with Loria on a twenty-two-
page article in French that they sent to Klein, who published it in Mathematische Annalen (1883). A long 
and active correspondence between Segre and Klein then ensued. 

Segre’s mathematical work can be divided into four distinct areas, all of which are linked by a common 
concern with the problem of space. The first of these areas comprises Segre’s articles on the geometric 
properties that are invariant under linear transformations of space. In this connection Segre showed the 
value of investigating hyperspaces in the study of three-dimensional space S3. For example, a ruled surface 
of S3, which is composed of right lines, can be represented by a curve in S5; it thus becomes possible to 
reduce the classification of surfaces to that of curves. The insufficiencies of the earlier theories proposed by 
A. Möbius, Grassmann, Cayley, and Cremona were thus soon revealed. 

According to Segre, a ruled surface in a space S2 can also be considered a variety of ∞2 points distributed 
on ∞1 right lines. Further, Segre generalized the theory of the loci formed by ∞1 right lines Sn to the theory 
of the loci formed by ∞1 planes. He took as his point of departure certain problems on bundles of quadrics 
that Weierstrass and L. Kronecker had treated in a purely algebraic manner. 

At this time it was known that the intersection of two quadrics of S3 is a quartic the projection of which 
from a point exterior to it onto a plane is a quartic with two double points. John Casey and Gaston Darboux 
had shown that its study is useful for that of fourth-order surfaces, called cyclides. Segre reexamined and 
generalized the problem by placing the two quadrics in a space S4. He also investigated the locus resulting 
from the intersection of two quadrics of S5 and discovered that it is no longer a surface but rather a three-
dimensional variety that can be interpreted as a complex quadratic of S3. From this result he confirmed in 
an elegant manner the famous fourth-order surface with sixteen double points, which had been found by 



Kummer in 1864 and bear his name. Before Segre’s findings, the study of this surface required the use of 
extremely complicated algebraic procedures. 

Segre next began a series of works on the properties of algebraic curves and ruled surfaces subjected to 
birational transformations. Alfred Clebssch, Paul Gordan, Alexander Brill, and Max Noether had already 
studied these transformations with a view toward giving a geometric interpretation to the theory of Abelian 
functions. Segre showed the advantage gained by operating in a hyperspace. His article of 1896 on the 
birational transformations of a surface contains the invariant that Zeuthen had encountered under another 
form in 1871, now called Zeuthen-Segre invariant. 

Segre’s interest in 1890 in the properties of the Riemann sphere led him to a third area of research: the role 
of imaginary elements in geometry. He laid the basis of a new theory of hyperalgebraic entities by 
representing complex points of Sn by means of the ∞2n real points of one of the varieties V2n. (This variety 
has since been named for Segre.) Certain of Segre’s hyperalgebraic, and he was led to enlarge the concept 
of a point. To this end, he introduced points that he called bicomplex, which correspond to the ordinary 
complex points of the real image. Their coordinates are bicomplex numbers constructed with the aid of the 
two unities i and j. such that: 

i · j = j · i 

and 

i2 = j2 = –1. 

Later, in 1912, Segre returned to this subject, when, utilizing the works of Von Staudt, he studied another 
type of complex geometry. 

Darboux’s Leçons sur la théorie générale des surfaces. which Segre often used in his courses, inspired him 
to investigate (from 1907) infinitesimal geometry. Extending the work of Darboux, Segre studied a certain 
class of surfaces in Sn defined by second-order linear partial differential equations. These surfaces are 
described by a moving point of which the homogeneous coordinates-functions of two independent 
parameters u and v-are the solutions of a second-order partial differential equation. Among the surfaces of a 
hyperspace, Segre was particularly interested in those that lead to a Laplace equation. In an article of 1908 
on the conjugate tangents of a surface, he established a relationship between the points of the tangent plane 
and those of the planes passing through the origin. To establish this relationship he employed infinitesimals 
of higher order in a problem concerning the neighborhood of a point. This procedure led him to introduce a 
new system of lines, analogous to those studied by Darboux, traced on the surface: they were named Segre 
lines, and their differential equation was established by Fubini. It may be noted that Segre’s last publication 
dealt with differential geometry. Segre wrote a long article on hyperspaces for the Encyklopädie der 
mathematischen Wissenschaften, containing all that was then known about such spaces. A model article, it 
is notable for its clarity and elegance. 

Segre became a member of the Academy of Turin in 1889. He long served on the editorial board of the 
Annali di matematica pura ed applicata, on which he was succeeded by his former student Severi of the 
University of Rome. 

Through his teaching and his publications, Segre played an important role in reviving an interest in 
geometry in Italy. His reputation and the new ideas he presented in his courses attracted many Italian and 
foreign students to Turin. Segre’s contribution to the knowledge of space assures him a place after 
Cremona in the ranks of the most illustrious members of the new Italian school of geometry. 
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