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(b. Athens, ca. 417 b.c.; d. Athens, 369 b.c.) 

mathematics. 

The son of Euphronius of Sunium, Theaetetus studied under Theodorus of Cyrene and at the Academy with Plato. 
Although no writing of his has survived, Theaetetus had a major influence in the development of Greek mathematics. 
His contributions to the theory of irrational quantities and the construction of the regular solids are particularly 
recorded; and he probably devised a general theory of proportion–applicable to incommensurable and to 
commensurable magnitudes–before the theory developed by Eudoxus and set out in book V of Euclid’s Elements. 

The Suda lexicon has two entries1 under the name Theaetetus: 

“Theaetetus, of Athens, astronomer, philosopher, disciple of Socrates, taught at Heraclea. He was the first to write on 
(or construct) the so–called five solids. He lived after the Peloponnesian war”, 

“Theaetetus, of Heraclea in Pontus, philosopher, a pupil of Plato”. 

Some have supposed that these notices refer to the same person, but it is more probable, as G. J. Allman2 conjectures, 
that the second Theaetetus was a son or other relative of the first sent by him while teaching at Heraclea to study at the 
Academy in his native city. 

Plato clearly regarded Theaetetus with a respect and admiration second only to that which he felt for Socrates. He made 
him a principal character in two dialogues, the eponymous Theaetetus and the Sophist; and it is from the former 
dialogue that what we know about the life of Theaetetus is chiefly derived3. In the dialogue Euclid of Megara gets a 
servant boy to read to his friend Terpsion a discussion between Socrates, Theodorus, and Theaetetus that Plato recorded 
soon after it took place on the day that Socrates faced his accusers, that is, in 399 b.c. Since Theaetetus is there referred 
to as a μєιράκιоv (“a youth”), it is implied that he was an adolescent, say eighteen years old, that is, he was born about 
417 b.c.4. His father, we are told, left a large fortune, which was squandered by trustees; but this did not prevent 
Theaetetus from being a liberal giver. Although Theaetetus was given the rare Greek compliment of being καλος тє 
καὶἀγαθός (“a thorough gentleman”), it was the beauty of his mind rather than of his body that impressed his 
compatriots; for, like Socrates, he had a snub nose and protruding eyes. Among the many young men with whom 
Theodorus had been acquainted, he had never found one so marvelously gifted; the lad’s researches were like a stream 
of oil flowing without sound. Socrates predicted that Theaetetus would become notable if he came to full years. In the 
preface to the dialogue Euclid relates how he had just seen Theaetetus being carried in a dying condition from the camp 
at Corinth to Athens; not only had he been wounded in action, after acquitting himself gallantly, but he had contracted 
dysentery. This would be in the year 369 b.c., for the only other year in that century in which Athens and Corinth were 
at war, 384 b.c., would hardly allow time for Theaetetus’ manifold accomplishments5. 

The Theaetetus is devoted to the problem of knowledge; and the Sophist, apart from a method of definition, to the 
meaning of nonbeing. Although Theaetetus plays a major part in both discussions, there is no reason to think that he 
was a philosopher in the usual sense of the word. Plato merely used him as a vehicle for thoughts that he wanted 
expressed. That the two Suda passages use the term “philosopher” proves nothing, since the lexicon regularly calls 
mathematicians philosophers6. 

In the summary of the early history of Greek geometry given by Proclus, and probably taken from Eudemus, Theaetetus 
is mentioned along with Leodamas of Thasos and Archytas of Tarentum as having increased theorems and made an 
advance toward a more scientific grouping7, the zeal for which is well shown in the mathematical passage that Plato 
introduces into the Theaetetus8. In this passage Theaetetus first relates how Theodorus demonstrated to him and the 
younger Socrates (a namesake of the philosopher) in each separate case that is a surd. He adds: “Since the number of 
roots9 seemed to be infinite, it occurred to us to try to gather them together under one name by which we could call all 
the roots”, Accordingly Theaetetus and the younger Socrates divided all numbers into two classes. A number that could 
be formed by multiplying equal factors they likened to a square and called “square and equilateral”. The other 
numbers–which could not be formed by multiplying equal factors, but only a greater by a less, or a less by a greater–
they likened to an oblong and called “oblong numbers”. The lines forming the sides of equilateral numbers they called 
“lengths”, and the lines forming oblong numbers they called “roots”. “And similarly”, concluded the Theaetetus of the 
dialogue, “for solids”, which can only mean that they attempted a similar classification of cube roots. 

The classification may now seem trivial, but the discovery of the irrational was a fairly recent matter10 and involved a 
complete recasting of Greek mathematics: and Theaetetus was still only a young man. His more mature work on the 
subject is recorded in a commentary on the tenth book of Euclid’s Elements, which has survived only in Arabic and is 
generally identified with the commentary that Pappus is known to have written. In the introduction to this commentary 
it is stated:11 

The aim of Book X of Euclid’s treatise on the Elements is to investigate the commensurable and the incommensurable, 
the rational and irrational continuous quantities. This science had its origin in the school of Pythagoras, but underwent 
an important development at the hands of the Athenian, Theaetetus, who is justly admired for his natural aptitude in this 
as in other branches of mathematics. One of the most gifted of men, he patiently pursued the investigation of the truth 
contained in these branches of science, as Plato bears witness in the book which he called after him, and was in my 
opinion the chief means of establishing exact distinctions and irrefutable proofs with respect to the above–mentioned 
quantities. For although later the great Apollonius, whose genius for mathematics was of the highest possible order, 
added some remarkable species of these after much laborious application, it was nevertheless Theaetetus who 
distinguished the roots which are commensurable in length from those which are incommensurable, and who divided 
the more generally known irrational lines according to the different means, assigning the medial line to geometry, the 
binomial to arithmetic, and the apotome to harmony, as is stated by Eudemus the Peripatetic. 

The last sentence gives the key to the achievement of Theaetetus in this field. He laid the foundation of the elaborate 
classification of irrationals, which is found in Euclid’s tenth book: and in particular Theaetetus discovered, and 
presumably named, the medial, binomial, and apotome. The medial is formed by the product of two magnitudes, the 
binomial (“of two names”) by the sum of two magnitudes, and the apotome (implying that something has been cut off) 
by the difference of two magnitudes. It is easy to see the correlation between the medial and the geometric mean, for 
the geometric mean between two irrational magnitudes,12a, b, is and is medial. It is also easy to see the correlation 
between the binomial and the arithmetic mean, for the arithmetic mean between a,b, is (½a + ½b); and this is a 
binomial. It is not so easy to see the connection between the apotome and the harmonic mean; but a clue is given in the 
second part of the work, where the commentator returns to the achievement of Theaetetus and observes that if the 
rectangle contained by two lines is a medial, and one of the sides is a binomial, the other side is an apotome. This in 
turn recalls Euclid, Elements X,112, and amounts to saying that the harmonic mean between a, b, that is, 2ab/ (a+b), 
can be expressed as 

This leads to the question how much of Euclid’s tenth book is due to Theaetetus. After a close examination, B.L. van 
der Waerden concluded that “The entire book is the work of Theaetetus”,13 There are several reasons, however, for 
preferring to believe that Theaetetus merely identified the medial, binomial, and apotome lines, correlating them with 
the three means, as the Arabic commentary says, and that the addition of ten other species of irrationals, making 
thirteen in all, or twenty–five when the binomials and apotomes are further subdivided, is the work of Eulid himself. A 
scholium to the fundamental proposition X.9 (“the squares on strainght lines commensurable in length have to one 
another the ratio which a square number has to a square number ...”) runs as follows: “This theorem is the discovery of 
Theaetetus, and Plato recalls it in the Theaetetus, but there it is related to particular cases, here treated generally”,14 This 
would be a pointless remark if Theaetetus were the author of the whole book. 

The careful distinction made in the “Eudemian summary” between Euclid’s treatment of Eudoxus and Theaetetus is 
also relevant, Euclid, says the author, “put together the elements, arranging in order many of Eudoxus’ theorems, 
perfecting many of Theaetetus’, and bringing to irrefutable demonstration the things which had been only loosely 
proved by his predecessors”.15 The implication would seem to be that book V is almost entirely the discovery of 
Eudoxus save in its arrangement, but book X is partly due to Theaetetus and partly to Euclid himself. The strongest 
argument for believing that Theaetetus had an almost complete knowledge of the Euclidean theory of irrationals is that 
the correlation of the apotome with the harmonic mean implies a knowledge of book X .112; but it is relevant that the 
genuine text of Euclid probably stops at book X.III with the list of the thirteen irrational straight lines.16 

A related question is the extent to which the influence of Theaetetus can be seen in the arithmetical books of Euclid’s 
Elements, VII-IX . Euclid X.9 depends on VIII.11 (“Between two square numbers there is one mean proportional 
number . . .”), and VIII.11 depends on VII.17 and VII.18 (in modern notation, ab :ac =b : c, and a : b = ac : bc). H. G. 
Zeuthen has argued17 that, these propositions are an inseparable part of a whole theory established in book VII and in 
the early part of book VIII , and that this theory must be due to Theaetetus with the object of laying a sound basis for 
his treatment of irrationals. It is clear, however, as T. L. Heath has pointed out,18 that before Theaetetus both 
Hippocrates and Archytas must have known propositions and definitions corresponding to these in books VII and VIII 
; and there is no reason to abandon the traditional view that the Pythagoreans had a numerical theory of proportion that 
was taken over by Euclid in his arithmetical books. Theaetetus merely made use of an existing body of knowledge. 



Theaetetus’ work on irrationals is closely related to the two other main contributions to mathematics attributed to him. 
The only use made of book X in the subsequent books of Euclid’s Elements is to express the sides of the regular solids 
inscribed in a sphere in terms of the diameter. In the case of the pyramid, the octahedron, and the cube, the length of the 
side is actually determined; in the case of the icosahedron, it is shown to be a minor; and in the case of the 
dodecahedron, to be an apotome. It is therefore significant that in the passage from the Suda lexicon (cited above) 
Theaetetus is credited as the first to “write upon” or “Theaetetus is credited as the first to “write upon” or “construct” 
the so–called five solids (πρωηтоς δє ̀πєν́тє καλούμєνα σтєρєὰ є̓γ́ραψє). It is also significant that at the end of the 
mathematical passage in the Theaetetus he says that he and his companion proceeded to deal with solids in the same 
way as with squares and oblongs in the plane. Probably on the authority of Theophrastus, Aëtius19 attributed the 
discovery of the five regular solids to the Pythagoreans; and Proclus20 actually attributes to Pythagoras himself the 
“putting together” (σύσтασις) of the “cosmic figures” use of them in the Timaeus to build the universe;21and no doubt 
the σύσтασις is to be understood as a “putting together” of triangles, squares, and pentagons in order to make solid 
angles as in that dialogue rather than in the sense of a formal construction. Theaetetus was probably the first to give a 
theoretical construction for all the five regular solids and to show how to inscribe them in a sphere. A scholium to 
Euclid, ElementsXIII , actually attributes to Theaetetus rather than to the Pythagoreans the discovery of the octahedron 
and icosahedron.22 On the surface this is puzzling, since the octahedron is a more elementary figure than the 
dodecahedron, which requires a knowledge of the pentagon; but many objects of dodecahedral form have been found 
from days much earlier than Pythagoras,23 and the Pythagorean Hippasus is known to have written on “the construction 
of the sphere from the twelve pentagons”,24 (It would be in this work, if not earlier, that he would have encountered the 
irrational, and for his impiety in revealing it, he was drowned at sea.) If the Pythagoreans knew the dodecahedron, 
almost certainly they knew also the octahedron and probably the icosahedron; and the scholium quoted above may be 
discounted. The achievement of Theaetetus was to give a complete theoretical construction of all five regular solids 
such as we find in Euclid, ElementsXIII ; and Theaetetus must be regarded as the main source of the book, although 
Euclid no doubt arranged the maerials in his own impeccable way and put the finishing touches.25 

The theory of irrationals is also linked with that of proportionals. When the irrational was discovered, it involved a 
recasting of the Pythagorean theory of proportion, which depended on taking aliquot parts, and which consequently was 
applicable only to rational numbers, in a more genmagnitudes. Such a general theory was found by Eudoxus and is 
embodied in Euclid, Elements V. But in 193326 Oskar Becker gave a new interpretaion of an obscure passage in 
Aristotle’s Topics.27 He suggested that the theory of proportion had already been recast in a highly ingenious form; and 
if so, the indication is that it was so recast by Eudoxus’ older contemporary Theaetetus. 

In the passage under discussion Aristotle observes that in mathematics some things are not easily proved for lack of a 
definition–for example, that a straight line parallel to two of the sides of a parallelogram divides the other two sides and 
the area in the same ratio: but if the definition is given, it becomes immediately clear, “for the areas have the same 
ανтαναίρєσις as the sides, and this is the definition of the same ratio”. What does the Greek word mean?. The basic 
meaning is “a taking away”, and the older commentators up to Heath 

and the Oxford translation supposed that it meant “a taking away of the same fraction”. In the figure EF is the straight 
line parallel to the sides AB, DC of the parallelogram ABCD, and AE, BF are the same parts of AD, BC respectively as 
the parallelogram ABFE is of the parallelogram ABCD. This would be in accordance with the Pythagorean theory of 
proportion, and the passage would contain nothing significant. But Becker drew attention to the comment by Alexander 
of Aphrodisias on this passage; he uses the word ἀνθυфαίρєσις and observes that this is what Aristotle means by 
ἀνтαναίρєσις. This might not in itself prove very much–the meaning could still be much the same–if it were not, as 
Becker also noted, that Euclid, although he does not employ the noun ἀνθυфαίρєσις, does in four places29 use the 
verb, ἀνθυфαίρєι̂ν, and–this is the really significant fact–uses it to describe the process of finding the greatest common 
measure between two magnitudes. In this process the lesser magnitude is subtracted from the greater as many times as 
possible until a magnitude smaller than itself is left, and then the difference is subtracted as many times as possible 
from the lesser until a difference smaller than itself is left, and so on continually (ἀνθυфαιρουουμєν́ου δє ̀ἀєὶ 
тοῡєλ̓άσσονος ἀπὀ тουη μєίζονος). In the case of commensurable magnitudes the process comes to an end after a 
finite number of steps, but in the case of incommensurable magnitudes the process never comes to an end. A 
mathematician as acute as Theaetetus would realize that this could be made a test of commensurability (as it is in 
Euclid, ElementsX.2 ) and that by adopting a definition of proportion based on this test he could have a theory of 
proportion applicable to commensurable no less than incommensurable magnitudes.30 

It is possible that such a general theory was evolved before Eudoxus by some person other than Theaetetus, but in view 
of Theaetetus’ known competence and his interest in irrationals, he is the most likely author. The attribution becomes 
even more credible if Zeuthen’s explanation of how Theodorus proved the square roots of to be irrational is accepted 
(see the article on Theodorus of Cyrene); for according to his conjecture Theodorus used this method in each particular 
case, and Theodorus was the teacher of Theaetetus. Although there is no direct evidence that Theaetetus worked out 
such a pre–Eudoxan theory of proportion, the presumption in favor is strong; and it has convinced all recent 
commentators. 

It is not known whether Theaetetus made any discoveries outside these three fields. In the “Eudemian summary” 
Proclus says:31 “Hermotimus of Colophon advanced farther the investigations begun by Eudoxus and Theaetetus: he 
discovered many propositions in the elements and compiled some portion of the theory of loci”, While it is clear that 
Theaetetus studied mathematics under Theodorus, it is uncertain whether he did so a Cyrene or at Athens. It may be 
accepted that at some time he taught in Heraclea, and he may have been the teacher of Heraclides Ponticus.32 
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