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(b. Richmond, Surrey, England 16 August 1821; d. Cambridge, England, 26 January 1895), 

mathematics, astronomy. 

Cayley was the second son of Henry Cayley, a merchant living in St. Petersburg, and Maria Antonia Doughty. He was born 
during a short visit by his parents to England, and most of his first eight year were spent in Russia. From a small private school 
in London he moved, at fourteen, to King’s College School there. At seventeen he entered Trinity College, Cambridge, as a 
pensioner, becoming a scholar in 1840. In 1842 Cayley graduated as senior wrangler and took the first Smith’s prize. In 
October 1842 he was elected a fellow of his college at the earliest age of any man of that century. He was tutor there for three 
years, spending most of his time in research. Rather than wait for his fellowship to expire (1852) unless he entered holy orders 
or took a vacant teaching post, he entered the law, studying at Lincoln’s Inn. He was called to the bar in 1849. 

During the fourteen years Cayley was at the bar he wrote something approaching 300 mathematical papers, incorporating some 
of his best and most original work. It was during this period that he first met the mathematician J. J. Sylvester, who from 1846 
read for the bar and, like Cayley, divided his time between law and mathematics. In 1852 Sylvester said of Cayley that he 
“habitually discourses pearls and rubies,” and after 1851 each often expressed gratitude to the other in print for a point made in 
conversation. That the two men profited greatly by their acquaintance is only too obvious when one considers the algebraic 
theory of invariants, of which they may not unreasonably be considered joint founders. They drifted apart professionally when 
Cayley left London to take up the Sadlerian professorship but drew together again when, in 1881–1882, Cayley accepted 
Sylvester’s invitation to lecture at Johns Hopkins University. 

In 1863 Cayley was elected to the new Sadlerian chair of pure mathematics at Cambridge, which he held until his death. In 
September 1863 he married Susan Moline, of Greenwich; he was survived by his wife, son, and daughter. During his life he 
was given an unusually large number of academic honors, including the Royal Medal (1859) and the Copley Medal (1881) of 
the Royal Society. As professor at Cambridge his legal knowledge and administrative ability were in great demand in such 
matters as the drafting of college and university statutes. 

For most of his life Cayley worked incessantly at mathematics, theoretical dynamics, and mathematical astronomy. He 
published only one full-length book, Treatise on Elliptic Functions (1876); but his output of papers and memoirs was 
prodigious, numbering nearly a thousand, the bulk of them since republished in thirteen large quarto volumes. His work was 
greatly appreciated from the time of its publication, and he did not have to wait for mathematical fame. Hermite compared him 
with Cauchy because of his immense capacity for work and the clarity and elegance of his analysis. Bertrand, Darboux, and 
Glaisher all compared him with Euler for his range, his analytical power, and the great extent of his writings. 

Cayley was the sort of courteous and unassuming person about whom few personal anecdotes are told; but he was not so 
narrow in outlook as his prolific mathematical output might suggest. He was a good linguist; was very widely read in the more 
romantic literature of his century; traveled extensively, especially on walking tours; mountaineered; painted in watercolors 
throughout his life; and took a great interest in architecture and architectural drawing. 

Characteristically, as explained in the bibliography of his writings, Cayley frequently gave abundant assistance to other authors 
(F. Galton, C. Taylor, R. G. Tait, G. Salmon, and others), even writing whole chapters for them—always without ostentation. 
Salmon, who corresponded with him for many years, gave Esse quam videri as Cayley’s motto. Although Cayley disagreed 
strongly with Tait over quaternions (see below), their relations were always amicable; and the sixth chapter of the third edition 
of Tait’s Quaternions was contributed by Cayley, much of it coming verbatim from letters to Tait. Cayley was above all a pure 
mathematician, taking little if any inspiration from the physical sciences when at his most original. “Whose soul too large for 
vulgar space, in n dimensions flourished,” wrote Clerk Maxwell of Cayley. So far as can be seen, this was a more astute 
characterization than that of Tait, by whom Cayley was seen in a more pragmatic light, “forging the weapons for future 
generations of physicists.” However true Tait’s remark, it was not an indication of Cayley’s attitude toward his own work. 

A photograph of Cayley is prefixed to the eleventh volume of the Collected Papers. A portrait by Lowes Dickenson (1874, 
Volume VI) and a bust by Henry Wiles (1888) are in the possession of Trinity College, Cambridge. A pencil sketch by Lowes 
Dickenson (1893) is to be found in Volume VII. 

Cayley’s mathematical style was terse and even severe, in contrast with that of most of his contemporaries. He was rarely 
obscure, and yet in the absence of peripheral explanation it is often impossible to deduce his original path of discovery. His 



habit was to write out his findings and publish without delay and consequently without the advantage of second thoughts or 
minor revision. There were very few occasions on which he had cause to regret his haste. (References below to the Collected 
Mathematical Papers, abbreviated C. M.P., contain the volume number, followed by the number of the paper, the year of 
original publication, and the page numbers of the reprint.) 

Cayley is remembered above all else for his contributions to invariant theory. Following Meyer (1890–1891), the theory may 
be taken to begin with a paper by Boole, published in 1841, hints of the central idea being found earlier in Lagrange’s 
investigation of binary quadratic forms (1773) and Gauss’s similar considerations of binary and ternary forms (1801). 
Lagrange and Gauss were aware of special cases in which a linear homogeneous transformation turned a (homogeneous) 
quadratic into a second quadratic whose discriminant is equal to that of the original quadratic multiplied by a factor which was 
a function only of the coefficients of the transformation. Cauchy, Jacobi, and Eisenstein all have a claim to be mentioned in a 
general history of the concept of invariance, but in none of their writings is the idea explicit. Boole, on the other hand, found 
that the property of invariance belonged to all discriminants, and he also provided rules for finding functions of “covariants” of 
both the coefficients and the variables with the property of invariance under linear transformation. 

In 1843 Cayley was moved by Boole’s paper to calculate the invariants of nth-order forms. Later he published a revised 
version of two papers he had written. The first, with the title “On the Theory of Linear Transformations” (C. M. P., I, no. 13 
[1845], 80–94), dealt only with invariants; the second, “On Linear Transformations” (C. M. P., I, no. 14 [1846], 95–112), 
introduced the idea of covariance. In this second paper Cayley set out “to find all the derivatives of any number of functions, 
which have the property of preserving their form unaltered after any linear transformations of the variables.” He added that by 
“derivative” he meant a function “deduced in any manner whatever from the given functions.” He also attempted to discover 
the relations between independent invariants—or “hyperdeterminants,” as he called them at first, looking upon algebraic 
invariance as a generalized form of the multiplication of determinants. When writing the notes to his Collected Papers, he 
remarked that what he had done in this paper was to be distinguished from Gordan’s “Ueherschiebung,” or derivational theory. 
Cayley may be regarded as the first mathematician to have stated the problem of algebraic invariance in general terms. 

Cayley’s work soon drew the attention of many mathematicians, particularly Boole, Salmon, and Sylvester in England and 
Aronhold, Clebsch, and, later, Gordan in Germany. (Jordan and Hermite followed in France; and Brioschi in Italy was to carry 
the new ideas into the realm of differential invariants, in the study of which his compatriots later excelled.) Salmon’s many 
excellent textbooks (in particular, see his Modem Higher Algebra, 1859, dedicated to Cayley and Sylvester), which were 
translated into several languages, diffused Cayley’s results, to which Cayley himself constantly added. Sylvester was, among 
other things, largely responsible for the theory’s luxuriant vocabulary; and in due course Aronhold related the theory to 
Hesse’s applications of determinants to analytical geometry. The vocabulary of the subject is today one of the greatest 
obstacles to a discussion of invariant theory, since following Gordan’s theorem of 1868 and Hilbert’s generalizations of it, the 
tendency has been away from developing techniques for generating and manipulating a multiplicity of special invariants, each 
with its own name. Notice, however, that Cayley’s “quantic” is synonymous with the “form” of later algebraists. As a typical 
source of terminological confusion we may take the contravariant (or the curve represented by the contravariant equation), 
called by Cayley the “Pippian” and known elsewhere (following Cremona) as the “Cayleyan.” 

Beginning with an introductory memoir in 1854, Cayley composed a series of ten “Memoirs on Quanties,” the last published in 
1878, which for mathematicians at large constituted a brilliant and influential account of the theory as he and others were 
developing it. The results Cayley was obtaining impressed mathematicians by their unexpectedness and elegance. To take three 
simple examples, he found that every invariant vanishes, for a binary p-ic which has a linear factor raised to the rth power, if 
2r > p; that a binary p-ic has a single or no p-ic covariant of the second degree in the coefficients according as p is or is not a 
multiple of 4; and that all the invariants of a binary p-ic are functions of the discriminant and p— 3 anharmonic ratios, each 
formed from three of the roots together with one of the remaining p—3 roots. A more renowned theorem concerned the 
number of linearly independent seminvariants (or invariants) of degree i and weight w of a binary p-ic. Cayley found an 
expression giving a number which he proved could not be less than that required; and for a long time he treated this as the 
required number although admitting his inability to prove as much Sylvester eventually gave the required proof. 

An irreducible invariant (covariant) is one that cannot be expressed rationally and integrally in terms of invariants (covariants 
and invariants) of degree lower in the coefficients than its own, all invariants belonging to the same quantic or quantics. At an 
early stage Cayley appreciated that there are many cases in which the number of irreducible invariants and covariants is 
limited. Thus in his “Second Memoir on Quantics” (C. M. P., II, no. 141 [1856], 250–275) he determined the number (with 
their degrees) of “asyzygetic” invariants for binary forms of orders 2 to 6, and he gave similar results for asyzygclic systems of 
irreducible covariants. Cayley made the mistake, however, of thinking that with invariants of forms of order higher than 4, the 
fundamental system is infinite. The error (which arose from his wrongly taking certain syzygies to be independent, thus 
increasing the number of invariants and covariants allowed for) stood for thirteen years, until Gordan (Crelle’s Journal, 69 
[1869], 323–354) proved that the complete system for a binary quantic of any order has a finite number of members. Hilbert, in 
1888 and later, simplified and greatly generalized Gordan’s findings. 

Perhaps the best known of Cayley’s “Memoirs on Quantics” was the sixth (C. M. P., II, no. 158 [1859], 561–592; see also the 
note on 604–606, where he compares his work with that of Klein, which followed), in which Cayley gave a new meaning to 
the metrical properties of figures. Hitherto, affine and projective geometry had been regarded as special cases of metric 
geometry. Cayley showed how it was possible to interpret all as special cases of projective geometry. We recall some of the 
more important results of earlier geometrical studies. Poncelet (ca. 1822) had evolved the idea of the absolute involution 



determined by the orthogonal lines of a pencil on the line at infinity and having the “circular points” (so called because they 
are common to all circles in the plane) as double points. Beginning with the idea that perpendicularity could be expressed in 
terms of the formation of a harmonic range with the circular points, Laguerre (ca. 1853) showed that the numerical value of the 
angle of two lines of the Euclidean plane expressed in radian measure is 1/2i times the natural logarithm of the cross ratio 
which they form with the lines of their pencil through the circular points. Cayley now found that if P and Q are two points, and 
A and B are two further points in which the line PQ cuts a conic, then (if A and B are a real point pair; otherwise, where they 
are conjugate imaginaries we multiply by i) their separation could be expressed as a rather involved arc cosine function 
involving the coordinates, which space does not permit to be detailed here (see C. M. P. 11, no. 158 [1859], 589). A clear idea 
of the importance of his paper is obtained if we consider Klein’s substitution of a logarithmic function for the arc cosine 
(which Cayley later admitted to be preferable), in which case 

where c is a constant for all lines, may be taken as the generalized distance (which we may here call δ[P,Q]) between P and Q, 
in the sense that the following fundamental requirements are met by the function: δ(P,Q) = 0 if and only if P and Q are 
identical; δ(P.Q) = δ(Q,P); δ(p,Q) + δ(Q,R) ≥ δ(P,R), the equality holding when p,Q, and R are collinear. Cayley referred to 
the arbitrarily assumed conic as the “Absolute.” 

In his definition of distance Cayley has frequently been accused of circularity (recently, for example, by Max Jammer, in 
Concepts of Space [Cambridge, Mass., 1954], p. 156) Cayley anticipated such criticism, however, explaining in his note to the 
Collected Papers that he looked upon the coordinates of points as quantities defining only the ordering of points, without 
regard to distance. (This note shows that Klein drew his attention to Staudt’s work in the same vein, of which he was ignorant 
when writing the sixth memoir.) Thus if xa and xb are coordinates belonging respectively to the points A and B, the 
corresponding coordinate of P may be written λ1xa+λ2xb, and similarly for the remaining points and coordinates. The function 
δ(P, Q) then reduces to one in which no trace of the ordinary (Euclidean) metric distance remains. 

The full significance of Cayley’s ideas was not appreciated until 1871, when Klein (Mathematische Annalen, 4 [1871], 573–
625) showed how it was possible to identify Cayley’s generalized theory of metrical geometry with the non-Euclidean 
geometries of Lobachevski, Bolyai, and Riemann. When Cayley’s Absolute is real, his distance function is that of the 
“hyperbolic” geometry; when imaginary, the formulas reduce to those of Riemann’s “elliptic” geometry. (The designations 
“hyperbolic” and “elliptic” are Klein’s.) A degenerate conic gives rise to the familiar Euclidean geometry. Whereas during the 
first half of the century geometry had seemed to be becoming increasingly fragmented, Cayley and Klein, through the medium 
of these ideas, apparently succeeded for a lime in providing geometers with a unified view of their subject. Thus, although the 
so-called Cayley-Klein metric is now seldom taught, to their contemporaries it was of great importance. 

Cayley is responsible for another branch of algebra over and above invariant theory, the algebra of matrices. The use of 
determinants in the theory of equations had by his time become a part of established practice, although the familiar square 
notation was Cayley’s (C. M. P. I, no. 1 [1841], 1–4) and although their use in geometry, such as was provided by Cayley from 
the first, was then uncommon. (They later suggested to him the analytical geometry of n dimensions.) Determinants suggested 
the matrix notation; and yet to those concerned with the history of the “theory of multiple quantity” this notational innovation, 
even with its derived rules, takes second place to the algebra of rotations and extensions in space (such as was initiated by 
Gauss, Hamilton, and Grassmann), for which determinant theory provided no more than a convenient language. 

Cayley’s originality consisted in his creation of a theory of matrices that did not require repeated reference to the equations 
from which their elements were taken. In his first systematic memoir on the subject (C. M. P., II, no. 152 [1858], 475–496), he 
established the associative and distributive laws, the special conditions under which a commutative law holds, and the 
principles for forming general algebraic functions of matrices. He later derived many important theorems of matrix theory. 
Thus, for example, he derived many theorems of varying generality in the theory of those linear transformations that leave 
invariant a quadratic or bilinear form. Notice that since it may be proved that there are n(n + 1)/2 relations between them, 
Cayley expressed the n2 coefficients of the nary orthogonal transformation in terms of n(n - 1)/2 parameters. His formulas, 
however, do not include all orthogonal transformations except as limiting cases (see E. Pascal’s Die Determinanten [1919], 
paras, 47 ff.). 

The theory of matrices was developed in two quite different ways: the one of abstract algebraic structure, favored by Cayley 
and Sylvester; the other, in the geometrical tradition of Hamilton and Grassmann. Benjamin Peirce (whose study of linear 
associative algebras, published in 1881 but evolved by him much earlier, was a strong influence on Cayley) and Cayley 
himself were notable for their ability to produce original work in both traditions. (It is on the strength of his work on linear 
associative algebras that Peirce is often regarded as cofounder of the theory of matrices.) In his many informal comments on 
the relation between matrices and quaternions (see, for example, his long report to the British Association, reprinted in C. M. 
P., IV, no. 298 [1862], 513–593; and excerpts from his controversial correspondence with his friend P. G. Tail, printed in C. G. 
Knott’s Life and Scientific Work of P. G. Tait [Cambridge, 1911], pp. 149–166) Cayley showed a clearer grasp of their 
respective merits than most of his contemporaries, but like most of them he found it necessary to favor one side rather than the 
other (coordinates rather than quaternions in his case) in a heated controversy in which practical expediency was the only 
generally accepted criterion. He had no significant part in the controversy between Tait and J. W. Gibbs, author of the much 
simpler vector analysis. In passing, we notice Cayley’s statement of the origins of his matrices (Knott, op. cit., p. 164, written 
1894): “I certainly did not get the notion of a matrix in any way through quaternions: it was either directly from that of a 
determinant; or as a convenient mode of expression of the equations [of linear transformation)….” 



That Cayley found geometrical analogy of great assistance in his algebraic and analytical work—and conversely—is evident 
throughout his writings; and this, together with his studied avoidance of the highly physical interpretation of geometry more 
typical of his day, resulted in his developing the idea of a geometry of n dimensions. It is not difficult to find instances of the 
suggested addition of a fourth dimension to the usual trio of spatial dimensions in the work of earlier writers—Lagrange, 
d’Alembert, and Moebius are perhaps best known. (But only Moebius made his fourth dimension spatial, as opposed to 
temporal.) Grassmann’s theory of extended magnitude, as explained in Ausdehnungslehre (1844), may be interpreted in terms 
of n-dimensional geometry; and yet by 1843 Cayley had considered the properties of determinants formed around coordinates 
in n-space. His “Chapter in the Analytical Geometry of (n) Dimensions” (C. M. P., I, no. II [1843], 55– 62) might have been 
considered at the time to have a misleading title, for it contained little that would then have been construed as geometry. It 
concerns the nonzero solutions of homogeneous linear equations in any number of variables. 

By 1846 Cayley had made use of four dimensions in the enunciation of specifically synthetic geometrical theorems, suggesting 
methods later developed by Veronese (C. M. P., I, no. 50 [1846], 317–328). Long afterward Cayley laid down in general 
terms, without symbolism, the elements of the subject of “hyperspace” (cf his use of the terms “hyperelliptic theta functions,” 
“hyperdetermtnant,” and so on) in his “Memoir on Abstract Geometry” (C. M. P., VI, no. 413 [1870], 456–469), showing that 
he was conscious of the metaphysical issues raised by his ideas in the minds of his followers but that as a mathematician he 
was no more their slave then than when remarking in his paper of 1846 (published in French): “We may in effect argue as 
follows, without having recourse to any metaphysical idea as to the possibility of space of four dimensions (all this may be 
translated into purely analytic language)….” 

As an example of Cayley’s hypergeomelry, we might take the result that a point of (m – n)-space given by a set of linear 
equations is conjugate, with respect to a hyperquadric, to every point whose coordinates satisfy the equations formed by 
equating to zero a certain simple set of determinants (involving the partial differential coefficients of the hyperquadric 
function). Cayley and Sylvester subsequently developed these ideas. 

In 1860 Cayley devised the system of six homogeneous coordinates of a line, now usually known as Plücker’s line coordinates. 
Plücker, who published his ideas in 1865 (Philosophical Transactions of the Royal Society, 155 [1865], 725–791), was 
working quite independently of Cayley (C. M. P., IV, no. 284 [1860], 446–455, and no. 294 [1862], 490–494), who neglected 
to elaborate upon his own work. Influenced not by Cayley but by Plücker, Klein (Plücker’s assistant at the time of the latter’s 
death in 1868) exploited the subject most fully. 

Cayley wrote copiously on analytical geometry, touching on almost every topic then under discussion. Although, as explained 
elsewhere, he never wrote a textbook on the subject, substantial parts of Salmon’s Higher Plane Curves are due to him; and 
without his work many texts of the period, such as those by Clebsch and Frost, would have been considerably reduced in size. 
One of Cayley’s earliest papers contains evidence of his great talent for the analytical geometry of curves and surfaces, in the 
form of what was often known as Cayley’s intersection theorem (C. M. P., I, no. 5 [1843], 25–27). There Cayley gave an 
almost complete proof (to be supplemented by Bacharach, in Mathematische Annalen, 26 [1886], 275–299) that when a plane 
curve of degree r is drawn through the mn points common to two curves of degrees m and n (both less than r), these do not 
count for mn conditions in the determination of the curve but for mn reduced by 

(m + n − r − 1) (m + n − r − 2). 

(The Cayley-Bacharach theorem was subsequently generalized by Noether. See Severi and Löffler, Vorlesungen über 
algehraische Geometric, ch. 5.) He found a number of important theorems “on the higher singularities of a plane curve” (the 
title of an influential memoir; C. M. P., V, no. 374 [1866], 520–528), in which they were analyzed in terms of simple 
singularities (node, cusp, double tangent, inflectional tangent); yet the methods used here did not find permanent favor with 
mathematicians. A chapter of geometry which he closed, rather than opened, concerns the two classifications of cubic curves: 
that due to Newton, Stirling, and Cramer and that due to Plücker. Cayley systematically showed the relations between the two 
schemes (C. M. P., V, no. 350 [1866], 354–400). 

It is possible only to hint at that set of interrelated theorems in algebraic geometry which Cayley did so much to clarify, 
including those on the twenty-eight bitangents of a nonsingular quartic plane curve and the theorem (first announced in 1849) 
on the twenty-seven lines that He on a cubic surface in three dimensions (C. M. P., I, no. 76 [1849], 445–456). (Strictly 
speaking, Cayley established the existence of the lines and Salmon, in a correspondence prior to the paper, established their 
number. See the last page of the memoir and G. Salmon, The Geometry of Three Dimensions, 2nd ed. [Dublin, 1865], p. 422.) 
Although no longer in vogue this branch of geometry, in association with Galois theory, invariant algebra, group theory, and 
hyperelliptic functions, reached a degree of intrinsic difficulty and beauty rarely equaled in the history of mathematics. The 
Cayley-Salmon theorem is reminiscent of Pascal’s mystic hexagram, and indeed Cremona subsequently found a relation 
between the two (see B. Segre, The Nonsingular Cubic Surface [Oxford, 1942] for a survey of the whole subject). Cayley’s 
twenty-seven lines were the basis of Schläfli’s division of cubic surfaces into species; and in his lengthy “Memoir on Cubic 
Surfaces” Cayley discussed the complete classification with masterly clarity, adding further investigations of his own (C. M. 
P., VI, no. 412 [1869], 359–455). 

As might have been expected from his contributions to the theory of invariants, Cayley made an important contribution to the 
theory of rational transformation and general rational correspondence. The fundamental theorem of the theory of 
correspondence is difficult to assign to a particular author, for it was used in special cases by several writers; but Chasles 



(Comptes rendus, 58 [1864], 175) presented the theorem that a rational correspondence F(x,y) = 0 of degree m in x and n in y 
(x and y being, if necessary, parameters of the coordinates of two points) between spaces or loci in spaces gives in the general 
case m + n correspondences. (For a history of the subject see C. Segre, “Intorno alia storia del principio di corrispondenza,” in 
Bibliotheca mathematica, 2nd ser., 6 [1892], 33–47; Brill and Noether, “Bericht über die Entwicklung der Theorie der 
algebraischen Funktionen in älterer and neuerer Zeit,” in Jahresbericht der Deutschen Mathematiker-Vereinigung, 3 [1894], 
sees. 6, 10.) Soon after this, Cayley generalized Chasles’s theorem to curves of any genus (C. M. P., V, no. 377 [1866], 542–
545), but his proof was not rigorous and was subsequently amended by A. Brill. The Chasles-Cayley-Brill theorem states that 
an (m,n) correspondence on a curve of genus p will have m + n + 2pγ coincidences, where γ is known as the “value of the 
correspondence.” (The points corresponding to a point P, together with P taken γ times, is to De a group or a so-cauea linear 
point system.) 

Cayley’s many additions to the subject of rational correspondences have for the most part passed into anonymity, although the 
name “Cayley-Plücker equations” is a reminder to geometers of how early appreciated were the connections between the order, 
the rank, the number of chords through an arbitrary point, the number of points in a plane through which two tangents pass, 
and the number of cusps of a curve in space and corresponding quantities (class, rank, and so on) of its osculating developable. 
These equations are all due to Cayley but were deduced from Plücker’s equations connecting the ordinary singularities of plane 
curves. 

Cayley devoted a great deal of his time to the projective characteristics of curves and surfaces. Apart from his intricate 
treatment of the theory of scrolls (where many of his methods and his vocabulary still survive), the Cayley-Zeuthen equations 
are still a conspicuous reminder of the permanent value of his work. Given an irreducible surface in three-dimensional space, 
with normal singularities and known elementary projective characters, many other important characteristics may be deduced 
from these equations, which were first found empirically by Salmonan and later proved by Cayley and Zeuthen. For further 
details of Cayley’s very extensive work in algebraic geometry, an ordered if unintentional history of his thought is to be found 
almost as a supporting framework for Salmon’s Treatise on the Analytic Geometry of Three Dimensions (of the several 
editions the third, of 1882, with its preface, is historically the most illuminating). (For a more general history of algebraic 
geometry see “Selected Topics in Algebraic Geometry,” which constitutes Bulletin of the National Research Council 
[Washington, D.C.], 63 [1929] and supp. 96 (1934), written by committees of six and three, respectively.) 

Cayley’s wide mathematical range made it almost inevitable that he should write on the theory of groups. Galois’s use of 
substitution groups to decide the algebraic solvability of equations, and the continuation of his work by Abel and Cauchy, had 
provided a strong incentive to many other mathematicians to develop group theory further. (Thus Cayley wrote “Note on the 
Theory of Permutations,” CM.P., I, no. 72 [1849], 423–424.) Cayley’s second paper on the theory (1854), in which he applied 
it to quaternions, contained a number of invaluable insights and provided mathematicians with what is now the accepted 
procedure for defining a group. In the abstract theory of groups, where nothing is said of the nature of the elements, the group 
is completely specified if all possible products are known or determinable. In Cayley’s words: “A set ol symbols, 1, α, β,… all 
of them different, and such that the product of any two of them (no matter in what order), or the product of any one of them 
into itself, belongs to the set, is said to be a group.” From the first Cayley suggested listing the elements in the form of a 
multiplication table (“On the Theory of Groups, as Depending on the Symbolic Equation θn = 1.” CMP., II, no. 125 [1854], 
123–130; second and third parts followed, for which see CM.P., II, no. 126 [1854], 131–132, and IV, no. 243 [1859], 88–91). 
This formulation differed from those of earlier writers to the extent that he spoke only of symbols and multiplication without 
further defining either. He is sometimes said to have failed to appreciate the step he had taken, but this seems unlikely when 
we consider his footnote to the effect that “The idea of a group as applied to permutations or substitutions is due to Galois…” 
(italics added). He went on to give what has since been taken as the first set of axioms for a group, somewhat tacitly 
postulating associativity, a unit element, and closure with respect to multiplication. The axioms are sufficient for finite, but not 
infinite, groups. 

There is some doubt as to whether Cayley ever intended his statements in the 1854 paper to constitute a definition, for he not 
only failed to use them subsequently as axioms but later used a different and unsatisfactory definition. (See, for instance, an 
article for the English Cyclopaedia, in C. M. P., IV, no. 299 [1860], 594–608: cf. the first two of a series of four papers in 
CMP., X, no. 694 [1878], 401–403.) In a number of historical articles G. A. Miller (see volume I of his Collected Works 
[Urbana, III., 1935]) has drawn attention to the unsatisfactory form of a later definition and indeed has criticized other 
mathematicians for accepting it: but there are few signs that mathematicians were prepared for the postulational definition until 
well into the present century. In 1870 Kronecker explicitly gave sets of postulates applied to an abstract finite Abelian group; 
but even Lie and Klein did most of their work oblivious to the desirability of such sets of axioms, as a result occasionally using 
the term “group” in what would now be reckoned inadmissible cases. 

In addition to his part in founding the theory of abstract groups, Cayley has a number of important theorems to his credit: 
perhaps the best known is that every finite group whatsoever is isomorphic with a suitable group of permutations (see the first 
paper of 1854). This is often reckoned to be one of the three most important theorems of the subject, the others being the 
theorems of Lagrange and Sylow. But perhaps still more significant was his early appreciation of the way in which the theory 
of groups was capable of drawing together many different domains of mathematics: his own illustrations, for instance, were 
drawn from the theories of elliptic functions, matrices, quantics, quaternions, homographic transformations, and the theory of 
equations. If Cayley failed to pursue his abstract approach, this fact is perhaps best explained in terms of the enormous 
progress he was making in these subjects taken individually. 



In 1845 Cayley published his “Mémoire sur les fonctions doublement périodiques,” treating Abel’s doubly infinite products 
(C. M. P., I, no. 25 [1845], 156–182; see his note on p. 586 of the same volume). Weierstrass subsequently (1876, 1886) 
simplified the initial form and in doing so made much of Cayley’s work unnecessary (see Cayley’s later note, loc. Cit.). His 
work on elliptic functions, pursued at length and recurred to at intervals throughout his life, nevertheless contains ample 
evidence of Cayley’s ability to simplify the work of others, an early instance being his establishment of some results 
concerning theta functions obtained by Jacobi in his Fundamenta nova theoriae functionum ellipticarum of 1829 (C. M. P., I, 
no. 45 [1847], 290–300). Cayley’s only full-length book was on elliptic functions, and he made a notable application of the 
subject to geometry when he investigated analytically the property of two conics such that polygons may be inscribed by one 
and circumscribed about the other. The property was appreciated by Poncelet and was discussed analytically by Jacobi (using 
elliptic functions) when the conics were circles. Using his first paper of 1853 and gradually generalizing his own findings, by 
1871 Cayley was discussing the problem of the number of polygons which are such that their vertices lie on a given curve or 
curves of any order and that their sides touch another given curve or curves of any class. That he was able to give a complete 
solution even where the polygons were only triangles is an indication of his great analytical skill. 

Cayley wrote little on topology, although he wrote on the combinatorial aspect, renewed the discussion of the four-color-map 
problem, and corresponded with Tait on the topological problems associated with knots. He wrote briefly on a number of 
topics for which alone a lesser mathematician might have been remembered. He has to his credit an extremely useful system of 
coordinates in plane geometry which he labeled “circular coordinates” (C. M. P., VI, no. 414 [1868], 498) and which later 
writers refer to as “minimal coordinates.” There is also his generalization of Euler’s theorem relating to the numbers of faces, 
vertices, and edges of the non-Platonic solids. He wrote to great effect on the theory of the numbers of partitions, originated by 
Euler. (His interest in this arose from his need to apply it to invariant theory and is first evident in his second memoir on 
quantics, C. M. P., II, no. 141 [1856], 250–281.) His short paper “On the Theory of the Singular Solutions of Differential 
Equations of the First Order” (C. M. P., VIII, no. 545 [1873], 529–534) advanced the subject considerably and was part of the 
foundation on which G. Chrystal’s first satisfactory treatment of the p -discriminant was based (Transactions of the Royal 
Society of Edinburgh, 138 [1896], 803 ff.). 

Cayley long exploited the theory of linear differential operators (previously used by Boole to generate invariants and 
covariants), as when he factored the differential equation (D2+pD D+q) y= 0 as (D+ α[x])(D+β[x])y′= 0, with α + β = p and αβ 
+ β1= q both being theoretically soluble (C. M. P., XII, no. 851 [1886], 403). This technique is linked to that of characterizing 
invariants and covariants of binary quantics as the polynomial solutions of linear partial differential equations. (The differential 
operators were in this context known as annihilators, following Sylvester.) He wrote occasionally on dynamics, but his 
writings suggest that he looked upon it as a source of problems in pure mathematics rather than as a practical subject. Thus in 
five articles he considered that favorite problem of the time, the attraction of ellipsoids; and in a paper of 1875 he extended a 
certain problem in potential theory to hyperspace (C. M. P., IX, no. 607 [1875], 318–423). That he kept himself informed of 
the work of others in dynamics is evident from two long reports on recent progress in the subject which he wrote for the British 
Association (C. M. P, III, no. 195 [1857], 156–204; IV, no. 298 [1862], 513–593). 

Cayley wrote extensively on physical astronomy, especially on the disturbing function in lunar and planetary theory; but the 
impact of what he wrote on the subject was not great, and Simon Newcomb, who spoke of Cayley’s mathematical talents with 
extraordinary deference, did not allude to them in his Reminiscences of an Astronomer (London-New York, 1903, p. 280). (It 
is interesting to note that when he met Cayley at an Astronomical Society Club dinner, Newcomb mistook Cayley’s garb for 
that of an attendant.) Cayley nevertheless performed a great service to his countryman John Couch Adams, who in 1853, 
taking into account the varying eccentricity of the earth’s orbit, had obtained a new value for the secular acceleration of the 
moon’s mean motion. Adams’ figure, differing from Laplace’s, was contested by several French astronomers, including Ponté 
-coulant. Cayley looked into the matter independently, found a new and simpler method for introducing the variation of the 
eccentricity, and confirmed the value Adams had previously found (C. M. P., III, no. 221 [1862], 522–561). Here was yet 
another instance of the truth of the remark made about Cayley by Sylvester: “… whether the matter he takes in hand be great 
or small, ‘nihil tetigit quod non ornavit’” (Philosophical Transactions, 17 [1864], 605), And yet Cayley deserves to be 
remembered above all not for those parts of mathematics which he embellished, but for those which he created. 
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