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(b. Groningen, Netherlands, 8 February 1700; d. Basel. Switzerland, 1 March 1782) 

medicine, mathematics, physics. 

Life. Daniel Bernoulli was the second son of Johann I Bernoulli and Dorothea Falkner, daughter of the patrician Daniel 
Falkner. At the time of Bernoulli’sbirth his father was professor in Groningen, but here turned to Basel in 1705 to occupy the 
chair of Greek. Instead, he took over the chair of mathematics, which had been made vacant by the death of his brother Jakob 
(Jacques) I. In 1713 Daniel began to study philosophy and logic, passed his b accalaureate in 1715, and obtained his master’s 
degree in 1716. During this period he was taught mathematics by his father and, especially, by his older brother Nikolaus II. 
An attempt to place young Daniel as a commercial apprentice failed. And he was allowed to study medicine—first in Basel, 
then in Heidelberg (1718) and Strasbourg (1719). In 1720 he returned to Basel, where he obtained his doctorate in 1721 with a 
dissertation entitled De respiratione (1). That same year he applied for the then vacant professor ship in anatomy and botany 
(2), but the drawing of the lot went against him. Bad luck also cost him the chair of logic (3). In 1723 he journeyed to Venice, 
when he his brother Nikolaus had just departed and continued his studies in practical medicine under Pietro Antonio 
Michelotti. A severe illness prevented him from realizing his plan to work with G. B. Morgagni in Padua. 

In 1724 Bernoulli published his Exercitationes mathematicae (4) in Venice, which attracted so much attention that he was 
called to the St. Petersburg Academy. He returned to Basel in 1725 and declared his readiness to go to the Russian capital with 
Nikolaus. That same year, he won the prize awarded by the Paris Academy, the first of the ten he was to gain. Bernfoulli’s stay 
in St. Petersburg was marred by the sudden death of his be loved brother and by the rigorous climate, and he applied three 
times for a professorship in Basel, but in vain. Finally, in 1732, he was able to obtain the chair of anatomy and botany there. 

His Petersburg years (1725–1733 [after 1727 he worked with Euler]) appear to have been Bernoulli’s most creative period. 
During these years he outlined the Hydrodynamica and completed his first important work on oscillations (23) and an original 
treatise on the theory of probability (22). In 1733 he returned to Basel in the company of his younger brother Johann II, after a 
long detour via Danzig, Hamburg, and Holland, combined with a stay of several weeks in Paris. Everywhere he went, scholars 
received him most cordially. 

*See p. 56 for genealogy chart. 

Although largely occupied with his lectures in medicine, Bernoulli continued to publish in mathematics and mechanics, which 
interested him much more intensely. His principal work, the Hydrodynamica (31), had been completed as early as 1734 but 
was not published until 1738. About the same time his father published Hydraulica, predated to 1732.1 This unjustifiable 
attempt to insure priority for himself was one among many instances that exhibited Johann I Bernoulli’s antagonism toward his 
second son. 

In 1743 Daniel Bernoulli was able to exchange his lectures in botany for those in physiology, which were more to his liking. 
Finally, in 1750, he obtained the chair of physics, which was his by rights. For almost thirty years (until 1776) he delivered his 
lectures in physics, which were enlivened by impressive experiments and attended by numerous listeners. He was buried in the 
Peterskirche, not far from his apartment in the Kleine Engelhof. 

Works. Daniel Bernoulli’s works include writings on medicine, mathematics, and the natural sciences, especially mechanics. 
His works in these different areas were usually conceived independently of each other, even when simultaneous. As a 
consequence itis legitimate to distinguish them by subject matter and to consider them in chronological order with in each 
subject. 

Medicine. Bernoulli saw himself, against his inclination, limited to the field of medicine. Thus the future physicist promptly 
turned his interest to the mechanical aspects of physiology.2 In his in augural dissertation of 1721(1), as a typical iatro physicist 
under the decisive influence of Borelli and Johann Bernoulli, he furnished a comprehensive review of the mechanics of 
breathing. During the same year he applied for the then vacant chair of anatomy and botany, presenting pertinent theses (2) in 
support of his candidacy. In St. Petersburg in 1728 he published a strictly mechanical theory of muscular contraction (10), 
which disregarded the hypothesis of fermentation in the blood corpuscles assumed by Borelli and Johann Bernoulli. That same 
year he furnished a beautifully clear contribution to the determination of the shape and the location of the entrance of the optic 
nerve into the bulbus, or blind spot (II). Also of great importance is a lecture on the computation of the mechanical work done 
by the heart (vis cordis). Bernoulli gave this address in 1737 at the graduation exercises of two candidates in medicine, and it 



was thus that he first developed a correct method for such calculations. Because of its lasting significance, this lecture was 
published with its German translation in 1941 (75). Contributions to the physiology of work, more particularly to the 
determination of the maximum work that a man can perform, are found in Hydrodynamica (sec. 9) and the prize winning 
treatise of 1753 (47). (In this context, Bernoulli meant by “maximum work” the quantity that a man could do over a sustained 
period of e.g., a working day.) 

Mathematics. Medical research, however, did not divert Bernoulli from his primary interest, the mathematical sciences. This is 
evidenced by the publication in 1724 of his Exercitationes mathematicae, which he wrote during his medical studies in Italy. 
This treatise combined four separate works dealing, respectively, with the game of faro, the outflow of water from the 
openings of containers, Riccati’s differential equation, and the lunulae (figures bounded by two circular arcs). Ultimately, 
Bernoulli’stalent proved to lie primarily in physics, mechanics, and technology, but his mathematical treatises originated partly 
from external circumstancescati’s differential equation) and partly from applied mathematics (recurrent series, mathematics of 
probability). 

The discussions on Jacopo Riccati’s differential equation were initiated in 1724 by the problem presented by Riccati in the 
Supplement a to the Acta eruditorum. Immediately thereafter Daniel Bernoulli offered a solution in the form of an anagram (5). 
In the two following papers, published in the Actaeruditorum (6, 7), as well as in the Exercitation es mathematicae, Bernoulli 
demonstrated that Riccati’s special differential equation axndx + u2dx = b du could be integrated through separation of the 
variables for the values n = –4c/2c±1), where c takes on all integral values—positive, negative, and zero. 

In the first part of the Exercitationes (4), dealing with faro, Bernoulli furnished data on recurrent series that later proved to 
have no practical application. According to De Moivre, these series result from the generative fraction 

Bernoulli made use of these series in (16) for the approximate calculation roots of algebraic equations. For this purpose, the 
fraction is broken up into partial fractions, which are then developed into power series yielding, in the case of simple roots1/p, 
1/q, and so on, the general term 

P = (Apn + Bqn +…)zn 

and the following member 

Q = (Apn+1 + Bqn+1…)zn+1. 

If P is considerably larger than q…, etc., then, for sufficiently large n, P is approximated by Apn, Q by Apn+1, and thus the 
smallest root, l/p, is approximated by P/Q. In treatise (20) this method is applied to infinite power series. 

Divergent sine and cosine series are treated by Bernoulli in three papers (62, 64, 66). The starting point is the thesis formulated 
by Leibniz and Euler that the equation 1 - 1 + 1 - 1… = l/2 is valid, which they base on the equation 1/(l + x) = 1 -x + x2… for x 
= 1 and by observing that the arithmetic mean of the two possible partial sums of the series equals 1/2. In reality, however, this 
divergent series can be summed to many values, depending on the expression from which it is derived. On the other hand, it 
can be demonstrated that the mean value method for the equations found by Euler, 

leads to a correct result. For if x is commensurable with π, but not a multiple of π, then the terms of these series for a definite p 
and for each n satisfy the conditions an+p = an and al + a2 + a3 +… + ap =0. For this case, according to the Leibniz-Bernoulli 
rule, the sum of the series becomes equal to the arithmetic mean of the values a1, a1 +a2a1 + a2+ a3… a1 + a2 + a3 +… +ap 

Interestingly, in (64) the integration of the above cosine series, with application of Leibniz’ series for π/2, yields the 
convergent series: 

In (66) Bernoulli let the formulas derived by Bossut 3 for the sums of the finite sine and/or cosineseries n extend to the infinite. 
He assigned the value zero to the corresponding cos ∞x and sin ∞x and there by obtained the correct sums. 

In his later years Bernoulli contributed two additional papers (70, 71) to the theory of the infinite continued fractions. 

Rational mechanics. In order to appreciate Daniel Bernoulli’s contributions to mechanics, one must consider the state of this 
branch of science in the first half of the eighteenth century. Newton’s great work was already available but could be rendered 
fruit fulonly by means of Leibniz’ calculus. Collaterally there appeared Jakob Hermann’s Phoronomia(1716), a sort of 
textbook on the mechanics of solids and liquids that used only the formal geometrical method. Euler’sexcellent Mechanica 
(1736) dealt only with the mechanics of particles. The first theory on the movement of rigid bodies was published by Euler in 
1765. The fields of oscillations of rigid bodies and the mechanics of flexible and elastic bodies were new areas that Daniel 
Bernoulli and Euler dominated for many years. 

In his earliest publication in mechanics (9), Bernoulli attempted to prove the principle of the parallelogram of forces on the 
basis of certain case, assumed to be self-evident, by means of a series of purely logical extensions; this was in contrast with 



Newton and Varignon, who attempted to derive this principle from the composition of velocities and acelerations. Like all 
attempts at logical derivation Bernoulli’s was circular, and today the principle the parallelogram of forces is considered an 
axiom. This was one of the rate instances when Bernoulli discussed the basic principles of mechanics. General he took for 
granted the principles established by Newton; only in cosmology or astronomy (gravity)and magnetism was he unable to break 
away completely from a modified vortex theory of subtle matter propounded by Descartes and Huygens. The deductionof 
gravity from the rotation of the subtle matter can be found in (79) and (31, ch, 11) and the explanation of magnetism in (41). 

Treatise (13), inspired by Johann I Bernoulli’s reports, is a contribution to the theory of rotating bodies, which at that time, 
considering the state of the dynamics of rigid bodies, was no trivial subject. The starting point was the simple case of a system 
consisting of two rigidly connected bodies rotating around a fixed axis. By means of geometric-mechanical considerations 
based on Huygens, Bernoulli solved a number of pertinent problems. Let us mention here only a special case of König’s 
theorem (1751), derived by formal geometrical means. Written analytically, it states that 

where v1 and v2 represent velocities in a fixed system, V the velocity of the center of gravity, and v1’ and v2’ the velocities 
around the center of gravity. 

The determination of a movement imparted to a body by an eccentric thrust and the calculation of the center of instantaneous 
rotation were accomplished by Bernoulli in 1737 (27). At his invitation Euler took up the problem simultaneously, with similar 
results. In this problem, Bernoulli limited himself to the simplest case, that involving rigid, infinitely thin rods. The motion 
caused by an impact on elastic rods was dealt with only much later (61). 

The principle of areas and an extended version of the principle concerning the conservation of live force, both of which 
furnished integrals of Newton’s basic equations, were published by Bernoulli, probably with Euler’s assistance, in the Berlin 
Mémoires in 1745 and 1748 (40, 43). The principle of areas (40) was used and clearly formulated almost simultaneously by 
Bernoulli and Euler in their treatments of the problem involving the movement of a tube rotating around a fixed point and 
containing freely moving bodies. 

The principle of conservation of live force (43) was developed by Bernoulli not only—as had been done before him—for the 
movements within a field of uniform gravity or within a field of one or several fixed centers of force, but also for a system of 
mobile, mutually attracting mass points. For example, given three centers with the masses m1m2, m3, whose mutual distances 
change from initial a, b, c, to x, y, z, Bernoulli finds that if the gravity constant equals p2/µ: for the difference of live forces, 

Most probably this is the first time that the doublesum of mhmk/rhk appears. However, the force function for conservative 
systems was first discovered by Lagrange. 

Bernoulli also investigated problems of friction of solid bodies (36, 57.60). In his first such paper (36) he studied the 
movement of a uniformly heavy sphere rolling down an inclined plane and calculated the inclination at which the pure rotation 
changes into a motion composed of a rotatory and a sliding part. 

The main problem of (60) consists in determining the progressive and rotatory motion of a uniformly heavy rod pressing upon 
a rough surface while a force oblique to the axis of the rod acts upon the rod. 

A group of papers (14, 18, 21) dealing with the movement of solid bodies in a resisting medium is based on the presentation 
given by Newton in the Principia. The first two papers (14) deal with a rectilinear motion, the three subsequent ones (18, 21) 
with movement along a curve (pendulum swing). Here Bernoulli started with the usual premise that the resistance is largely 
proportional to the square of the velocity. At the same time he denied Newton’s affirmation of a partial linear relation between 
resistance and velocity, but considered as probable the assumption that part of the resistance, at least for viscous fluids, is 
proportional to time (i. e., independent of speed). The value of these five papers rest sprimarily on their consistent analytical 
presentation and on the treatment of certain special problems. 

Hydrodynamics.4 Traditionally, Bernoulli’s famerests on his, Hydrodynamica(31)—a term he himself introduced. The first 
attempt at solving the problem of out flow as presented in the Exercitationes mathematicae was conceived in accordance with 
the concepts of the time, and did little to advance them. Essentially it contained a controversy with Jacopo Riccati over 
Newton’s two different views on the force of a liquid issuing from an opening. But as early as 1727 Bernoulli succeeded in 
breaking through to an accurate calculation of the problem (12). Further progress was represented by the published 
experiments on the pressure exerted on the walls of a tube by a fluid flowing through it (19). In 1733 Bernoullileft behind in 
St. Petersburg a draft of the Hydrodynamica that agrees extensively in substance although not in form with the final version. 
Only the thirteenth chapter of the definitive work is missing (82). 

The treatise opens with an interesting history of hydraulics, followed by a brief presentation of hydrostatics. The following 
three chapters contain formulas for velocity, duration, and quantity of fluid flowing out of the opening of a container. The 
author treats both the case of a falling level of the residual fluid and that of a constant level in the reservoir, and takes into 
consideration the starting process (nonstationary flow)and radial contraction of the stream. Bernoulli based these deductions on 
the principle of the conservation of live force or, as he says, the quality of the descensus actualis (actual descent) and ascensus 
potentialis (potential ascent), whereby these physical magnitudes, which pertain to the center of gravity, are obtained from the 



former through division by the mass of water in the container. If weequate the changes in ascensus potentialis and descensus 
actualis resulting from the water outflow, we obtain, in the case of a dropping water level, a linear differential equation. The 
kinematic principle used was, the hypothesis of the parallel cross sections, which states that all particles of the liquid in a plan 
evertical to the flow have the same velocity, and that this velocity is inversely proportional to the cross section (principle of 
continuity). 

Chapter 7 deals with the oscillations of the water in a tube immersed in a water tank and considers mainly the energy loss. 
Many years later Borda resumed these investigations, but arrived at another formula for the loss. 

Chapter 9 contains a theory of machinery, lifting devices, pumps, and such, and their performance, as well as an extensive 
theory of the screw of Archimedes. A spiral pump related to the latter was discussed by Bernoulli much later (65). A theory of 
wind mill sails concludes the chapter. 

Chapter 10 is devoted to the properties and motions of “elastic fluids” (i.e., gases), and its main importance lies in its sketch of 
a “kinetic gas theory.” which enabled Bernoulli to explain the basic gas laws and to anticipate —in incomplete form—Van der 
Waals’equation of state, which was developed some hundred years later. Further on, Bernoulli examined the pressure 
conditions in the atmosphere, established a formula for relating pressure to altitude, provided a formula for the total refraction 
of light rays from various stellar heights, and was the first to derive a formula for the flow velocity of air streaming from a 
small opening. 

Chapter 12 contains the some what questionable derivation of a rather unusual form of the so-called Bernoulli equation for 
stationary currents. For the wall pressure p in a horizontal tube, connected to an infinitely wide container filled with water to 
the level a and having the cross section n and an outlet with the cross section I, he determined the expression p = [(n2 – 1)/n2]a. 
Since a/n2 ~ u2 represents the height from which a body must fall to obtain the velocity u at the point observed, that expression 
becomes the equation p + u2 = a = const. More generally, for a current in a tube of any shape and inclination, u2 must equal 
A/n2, A or a being the distances between water surface and discharge opening or anycross section n. We then obtain the 
equation p + A/n2 = a and— with A - z =a (z = distance between n and opening)—the term p + z + u2=A = const. for the 
stationary current. Because of the system of measures used by Bernoulli, the constant factors have values other than those 
customarily used. 

Chapter 13 is concerned with the calculation of the force of reaction of a laterally discharged fluid jet as well as with the 
determination of its pressure upon a facing plate. With the aid of the impulse theorem, Bernoulli proved that both pressures 
pare equal to the weight of the cylinder of water whose base equals the area n of the opening for the discharge and whose 
length is double the height a of the water. It is thus p =2 gan =nu2. In contrast, Johann I Bernoulli advocated throughout his life 
the erroneous assumption of a cylinder length equal to the height of the water. A complicated calculation of the pressure of a 
water jet on an inclined plate is contained in (26). Toward the end of chapter 13 Daniel Bernoulli discusses the question or 
whether the traditional propelling forces of sail and oar could be replaced by such a force of reaction. This principle was 
converted to practice only many years later. 

The weaknesses in the deduction of the so-called Bernoulli equation and Daniel’s incomplete concepts of internal pressure can 
only be mentioned here. In this respect, Johann Bernoulli’s Hydraulica represents a certain progress, which in turn inspired 
Euler in his work on hydrodynamics. 

Vibrating systems. From 1728, Bernoulli and Euler dominated the mechanics of flexible and elastic bodies, 5 in that year 
deriving the equilibrium curves for these bodies. In the first part of (15) Bernoulli determined the shape that a perfectly flexible 
thread assumes when acted upon by forces of which one component is vertical to the curve and the other is parallel to a given 
direction. Thus, in one stroke he derived the entire series of such curves as the velaria, lintearia, catenaria etc. 

More original was the determination of the curvature of a horizontal elastic band fixed at one end—aproblem simultaneously 
under taken by Euler. Bernoulli showed that the total moment of a uniform band around point s, by virtue of the weight P atits 
free end and of its own weight p acting on the center of gravity, relates to the curvature radius R by means of the equation 

where by the are length s and the abscissa x are to be taken starting from the free end, with m being the modulus of bending 
and I the length of the string. A case involving a variable density and anoptionally directed final load is quite possible. 

When he departed from St. Petersburg in 1733, Bernoulli left behind one of his finest works (23), ready for the printer. Here, 
for the first time, he defined the “simple modes” and the frequencies of oscillation of a system with more than one degree of 
freedom, the points of which pass their positions of equilibrium, at the same time. The inspiration for this work must have been 
the reports made by Johann I, toward the end of 1727, on treatment of a similar problem. In the first part of the treatise, Daniel 
Bernoulli discussedan arrangement consisting of a hanging rope loaded with several bodies, determined their amplitude rates 
and frequencies, and found that the number of simple oscillations equals the number of bodies (i.e., the degrees of freedom). 

For a uniform, free-hanging rope of length l he found the displacement, y, of the oscillations at distance x from the lower end 
by means of the equation 



where a has to be determined from the equation and Jo is the first appearance of Bessel’s function. It shows that α is the length 
of the simple pendulum of equal frequency. The above equation has an infinite number of real roots. Thus the rope can 
perform an infinite number of small oscillations with the frequencies . These theorems were demonstrated in (25) on the basis 
of a principle that is equivalent to that subsequently named after d’ Alembert. 

Immediately following Bernoulli’s departure from St. Petersburg, there began between him and Euler one of the most 
interesting scientific correspondences of that time. In its course, Bernoulli communicated much important information from 
which Euler, through his analytical gifts and tremendous capacity for work, was able to profit within a short time. 

The above results were corroborated by Bernoulli and Euler through additional examples. Thus Bernoulli, in extending paper 
(30), investigated small vibrations of a plate immersed in water (32)and those of a rod suspended from a flexible thread (34). 
Bothworks stress the difference between simple and composite vibrations. He investigated only the former, however, for 
composite vibrations ultimately change into the slower ones. 

The following two papers (37, 38), dating from 1741–1743, deal with the transversal vibrations of elastic strings, with (37) 
discussing the motion of a horizontal rod of length I, fastened at one end to avertical wall. In order to derive the vibration 
equation, whose form he had known since 1735 (35), Bernoulli used the relation between curvature and moment, as detailed in 
(15): m/R =M. The resulting differential equation is f4 d4y=y dx4, where y becomes the amplitude at distance x from the band 
end, and f4 = m4L/g, if L is the length of the simple pendulum isochronal with the band vibrations and g is the load per unit of 
length. Bernoulli used the solution y = y(x/f) through infinite series as well as in closed expression by means of exponential 
and trigonometric functions. The series of the roots l/f is an example of nonharmonic oscillations. In (38) Bernoulli discusses 
the differential equation in the Case of free ends. 

Treatise (45), on vibrating strings, represented a reaction to the publications of d’Alembert and Euler, who calculated the form 
of the vibrating string from the partial differential equation 

They thus moved the inference from the finite to the infinite up into the hypothesis, whereas Bernoulli always made this 
transition without thinking about it in the final, completed formula. 

His deliberations in (45) started from the assumption that the single vibrations of a string of length a were furnished by y = αn, 
sin nπx/a (n = any integral number). From this and from his previous deliberations he deduced that the most general motion 
could be represented by the super position of these single vibrations, i.e., by a series of the form 

This equation appears nowhere explicitly, but it can be derived from a combination of various passages of this work and is 
valid only with the assumption of an initial velocity equaling zero. 

In (46) Bernoulli determined the vibrations of a weightless cord loaded with n weights. He shows that in the case of n = 2, two 
simple vibrations, either commensurable or incommensurable, are possible, depending on the position and value of the two 
weights. 

Treatise (53) is a beautiful treatment of the oscillations inside organ pipes, using only elementary mathematics. It is assumed 
that the movement of the particles parallel to the axis, the, velocities, and the pressure are equal at all points of the same cross 
section and that the compression at the open end of the pipes equals zero. Among other things, this work contains the first 
theory of conical pipes and an arrangement consisting of two coaxial pipes of different cross sections as well as a series of new 
experiments. 

In paper (54), on the vibrations of strings of uneven thickness, Bernoulli inquires about cases where oscillations assume the 
form y = Aq sin p Sin vt, where p and q are functions of x only and v is a constant. Here, for the first time, are solutions for the 
inverse problem, the determination of vibration curves from the distribution of density. In (63) he treats a specialcase in which 
the string consists of two parts of different thickness and length. 

In treatise (67) Bernoulli compared the two possible oscillations of a body suspended from a flexible thread with the 
movement of a body bound with a rigid wire, and showed that one of the two oscillations of the first arrangement closely 
approximated the oscillation of the second arrangement. The method followed by Bernoulli is applicable only to infinitely 
small vibrations, and thus represents only a special case of the problem treated simultaneously by Eulerby means of the 
Newtonian fundamental equations of mechanics. 

In (68, 69) Bernoulli once more furnished a comprehensive presentation of his views on the superposition principle, which he 
clarified by means of the example of the frequently studied double pendulum. These last papers show that he had nothing new 
to add to the problem of vibrations. 

Probability and statistics. A number of valuable papers were published by Bernoulli on probability theory and on population 
statistics.6 True, his youthful work on faro within the framework of the Exercitationes mathematicae contributed hardly 
anything new, but it was evidence of his early interest in the work on the theory of probability done by his predecessors 
Montmort and De Moivre, which had been nourished by discussions with his cousin Nikolaus 1. The most important treatise, 



and undoubtedly the most, influential, was the De mensura sortis (22), conceived while he was in St. Petersburg, which 
contains an unusual evaluation of capital gains, and thus also contains the mathematical formulation of a new kind of value 
theory in political economy.7 

The basic idea is that the larger a person’s fortuneis, the smaller is the moral value of a given increment in that fortune. If we 
assume, with Bernoulli, the special case, that a small increase of assets dx implies a moral value, dy, that is directly 
proportionalto dx and inversely proportional to the fortune a—i.e., dy = b dx/a—then it follows that the moral value y of the 
gains x - a complies with the formula y =log x/a. 

If a person has the chances p1, p2, p3…, to make the gains g1, g2, g3…, where p1 + p2 +… = 1, which reflects one and only one 
gain, then the mean value of the moral values of the gains is equal to 

bp1 log a(a + g1) + bq2 log a(a + g2) +… –b log a 

and the moral expectation (hope) 

H = (a + g1)p1 (a + g2)p2… — a. 

If gains are very small in comparison with the assets, then the moral hope converts to the mathematical expectation H = p1g1 + 
p2g2 +…, There follow some applications of the preceding to risk insurance and a discussion of the Petersburg paradox. 

Only in 1760 did Bernoulli again treat a problem of this sort: medical statistics concerning the rate of mortality resulting from 
smallpox in the various age groups (51). If ξ is the number of Survivors and s the number of those who at age x have not yet 
had smallpox, there results—given certain conditions—adilferential equation containing three variables that defines the ratio 
s/ξ as a function of x. A table calculated on that basis contains the values of ξ s, ξ — s, and so on valid for the first twenty-four 
years: ξ was taken from Halley’s mortality table.8 In (52) Bernoulli ardently advocated inoculation as a means of prolonging 
the average lifetime by three years. 

In paper (55) Bernoulli treats, by means of urn models, problems of probability theory as applied to his treatise on population 
statistics (56). Their main purpose was to determine for every age the expected average duration of a marriage. Here and in his 
subsequent papers (58, 59) Bernoulli preferred to make use of infinitesimal calculus in probability theory by assuming 
continuously changing states. The problem treated in (58) is as follows: Given several urns, each of which contains n slips of 
the same color, but of a different color for each urn, one slip is taken from each urn and deposited in the next one, with the slip 
taken from the last urn deposited in the first. The question is, How many slips of each color do the various urns contain after a 
number r of such “permutations”? The problem treated in (59) belongs in the field of the theory of errors, and Concerns the 
determination of the probability with which (expressed in modern terms) a random variable subject to binomial distribution 
would assume values between two boundaries on either side of the mean value. 

In paper (72) Bernoulli seeks to deal with the theory of errors in observation as a branch of probability theory. He challenges 
the assumption of Simpson and Lagrange that all observations are of equal importance. Rather, he maintains that small errors 
are moreprobable than large ones. Thus Bernoulli approximates the modern concept, except that he selects the semicircle 
instead of Gauss’s probability curve. 

Treatise (73) deals with errors to be considered inpendulum clocks, which are calculated partially by means of the method 
presented in (59). 

Prizes of the Paris Academy. Bernoulli was highly esteemed for clarifying problems for a general public interested in the 
sciences. Of his essays entered in the competitions of the Paris Academy, ten were awarded prizes. Most of them concerned 
marine technology, navigation, and oceanology; but astronomy and magnetism were also represented. 

His prize-winning paper of 1725 (8) dealt with the most appropriate shape for and the installation of hourglasses filled with 
sand or water. The subject of the 1728 contest was the cause and nature of gravity, on which Bernoulli prepared a manuscript, 
but the prize went to the Cartesian G. B. Bilfinger (79). In his entry for the 1729 competition Bernoulli indicated several 
methods for determining the height of the pole, particularly at sea, when only one unknown star is visible, or when one or more 
known stars are visible. The essay did not win a prize (80), but the manuscript is extant. 

The prize of 1734 (24) was shared with his father, who begrudged Daniel his share of success. Here Daniel postulated an 
atmosphere resembling air and rotating around the solar axis, resulting in an increasing inclination of the planetary orbits 
toward the equator of the sun. 

Bernoulli shared the 1737 prize for the best form of an anchor with Poleni (28). The 1740 prize on the tides was shared with 
Euler and several others. This important paper (33) on the relationship, recognized by Newton, between the tides and solar and 
lunar attraction, respectively, is still of interest, inasmuch as it furnishes a complete equilibrium theory of these phenomena. 



The prize-winning papers of 1743 (39) and 1746 (41) deal with problems of magnetism. In the first paper Bernoulli considered 
all possibilities for reducing the sources of error in the inclination compass by improving construction. According to his 
instructions, the Basel mechanic Dietrich constructed such needles (49). The 1746 paper, written with his brother Johann II 
contains an attempt to establish a theory of magnetism. Both authors believed that there is a subtle matter which moves in the 
direction of the magnetic meridian and forms a vortex around the magnet. 

The next prize, for the best method of determining the time at sea with the horizon not visible, was offered in 1745 for the first 
time. It was offered for a second time in 1747, And Bernoulli won (42). Included in the wealth of information contained in this 
paper are the proposals for improving pendulum and spring clocks and the description of a mechanism for holding a rod 
equipped with diopter in a vertical position, even in a turbulent sea. A detailed account of the determination of the time, with 
the position of a given star known, concludes this paper (see 17). 

The 1748 prize, for the irregular movements of Saturn and Jupiter (81), went to Euler. Bernoulli’smanuscript has been 
preserved. The prize essay for 1749–1751 (44) discussed the question of the origin and nature of ocean currents, and added 
suggestions for measuring current velocities. 

The problem treated by the prize essay of 1753 (47), the effect on ships of forces supplementary to that of the wind (e.g., 
rudder forces) was, answered by Bernoulli, mainly by means of detailed data on the maximum work that could be performed 
by a man in a given unit of time. Among other things, he calculated the number of oars men required for attaining a given ship 
velocity. 

The subject of the prize essay for 1757 (48), proposals for reducing the roll and pitch of ships, gave Bernoulli the opportunity 
to air his views on the pertinent works of Bouguer and Euler, published several years earlier. Whereas Euler had limited 
himself to the free vibrations of a ship, Bernoulli extended his views to the behavior Of ships in turbulent seas, i.e., to forced 
vibrations. His findings prevailed for almost a century. 

Evaluation and Appreciation. In order to appreciate both Bernoulli’s importance in science, as indicated by the above 
summaries of his published works, and his private life, it is necessary to consider his extensive correspondence.9 This includes 
his exchange of letters with Christian Goldbach (1723–1730), Euler (1726–1767, especially (1734–1750), and his nephew 
Johann III (1763–1774). Also important are his contemporaries’ evaluations of Bernoulli and of his work. Unfortunately, his 
extremely popular lectures on experimental physics, in which he often introduced unproved hypotheses that have since been 
confirmed, apparently are not extant. Among them was his assertion of the validity of the relation later known as Coulomb’s 
law in electrostatics. All of these achievements brought Bernoulli considerable fame in intellectual circles during his lifetime. 
He was a member of the leading learned societies and Académies, including Bologna (1724), St. Petersburg (1730), Berlin 
(1747), Paris (1748), London (1750), Bern (1762), Turin (1764), Zurich (1764), and Mannheim (1767). 

We can now assert that Bernoulli was the first to link Newton’s ideas with Leibniz’ calculus, which he had learned from his 
father and his brother Nikolaus. He did not, however, attempt to solve the problems that confronted him by means of the 
fundamental Newtonian equations; rather, he preferred to use the first integrals of these equations, especially Leibniz’principle 
of the conservation of living force, which his father had emphasized. Like Newton, whose battles he fought on the Continent, 
Bernoulli was first and foremost a physicist, using mathematics primarily as a means of exploring reality as it was revealed 
through experimentation. Thus he was interested in physical apparatus as well as the practical application of the results of 
physics and other sciences. 

Bernoulli’s active and imaginative mind dealt with the most varied scientific areas. Such wide interests, however, often 
prevented him from carrying some of his projects to completion. It is especially unfortunate that he could not follow the rapid 
growth of mathematics that began with the introduction of partial differential equations into mathematical physics. 
Nevertheless, he assured himself a permanent place in the history of science through his work and discoveries in 
hydrodynamics, his anticipation of the kinetic theory of gases, a novel method for calculating the value of an increase in assets, 
and the demonstration that the most common movement of a string in a musical instrument is composed of the superposition of 
an infinite number of harmonic vibrations (proper oscillations). 

Otto Spiess instituted the publication of editions of the works and correspondence of the Bernoullis, a project that has 
continued since Spiess’s death. 

NOTES 
1.Johannis Bernmilli Hyderaulica nunc primum detecta ac demonstratedirect ex fundamentis pure mechanicis, in his 
Operaimnia, IV (Lausanne-Geneva, 1742), 387–488. 

2.Friedrich Huber, Daniel Bernoulli (1700–1782) als Physiologeund Statistiker, Basler Veröffentlichungen zur Geschichte 
derMedizin und der Biologie, fasc, 8 (Basel, 1958). 



3. Charles Bossut, “Maniéxe de sommer les suites…,” in Mémoriesde mathématiques et de physique de l’Académie royale 
dessciences, Paris, 1769 (1772), 453–466. 

4. For Daniel Bernoulli’s hydrodynamic studies see Clifford Truesdell, Rational Fluid Mechanics, intro, to Euler’s Opera 
Omnia, 2nd ser., XII, Xiii (Zurich, 1954–1955). 

5. Two excellent works are Clifford Truesdell. “The Rational Mechanics of Flexible or Elastic Bodies (1638–1788)“; hisIntro, 
to Euler’s Opera omina, 2nd ser., X, XI (Zurich, 1960);and H, Burkhardt, “Entwicklungen nach oscillierenden Functionenund 
Integration der Dfferentialglechungen der mathematichen Physik,” an Jahresberichi der Deutschen Mathmematiker-
Vereinigung, 10 , no. 2 (1908), 1–24. 

6. I. Todhunter, A History of the Mathematical Theory of Probability From the Time of the Pascal to That of Laplace 
(Cambridge-London, 1865; repr. New York 1949), pp. 213–238. 

7. An English trans, by Louise Sommer appeared in Econometrica, 22 (Jan. 1954). There is also a German trans, with 
extensive commentary by Alfred Opringsheim (Leipzig, 1896). 

8. Edmund Halley, “An Estimate of the Degrees of the Mortality of Mankind”,: in Philosophical Transactions of the Royal 
Society of London, no. 196 (1694), 596–610. 

9. Correspondence with Euler and Christian Goldbch—as far asavailable—appeared in Correspondence mathématique et 
physiquede quelques célébres géométres du XUVIIéme siécle, II (St. Petershurg, 1843). Letters exchanged by Bernoulli and his 
nephew Johann III have not yet been published. 
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