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(b. Beaumont-de-Lomagne, France, 20 August 1601; d. Castres, France, 12 January 1665) 

mathematics. 

Factual details concerning Fermat’s private life are quite sparse.1 He apparently spent his childhood and early school years in 
his birthplace, where his father, Dominique Fermat, had a prosperous leather business and served as second consul of the town. 
His uncle and godfather, Pierre Fermat, was also a merchant. To the family’s firm financial position Fermat’s mother, Claire 
de Long, brought the social status of the parliamentary noblesse de robe. Hence, his choice of law as his profession followed 
naturally from the social milieu into which he was born. Having received a solid classical secondary education locally, Fermat 
may have attended the University of Toulouse, although one can say with certainty only that he spent some time in Bordeaux 
toward the end of the 1620’s before finally receiving the degree of Bachelor of Civil Laws from the University of Orleans on 1 
May 1631. 

Returning to Toulouse, where some months earlier he had purchased the offices of conseiller and commissaire aux reqêites in 
the local parlement, Fermat married his mother’s cousin, Louise de Long, on 1 June 1631. Like his in-laws, Fermat enjoyed as 
parlementaire the rank and privileges of the noblesse de robe; in particular he was entitled to add the “de” to his name, which 
he occasionally did. Fermat’s marriage contract, the price he paid for his offices, and several other documents attest to the 
financial security he enjoyed throughout his life. 

Five children issued from Fermat’s marriage. The oldest, Clément-Samuel, apparently was closest to his father. As a lawyer he 
inherited his father’s offices in 1665 and later undertook the publication of his father’s mathematical papers.2 Fermat’s other 
son, Jean, served as archdeacon of Fimarens. The oldest daughter, Claire, married; her two younger sisters, Catherine and 
Louise, took holy orders. These outward details of Fermat’s family life suggest that it followed the standard pattern for men of 
his social status. The direct male line ended with the death of Clément-Samuel’s son, Jean-François, from whom Claire’s 
grandson inherited the offices originally bought by Fermat. 

As a lawyer and parlementaire in Toulouse, Fermat seems to have benefited more from the high rate of mortality among his 
colleagues than from any outstanding talents of his own. On 16 January 1638 he rose to the position of conseiller aux enquêtes 
and in 1642 entered the highest councils of the parlement: the criminal court and then the Grand Chamber. In 1648 he acted as 
chief spokesman for the parlement in negotiations with the chancellor of France, Pierre Séguier. However, Fermat’s letters to 
Séguier and to his physician and confidant, Marin Cureau de La Chambre,3 suggest that Fermat’s performance in office was 
often less than satisfactory; and a confidential report by the intendant of Languedoc to Colbert in 1664 refers to Fermat in quite 
deprecatory terms. A staunch Catholic, Fermat served also—again probably by reason of seniority—as member and then 
president of the Chambre de l’Édit, which had jurisdiction over suits between Huguenots and Catholics and which convened in 
the Huguenot stronghold of Castres. 

In addition to his fame as a mathematician, Fermat enjoyed a modest reputation as a classical scholar. Apparently equally 
fluent in French, Italian, Spanish, Latin, and Greek, he dabbled in philological problems and the composition of Latin poetry 
(see appendixes to his Oeuvres, I). 

Except for an almost fatal attack of the plague in 1652, Fermat seems to have enjoyed good health until the years immediately 
preceding his death. He died in Castres, two days after having signed his last arrêt for the Chambre de l’Édit there. At first 
buried in Castres, his remains were brought back to the family vault in the Church of the Augustines in Toulouse in 1675. 

The Development of Fermat’s Mathematics . Fermat’s letters and papers, most of them written after 1636 for friends in 
Paris, provide the few available hints regarding his development as a mathematician. From them one can infer that his stay in 
Bordeaux in the late 1620’s most decisively shaped his approach to mathematics; almost all of his later achievements derived 
from research begun there. It was apparently in Bordeaux that Fermat studied in depth the works of François Viète. From Viète 
he took the new symbolic algebra and theory of equations that served as his basic research tools. More important, however, 
Viète’s concept of algebra as the “analytic art” and the program of research implicit in that concept largely guided Fermat’s 
choice of problems and the manner in which he treated them. Fermat himself viewed his work as a continuation of the Viètan 
tradition. 

From Viète, Fermat inherited the idea of symbolic algebra as a formal language or tool uniting the realms of geometry and 
arithmetic (number theory). An algebraic equation had meaning in both realms, depending only on whether the unknowns 



denoted line segments or numbers. Moreover, Viète’s theory of equations had shifted attention away from solutions of specific 
equations to questions of the relationships between solutions and the structures of their parent equations or between the 
solutions of one equation and those of another. In his own study of the application of determinate equations to geometric 
constructions, Viète laid the groundwork for the algebraic study of solvability and constructibility. Fermat sought to build 
further on this foundation. An overall characteristic of his mathematics is the use of algebraic analysis to explore the 
relationships between problems and their solutions. Most of Fermat’s research strove toward a “reduction analysis” by which a 
given problem could be reduced to another or identified with a class of problems for which the general solution was known. 
This “reduction analysis,” constituted from the theory of equations, could be reversed in most cases to operate as a generator of 
families of solutions to problems. 

At first Fermat, like Viète, looked to the Greek mathematicians for hints concerning the nature of mathematical analysis. 
Believing that the so-called “analytical” works cited by Pappus in book VII of the Mathematical Collection, most of which 
were no longer extant,4 contained the desired clues, Fermat followed Viète and others in seeking to restore those lost texts, 
such as Apollonius’ Plane Loci (Oeures, I, 3–51) and Euclid’s Porisms (Oeuvres, I, 76–84). Another supposed source of 
insight was Diophantus’ Arithmetica, to which Fermat devoted a lifetime of study. These ancient sources, together with the 
works of Archimedes, formed the initial elements in a clear pattern of development that Fermat’s research followed. Taking his 
original problem from the classical sources, Fermat attacked it with the new algebraic techniques at his disposal. His solution, 
however, usually proved more general than the problem that had inspired it. By skillful application of the theory of equations 
in the form of a “reduction analysis,” Fermat would reformulate the problem in its most general terms, often defining thereby a 
class of problems; in many cases the new problem structure lost all contact with its Greek forebear. 

In Fermat’s papers algebra as the “analytic art” achieved equal status with the traditional geometrical mode of ancient 
mathematics. With few exceptions he presented only the algebraic derivation of his results, dispensing with their classical 
synthetic proofs. Convinced that the latter could always be provided, Fermat seldom attempted to carry them out, with the 
result in several cases that he failed to see how the use of algebra had led to the introduction of concepts quite foreign to the 
classical tradition. 

In large part Fermat’s style of exposition characterized the unfinished nature of his papers, most of them brief essays or letters 
to friends. He never wrote for publication. Indeed, adamantly refusing to edit his work or to publish it under his own name, 
Fermat thwarted several efforts by others to make his results available in print. Showing little interest in completed work, he 
freely sent papers to friends without keeping copies for himself. Many results he merely entered in the margins of his books; 
e.g., his “Observations on Diophantus,” a major part of his work on number theory, was published by his son on the basis of 
the marginalia in Fermat’s copy of the Bachet edition of the Arithmetica. Some other work slipped into print during Fermat’s 
lifetime, although only by virtue of honoring his demand for anonymity. This demand allows no clear or obvious explanation. 
Fermat knew of his reputation and he valued it. He seemed to enjoy the intellectual combat of the several controversies to 
which he was a party. Whatever the reason, anonymity and refusal to publish robbed him of recognition for many striking 
achievements and toward the end of his life led to a growing isolation from the main currents of research. 

Fermat’s name slipped into relative obscurity during the eighteenth century. In the mid-nineteenth century, however, renewed 
interest in number theory recalled him and his work to the attention of mathematicians and historians of mathematics. Various 
projects to publish his extant papers culminated in the four-volume edition by Charles Henry and Paul Tannery, from which 
the extent and importance of Fermat’s achievements in fields other than number theory became clear. 

Analytic Geometry . By the time Fermat began corresponding with Mersenne and Roberval in the spring of 1636, he had 
already composed his “Ad locos planos et solidos isagoge” (Ouevres, I, 91–103), in which he set forth a system of analytic 
geometry almost identical with that developed by Descartes in the Géométre of 1637. Despite their simultaneous appearance 
(Descartes’s in print, Fermat’s in circulated manuscript), the two systems stemmed from entirely independent research and the 
question of priority is both complex and unenlightening. Fermat received the first impetus toward his system from an attempt 
to reconstruct Apollonius’ lost treatise Plane Loci (loci that are either straight lines or circles). His completed restoration, 
although composed in the traditional style of Greek geometry, nevertheless gives clear evidence that Fermat employed 
algebraic analysis in seeking demonstrations of the theorems listed by Pappus. This application of algebra, combined with the 
peculiar nature of a geometrical locus and the slightly different proof procedures required by locus demonstrations, appears to 
have revealed to Fermat that all of the loci discussed by Apollonius could be expressed in the form of indeterminate algebraic 
equations in two unknowns, and that the analysis of these equations by means of Viète’s theory of equations led to crucial 
insights into the nature and construction of the loci. With this inspiration from the Plane Loci, Fermat then found in 
Apollonius’ Conics that the symptomata, or defining properties, of the conic sections likewise could be expressed as 
indeterminate equations in two unknowns. Moreover, the standard form in which Apollonius referred the symptomata to the 
cone on which the conic sections were generated suggested to Fermat a standard geometrical framework in which to establish 
the correspondence between an equation and a curve. Taking a fixed line as axis and a fixed point on that line as origin, he 
measured the variable length of the first unknown, A, from the origin along the axis. The corresponding value of the second 
unknown, E, he constructed as a line length measured from the end point of the first unknown and erected at a fixed angle to 
the axis. The end points of the various lengths of the second unknown then generated a curve in the A,E plane. 

Like Descartes, then, Fermat did not employ a coordinate system but, rather, a single axis with a moving ordinate; curves were 
not plotted, they were generated. Within the standard framework 



Whenever two unknown quantities are found in final equality, there results a locus [fixed] in place, and the end point of one of 
these unknown quantities describes a straight line or a curve [“Isagoge,” Oeuvres, I, 91]. 

The crucial phrase in this keystone of analytic geometry is “fixed in place”;5 it sets the task of the remainder of Fermat’s 
treatise. Dividing the general seconddegree equation Ax2 + By2 + Cxy + Dx + Ey + F = 0 into seven canonical (irreducible) 
forms according to the possible values of the coefficients, Fermat shows how each canonical equation defines a curve: Dx = Ey 
(straight line), Cxy = F (equilateral hyperbola), 

Ax2 ± Cxy = By2 (straight lines), Ax2 = Ey (parabola), F – Ax2 = Ay2 (circle), F – Ax2 = By2 (ellipse), and F + Ax2 = By2 (axial 
hyperbola). In each case he demonstrates that the constants of the equation uniquely fix the curve defined by it, i.e., that they 
contain all the data necessary to construct the curve. The proof relies on the construction theorems set forth in Euclid’s Data 
(for the straight line and circle, or “plane loci”) or Apollonius’ Conics (for the conic sections, or “solid loci”). In a corollary to 
each case Fermat employs Viète’s theory of equations to establish the family of equations reducible to the canonical form and 
then shows how the reduction itself corresponds to a translation (or expansion) of the axis or the origin or to a change of angle 
between axis and ordinate. In the last theorem of the “Isagoge,” for example, he reduces the equation b2 – 2x2 = 2xy + y2 to the 
canonical form 2b2 – u2 = 2u2, where u = and v = x + y. Geometrically, the reduction shifts the orthogonal x,y system to a skew 
u,v system in which the u-axis forms a 45° angle with the x-axis and the u-ordinate is erected at a 45° angle on the u-axis. The 
curve, as Fermat shows, is a uniquely defined ellipse. 

Although the analytic geometries of Descartes and Fermat are essentially the same, their presentations differed significantly. 
Fermat concentrated on the geometrical construction of the curves on the basis of their equations, relying heavily on the 
reader’s knowledge of Viète’s algebra to supply the necessary theory of equations. By contrast, Descartes slighted the matter 
of construction and devoted a major portion of his Géométrie to a new and more advanced theory of equations. 

In the years following 1636, Fermat made some effort to pursue the implications of his system. In an appendix to the 
“Isagoge,” he applied the system to the graphic solution of determinate algebraic equations, showing, for example, that any 
cubic or quartic equation could be solved graphically by means of a parabola and a circle. In his “De solutione problematum 
geometricorum per curvas simplicissimas et unicuique problematum generi proprie convenientes dissertatio tripartita” 
(Oeuvres, I, 118–131), he took issue with Descartes’s classification of curves in the Géométrie and undertook to show that any 
determinate algebraic equation of degree 2n or 2n – 1 could be solved graphically by means of curves determined by 
indeterminate equations of degree n. 

In 1643, in a memoir entitled “Isagoge ad locos ad superficiem” (Oeuvres, I, 111–117), Fermat attempted to extend his plane 
analytic geometry to solids of revolution in space and perhaps thereby to restore the content of Euclid’s Surface Loci, another 
text cited by Pappus. The effort did not meet with success because he tried to reduce the threedimensional problem to two 
dimensions by determining all possible traces resulting from the intersection of a given solid by an arbitrary plane. The system 
required, first of all, an elaborate catalog of the possible traces for various solids. Second, the manipulation of the equation of 
any trace for the purpose of deriving the parameters that uniquely determine the solid requires methods that lay beyond 
Fermat’s reach; his technique could at best define the solid qualitatively. Third, the basic system of the 1636 “Isagoge,” 
lacking the concept of coordinates referred to two fixed orthogonal axes, presented substantial hurdles to visualizing a three-
dimensional correlate. 

Although Fermat never found the geometrical framework for a solid analytic geometry, he nonetheless correctly established 
the algebraic foundation of such a system. In 1650, in his “Novus secundarum et ulterioris ordinis radicum in analyticis usus” 
(Oeuvres, I, 181–188), he noted that equations in one unknown determine point constructions; equations in two unknowns, 
locus constructions of plane curves; and equations in three unknowns, locus constructions of surfaces in space. The change in 
the criterion of the dimension of an equation—from its degree, where the Greeks had placed it, to the number of unknowns in 
it—was one of the most important conceptual developments of seventeenth-century mathematics. 

The Method of Maxima and Minima . The method of maxima and minima, in which Fermat first established what later 
became the algorithm for obtaining the first derivative of an algebraic polynomial, also stemmed from the application of 
Viète’s algebra to a problem in Pappus’ Mathematical Collection. In a lemma to Apollonius’ Determinate Section, Pappus 
sought to divide a given line in such a way that certain rectangles constructed on the segments bore a minimum ratio to one 
another,6 noting that the ratio would be “singular.” In carrying out the algebraic analysis of the problem, Fermat recognized 
that the division of the line for rectangles in a ratio greater than the minimum corresponded to a quadratic equation that would 
normally yield two equally satisfactory section points. A “singular” section point for the minimum ratio, he argued, must mean 
that the particular values of the constant quantities of the equation allow only a single repeated root as a solution. 

Turning to a simpler example, Fermat considered the problem of dividing a given line in such a way that the product of the 
segments was maximized. The algebraic form of the problem is bx – x2 = c, where b is the length of the given line and c is the 
product of the segments. If c is the maximum value of all possible products, then the equation can have only one (repeated) 
root. Fermat then sought the value for c in terms of b for which the equation yielded that (repeated) root. To this end he applied 
a method of Viète’s theory of equations called “syncrisis,” a method originally devised to determine the relationships between 
the roots of equations and their constant parameters. On the assumption that his equation had two distinct roots, x and y, 
Fermat set bx – x2 = c and by – y2 = c, whence he obtained b = x + y and c = xy. Taking these relationships to hold generally 
for any quadratic equation of the above form, he next considered what happened in the case of a repeated root, i.e., when x = y. 



Then, he found, x = b/2 and c = b2/4. Hence, the maximum rectangle results from dividing the given line in half, and that 
maximum rectangle has an area equal to one-quarter of the square erected on the given line b. 

Amending his method in the famous “Methodus ad disquirendam maximam et minimam” (Oeuvres, I, 133–136), written 
sometime before 1636, Fermat expressed the supposedly distinct roots as A and A + E (that is, x and x + y), where E now 
represented the difference between the roots. In seeking, for example, the maximum value of the expression bx2 – x3, he 
proceeded as follows: 

bx2 – x3 = M3 

b(x + y)2 – (x + y)3 = M3, 

whence 2bxy + by2 – 3x2y – 3xy2 – y3 = 0. 

Division by y yields the equation 

2bx + by – 3x2 – 3xy – y2 = 0, 

which relates the parameter b to two roots of the equation via one of the roots and their difference. The relation holds for any 
equation of the form bx2 – x3 = M3, but when M3 is a maximum the equation has a repeated root, i.e., x = x + y, or y = 0. Hence, 
for that maximum, 2bx – 3x2 = 0, or x = 2b/3 and M3 = 4b3/27. 

Fermat’s method of maxima and minima, which is clearly applicable to any polynomial P(x), originally rested on purely 
finitistic algebraic foundations.7 It assumed, counterfactually, the inequality of two equal roots in order to determine, by 
Viète’s theory of equations, a relation between those roots and one of the coefficients of the polynomial, a relation that was 
fully general. This relation then led to an extreme-value solution when Fermat removed his counterfactual assumption and set 
the roots equal. Borrowing a term from Diophantus, Fermat called this counterfactual equality “adequality.” 

Although Pappus’ remark concerning the “singularity” of extreme values provided the original inspiration for Fermat’s 
method, it may also have prevented him from seeing all its implications. Oriented toward unique extreme values and dealing 
with specific problems that, taken from geometrical sources and never exceeding cubic expressions, failed to yield more than 
one geometrically meaningful solution, Fermat never recognized the distinction between global and local extreme values or the 
possibility of more than one such value. This block to an overall view of the problem of maxima and minima vitiates an 
otherwise brilliant demonstration of Fermat’s method, which he wrote for Pierre Brülard de St.-Martin in 1643 (Oeuvres, 
supp., 120–125) and which employs the sophisticated theory of equations of Descartes’s Géométrie. There Fermat established 
what today is termed the “second derivative criterion” for the nature of an extreme value (f″(x) < 0 for a maximum, f″(x) > 0 
for a minimum), although his lack of a general overview forestalled investigation of points of inflection (f″(x) = 0). 

The original method of maxima and minima had two important corollaries. The first was the method of tangents8 by which, 
given the equation of a curve, Fermat could construct the tangent at any given point on that curve by determining the length of 
the subtangent. Given some curve y = f(x) and a point (a,b) on it, Fermat assumed the tangent to be drawn and 

to cut off a subtangent of length u on the x-axis. Taking an arbitrary point on the tangent and denoting the difference between 
the abscissa of that point and the abscissa a by v, he counterfactually assumed that the ordinate to the point on the tangent was 
equal to the ordinate f(a – v) to the curve, i.e., that the two ordinates were “adequal.” It followed, then, from similar triangles 
that 

Fermat removed the adequality, here denoted by ≈, by treating the difference v in the same manner as in the method of maxima 
and minima, i.e., by considering it as ultimately equal to zero. His method yields, in modern symbols, the correct result, u = 
f(a)/f′(a), and, like the parent method of maxima and minima, it can be applied generally. 

From the method of maxima and minima Fermat drew as a second corollary a method for determining centers of gravity of 
geometrical figures (Oeuvres, I, 136–139). His single example—although again the method itself is fully general—concerns 
the center of gravity of a paraboloidal segment. Let CAV be the generating parabola with axis AI and base CV. By symmetry 
the center of gravity O of the paraboloidal segment lies on axis AI = b at some distance AO = x 

from the vertex A. Let the segment be cut by a plane parallel to the base and intersecting the axis at an arbitrary distance y from 
point I. Let E and M denote the centers of gravity of the two resulting subsegments. Since similar figures have similarly placed 
centers of gravity (Archimedes), b/x = (b – y)/AE, whence EO = x – AE = xy/b. By the definition of the center of gravity and by 
the law of the lever, segment CBRV is to segment BAR as EO is to OM. But, by Archimedes’ Conoids and Spheroids, 
proposition 26, paraboloid CAV is to paraboloid BAR as AI2 is to AN2, or as b2 is to (b – y)2, whence 

Here Fermat again employed the notion of adequality to set OM counterfactually equal to OI, whence 



He removed the adequality by an application of the method of maxima and minima, i.e., by dividing through by y and then 
setting y (= OI – OM) equal to zero, and obtained the result x = 2b/3. In applying his method to figures generated by curves of 
the forms yq = kxp and xpyq = k (p,q positive integers), Fermat employed the additional lemma that the similar segments of the 
figures “have the same proportion to corresponding triangles of the same base and height, even if we do not know what that 
proportion is,”9 and argued from that lemma that his method of centers of gravity eliminated the problem of quadrature as a 
prerequisite to the determination of centers of gravity. Such an elimination was, of course, illusory, but the method did not 
depend on the lemma. It can be applied to any figure for which the general quadrature is known. 

Fermat’s method of maxima and minima and its corollary method of tangents formed the central issue in an acrid debate 
between Fermat and Descartes in the spring of 1638. Viewing Fermat’s methods as rivals to his own in the Geométrié, 
Descartes tried to show that the former were at once paralogistic in their reasoning and limited in their application. It quickly 
became clear, however, that, as in the case of their analytic geometries, Fermat’s and Descartes’s methods rested on the same 
foundations. The only substantial issue was Descartes’s disapproval of mathematical reasoning based on counterfactual 
assumptions, i.e., the notion of adequality. Although the two men made formal peace in the summer of 1638, when Descartes 
admitted his error in criticizing Fermat’s methods, the bitterness of the dispute, exacerbated by the deep personal hatred 
Descartes felt for Fermat’s friend and spokesman, Roberval, poisoned any chance for cooperation between the two greatest 
mathematicians of the time. Descartes’s sharp tongue cast a pall over Fermat’s reputation as a mathematician, a situation which 
Fermat’s refusal to publish only made worse.10 Through the efforts of Mersenne and Pierre Hérigone, Fermat’s methods did 
appear in print in 1642, but only as bare algorithms that, by setting the difference y of the roots equal to zero from the start, 
belied the careful thinking that originally underlay them. Moreover, other mathematicians soon were publishing their own, 
more general algorithms; by 1659, Huygens felt it necessary to defend Fermat’s priority against the claims of Johann Hudde. 
In time, Fermat’s work on maxima and minima was all but forgotten, having been replaced by the differential calculus of 
Newton and Leibniz. 

Methods of Quadrature . Fermat’s research into the quadrature of curves and the cubature of solids also had its beginnings in 
the research that preceded his introduction to the outside mathematical world in 1636. By that time, he had taken the model of 
Archimedes’ 

quadrature of the spiral11 and successfully extended its application to all spirals of the forms ρ = (αϑ)m and R/R – ρ = (α/ϑ)m. 
Moreover, he had translated Archimedes’ method of circumscription and inscription of sectors around and within the spiral 
into a rectangular framework. Dividing a given ordinate y0 (or the corresponding abscissa x0) of a curve y = f(x) into N equal 
intervals and drawing lines parallel to the axis, Fermat determined that Area I in Figure 4 lay between limits and where xi is the 
abscissa that corresponds to ordinate (i/N)y0. Since he possessed a recursive formula for determining for any positive integer m, 
Fermat could prove that 

for all values of N. In each case the difference between the bounds is 1/N, which can be made as small as one wishes. Hence, 
for any curve of the form ym = kx, Fermat could show that the curvilinear Area I = [l/(m + 1)]x0y0 and the curvilinear Area II = 
[m/(m + 1)]x0y0. As an immediate corollary, he found that he could apply the same technique to determine the volume of the 
solid generated by the rotation of the curve about the ordinate or axis, with the restriction in this case that m be an even integer. 

Sometime before 1646 Fermat devised a substantially new method of quadrature, which permitted the treatment of all curves 
of the forms yq = kxp and xpyq = k (p,q positive integers; in the second equation p + q > 2). The most striking departure from 
the earlier method is the introduction of the concept of adequality, now used in the sense of “approximate equality” or 
“equality in the limiting case.” In the first example given in his major treatise on quadrature12 Fermat derives the shaded area 
under the curve x2y = k in Figure 5 as follows (we use modern 

notation to abbreviate Fermat’s lengthy verbal description while preserving its sense): the infinite x-axis is divided into 
intervals by the end points of a divergent geometric sequence of lengths AG, AH, AO,..., or x0, (m/n)x0, (m/n)2x0,..., where m > 
n are arbitrary integers. Since (m/n)i – (m/n)i-1 = (m/n)i-1 (m/n – 1), each interval can, by suitable choice of m and n, be made as 
closely equal to another as desired and at the same time can be made as small as desired. Fermat has, then, 
GH≈HO≈OM≈...and GH → 0. From the curve and the construction of the intervals, it follows directly that the approximating 
rectangles erected on the intervals form the convergent geometric series 

(m/n – I)x0y0, (n/m)(m/n – I)x0y0, (n/m)2(m/n – 1)x0y0,.... 

Its sum is (m/n – 1)x0y0 + x0y0 which is “adequal” to the shaded area. It approaches the curved area ever more closely as the 
size of the intervals approaches zero, i.e., as m/n → 1. In the limiting case, the sum will be x0y0, which in turn will be the exact 
area of the shaded segment. Generalizing the procedure for any curve xpyq = k and a given ordinate y0, Fermat determined that 
the area under the curve from y0 on out is [q/(p – q)]x0y0. Adapting the procedure to curves yq = kxp (by dividing the finite axis 
from 0 to x0 by a convergent geometric sequence of intervals), he was also able to show that the area under the curve is [q/(p + 
q)]x0y0. 

In the remainder of his treatise on quadrature, Fermat shifted from the geometrical style of exposition to the algebraic and, on 
the model of Viète’s theory of equations, set up a “reduction analysis” by which a given quadrature either generates an infinite 
class of quadratures or can be shown to be dependent on the quadrature of the circle. To carry out the project he introduced a 
new concept of “application of all yn to a given segment,” by which he meant the limit-sum of the products yn Δx over a given 



segment b of the x-axis as Δx→0 (in the absence of any notation by Fermat, we shall borrow from Leibniz and write Omnbyn to 
symbolize Fermat’s concept). Fermat then showed by several concrete examples that for any curve of the form yn = ∑aixi/bjxj 
the determination of Omnbyn follows directly from setting yn = ∑ui, where ui = aixi/bjxj. For each i the resulting expression ui = 
f(x) will denote a curve of the form = kxp or the form xp = K. For each curve, the determination of Omnbui corresponds to the 
direct quadrature set forthe in the first part of the treatise, and hence it is determinable. Therefore Omnbyn = ∑Omnbui is 
directly determinable. 

Fermat next introduced the main lemma of his treatise, an entirely novel result for which he characteristically offered no proof. 
For any curve y = f(x) decreasing monotonically over the interval 0,b, where f(0) = d and f(b) = 0, Omnbyn = Omndnxyn-1. This 
result is equivalent to the modern statement 

One example from Fermat’s treatise on quadrature suffices to display the subtlety and power of his reduction analysis. Can the 
area beneath the curve b3 = x2y + b2y (i.e., the “witch of Agnesi”) be squared algebraically? Two transformations of variable 
and an application of the main lemma supply the answer. From by = u2 and bv = xu, it follows first that Omnxy = 1/b Omnxu2 = 
2/b Omnuxu = 2 Omnuv. Hence, the quadrature of the original area depends on that of the transformed curve F(u,v). But 
substitution of variables yields b2 = u2 + v2, the equation of a circle. Therefore, the quadrature of the original area depends on 
the quadrature of the circle and cannot be carried out algebraically. 

Fermat’s treatise first circulated when it was printed in his Varia opera of 1679. By then much of its contents had become 
obsolescent in terms of the work of Newton and Leibniz. Even so, it is doubtful what effect the treatise could have had earlier. 
As sympathetic a reader as Huygens could make little sense of it.13 In addition, Fermat’s method of quadrature, like his method 
of tangents, lacks even the germ of several concepts crucial to the development of the calculus. Not only did Fermat not 
recognize the inverse relationship between the two methods, but both methods, conceptually and to some extent operationally, 
steered away from rather than toward the notion of the tangent or the area as a function of the curve. 

Fermat’s one work published in his lifetime, a treatise on rectification appended to a work on the cycloid by Antoine de La 
Loubère, 14 was a direct corollary of the method of quadrature. Cast, however, in the strictly geometrical style of classical 
Greek mathematics, it hid all traces of the underlying algebraic analysis. In the treatise Fermat treated the length of a curve as 
the limit-sum of tangential segments ΔS cut off by abscissas drawn through the end points of intervals Δy on a given y 
ordinate. In essence, he showed that for any curve y = y(x), 

Taking u2 = [x′(y)]2 + 1 as an auxiliary curve, Fermat used the relation S =Omnyu to reduce the problem of rectification to one 
of quadrature. He used the same basic procedure to determine the area of the surface generated by the rotation of the curve 
about an axis or an ordinate, as the results in a 1660 letter to Huygens indicate. 

Number Theory. As a result of limited circulation in unpublished manuscripts, Fermat’s work on analytic geometry, maxima 
and minima and tangents, and quadrature had only moderate influence on contemporary developments in mathematics. His 
work in the realm of number theory had almost none at all. It was neither understood nor appreciated until Euler revived it and 
initiated the line of continuous research that culminated in the work of Gauss and Kummer in the early nineteenth century. 
Indeed, many of Fermat’s results are basic elements of number theory today. Although the results retain fundamental 
importance, his methods remain largely a secret known only to him. Theorems, conjectures, and specific examples abound in 
his letters and marginalia. But, except for a vague outline of a method he called “infinite descent,” Fermat left no obvious trace 
of the means he had employed to find them. He repeatedly claimed to work from a method, and the systematic nature of much 
of his work would seem to support his claim. 

In an important sense Fermat invented number theory as an independent branch of mathematics. He was the first to restrict his 
study in principle to the domain of integers. His refusal to accept fractional solutions to problems he set in 1657 as challenges 
to the European mathematics community (Oeuvres, II, 332–335) initiated his dispute with Wallis, Frénicle, and others,15 for it 
represented a break with the classical tradition of Diophantus’ Arithmetica, which served as his opponents’ model. The 
restriction to integers explains one dominant theme of Fermat’s work in number theory, his concern with prime numbers and 
divisibility. A second guiding theme of his research, the determination of patterns for generating families of solutions from a 
single basic solution, carried over from his work in analysis. 

Fermat’s earliest research, begun in Bordeaux, displays both characteristics. Investigating the sums of the aliquot parts (proper 
divisors) of numbers, Fermat worked from Euclid’s solution to the problem of “perfect numbers”—σ(a) = 2a, where σ(a) 
denotes the sum of all divisors of the integer a, including 1 and a—to derive a complete solution to the problem of “friendly” 
numbers—σ(a) = σ(b)= a + b—and to the problem σ(a) = 3a. Later research in this area aimed at the general problem σ(a) = 
(p/q)a, as well as σ(x3) = y2 and σ(x2) = y3 (the “First Challenge” of 1657). Although Fermat offered specific solutions to the 
problem σ(a) = na for n = 3, 4, 5, 6, he recorded the algorithm only for n = 3. The central role of primeness and divisibility in 
such research led to several corollaries, among them the theorem (announced in 1640) that 2k–I is always a composite number 
if k is composite and may be composite for prime k; in the latter case, all divisors are of the form 2mk + 1. 

Fermat’s interest in primeness and divisibility culminated in a theorem now basic to the theory of congruences; as set down by 
Fermat it read: If p is prime and at is the smallest number such that at = kp + 1 for some k, then t divides p – 1. In the modern 
version, if p is prime and p does not divide a, then ap–1 ≡ 1 (mod p). As a corollary to this theorem, Fermat investigated in 
depth the divisibility of ak ± 1 and made his famous conjecture that all numbers of the form 22n + 1 are prime (disproved for n = 



5 by Euler). In carrying out his research, Fermat apparently relied on an extensive factual command of the powers of prime 
numbers and on the traditional “sieve of Eratosthenes” as a test of primeness. He several times expressed his dissatisfaction 
with the latter but seems to have been unable to find a more efficient test, even though in retrospect his work contained all the 
necessary elements for one. 

A large group of results of fundamental importance to later number theory (quadratic residues, quadratic forms) apparently 
stemmed from Fermat’s study of the indeterminate equation x2 – q = my2 for nonsquare m. In his “Second Challenge” of 1657, 
Fermat claimed to have the complete solution for the case q = 1. Operating on the principle that any divisor of a number of the 
form a2 + mb2 (m not a square) must itself be of that form, Fermat established that all primes of the form 4k + 1 (but not those 
of the form 4k + 3) can be expressed as the sum of two squares, all primes of the form 8k + 1 or 8k + 3 as the sum of a square 
and the double of a square, all primes of the form 3k + 1 as a2 + 3b2, and that the product of any two primes of the form 20k + 3 
or 20k + 7 is expressible in the form a2 + 5b2. 

Another by-product of this research was Fermat’s claim to be able to prove Diophantus’ conjecture that any number can be 
expressed as the sum of at most four squares. Extending his research on the decomposition of numbers to higher powers, 
Fermat further claimed proofs of the theorems that no cube could be expressed as the sum of two cubes, no quartic as the sum 
of two quartics, and indeed no number an as the sum of two powers bn and cn (the famous “last theorem,” mentioned only once 
in the margin of his copy of Diophantus’ Arithmetica). In addition, he claimed the complete solution of the so-called “fourcube 
problem” (to express the sum of two given cubes as the sum of two other cubes), allowing here, of course, fractional solutions 
of the problem. 

To prove his decomposition theorems and to solve the equation x2 – 1 = my2, Fermat employed a method he had devised and 
called “infinite descent.” The method, an inverse form of the modern method of induction, rests on the principle (peculiar to 
the domain of integers) that there cannot exist an infinitely decreasing sequence of integers. Fermat set down two rather vague 
outlines of his method, one in his “Observations sur Diophante” (Oeuvres, I, 340–341) and one in a letter to Carcavi (Oeuvres, 
II, 431–433). In the latter Fermat argued that no right triangle of numbers (triple of numbers a, b, c such that a2 + b2 = c2) can 
have an area equal to a square (ab/2 = m2 for some m), since 

If there were some right triangle of integers that had an area equal to a square, there would be another triangle less than it 
which had the same property. If there were a second, less than the first, which had the same property, there would be by similar 
reasoning a third less than the second which had the same property, and then a fourth, a fifth, etc., ad infinitum in decreasing 
order. But, given a number, there cannot be infinitely many others in decreasing order less than it (I mean to speak always of 
integers). From which one concludes that it is therefore impossible that any right triangle of numbers have an area that is a 
square [letter to Carcavi, Oeuvres, II, 431–432]. 

Fermat’s method of infinite descent did not apply only to negative propositions. He discovered that he could also show that 
every prime of the form 4k + 1 could be expressed as the sum of two squares by denying the proposition for some such prime, 
deriving another such prime less than the first, for which the proposition would again not hold, and so on. Ultimately, he 
argued, this decreasing sequence of primes would arrive at the least prime of the form 4k + 1—namely, 5—for which, by 
assumption, the proposition would not hold. But 5 = 22 + 12, which contradicts the initial assumption. Hence, the proposition 
must hold. Although infinite descent is unassailable in its overall reasoning, its use requires the genius of a Fermat, since 
nothing in that reasoning dictates how one derives the next member of the decreasing sequence for a given problem. 

Fermat’s letters to Jacques de Billy, published by the latter as Doctrinae analyticae inventum novum,16 form the only other 
source of direct information about Fermat’s methods in number theory. In these letters Fermat undertook a complete treatment 
of the socalled double equations first studied by Diophantus. In their simplest form they required the complete solution of the 
system ax + b = □, cx + d = □. By skillful use of factorization to determine the base solution and the theorem that, if a is a 
solution, then successive substitution of x + a for x generates an infinite family of solutions, Fermat not only solved all the 
problems posed by Diophantus but also extended them as far as polynomials of the fourth degree. 

The importance of Fermat’s work in the theory of numbers lay less in any contribution to contemporary developments in 
mathematics than in their stimulative influence on later generations. Much of the number theory of the nineteenth century took 
its impetus from Fermat’s results and, forced to devise its own methods, contributed to the formulation of concepts basic to 
modern algebra. 

Other Work . Probability. Fermat shares credit with Blaise Pascal for laying the first foundations of the theory of probability. 
In a brief exchange of correspondence during the summer of 1654, the two men discussed their different approaches to the 
same solution of a problem originally posed to Pascal by a gambler: How should the stakes in a game of chance be divided 
among the players if the game is prematurely ended? In arriving at specific, detailed solutions for several simple games, 
Fermat and Pascal operated from the basic principle of evaluating the expectation of each player as the ratio of outcomes 
favorable to him to the total number of possible outcomes. Fermat relied on direct computations rather than general 
mathematical formulas in his solutions, and his results and methods quickly became obsolete with the appearance in 1657 of 
Christiaan Huygens’ mathematically more sophisticated De ludo aleae. 

Optics (Fermat’s Principle). In 1637, when Fermat was engaged with traditional and rather pedestrian problems in geostatics, 
he read Descartes’s Dioptrique. In a letter to Mersenne, which opened the controversy between Descartes and Fermat 



mentioned above, Fermat severely criticized the work. Methodologically, he could not accept Descartes’s use of mathematics 
to make a priori deductions about the physical world. Philosophically, he could not agree with Descartes that “tendency to 
motion” (Descartes’s basic definition of light) could be understood and analyzed in terms of actual motion. Physically, he 
doubted both the assertion that light traveled more quickly in a denser medium (he especially questioned the meaning of such a 
statement together with the assertion of the instantaneous transmission of light) and Descartes’s law of refraction itself. 
Mathematically, he tried to show that Descartes’s demonstrations of the laws of reflection and refraction proved nothing that 
Descartes had not already assumed in his analysis, i.e., that Descartes had begged the question. The ensuing debate in the fall 
of 1637 soon moved to mathematics as Descartes launched a counterattack aimed at Fermat’s method of tangents, and Fermat 
returned to the original subject of optics only in the late 1650’s, when Claude Clerselier reopened the old argument while 
preparing his edition of Descartes’s Letters. 

Fermat, who in his earlier years had fervently insisted that experiment alone held the key to knowledge of the physical world, 
nonetheless in 1662 undertook a mathematical derivation of the law of refraction on the basis of two postulates: first, that the 
finite speed of light varied as the rarity of the medium through which it passed and, second, that “nature operates by the 
simplest and most expeditious ways and means.” In his “Analysis ad refractiones” (Oeuvres, I, 170–172), Fermat applied the 
second postulate (Fermat’s principle) in the following manner: In Figure 6 let the upper half of the circle represent the rarer of 
two media and let the lower half represent the denser; further, let CD represent a given incident ray. If the “ratio of the 
resistance of the denser medium to the resistance of the rarer medium” is expressed as the ratio of the given line DF to some 
line M, then “the motions which occur along lines CD and DI [the refracted ray to be determined] can be 

measured with the aid of the lines DF and M; that is, the motion that occurs along the two lines is represented comparatively 
by the sum of two rectangles, of which one is the product of CD and M and the other the product of DI and DF” (“Analysis ad 
refractiones,” pp. 170–171). Fermat thus reduces the problem to one of determining point H such that that sum is minimized. 
Taking length DH as the unknown x, he applies his method of maxima and minima and, somewhat to his surprise (expressed in 
a letter to Clerselier), arrives at Descartes’s law of refraction. 

Although Fermat took the trouble to confirm his derived result by a formal, synthetic proof, his interest in the problem itself 
ended with his derivation. Physical problems had never really engaged him, and he had returned to the matter only to settle an 
issue that gave rise to continued ill feeling between him and the followers of Descartes. 

In fact, by 1662 Fermat had effectively ended his career as a mathematician. His almost exclusive interest in number theory 
during the last fifteen years of his life found no echo among his junior contemporaries, among them Huygens, who were 
engaged in the application of analysis to physics. As a result Fermat increasingly returned to the isolation from which he had 
so suddenly emerged in 1636, and his death in 1665 was viewed more as the passing of a grand old man than as a loss to the 
active scientific community. 

NOTES 
1. All published modern accounts of Fermat’s life ultimately derive from Paul Tannery’s article in the Grande encyclopédie, 
repr. in Oeuvres, IV, 237–240. Some important new details emerged from the research of H. Blanquière and M. Caillet in 
connection with an exhibition at the Lycée Pierre de Fermat in Toulouse in 1957; Un mathématicien de génie, Pierre de 
Fermat 1601–1665 (Toulouse, 1957). 

2.Diophanti Alexandrini Arithmeticorum libri sex et de numeris multangulls liber unus. Cum commentariis C. G. Bacheti V. C. 
et observationibus D. P. de Fermat Senatoris Tolosani (Toulouse, 1670); Varia opera mathematica D. Petri de Fermat 
Senatoris Tolosani (Toulouse, 1679; repr. Berlin, 1861; Brussels, 1969). 

3. Cureau shared Fermat’s scientific interests and hence provided a special link to the chancellor. There is much to suggest that 
the parlement of Toulouse took advantage of Fermat’s ties to Cureau. 

4. Regarding book VII and its importance for Greek geometrical analysis, see M. S. Mahoney, “Another Look at Greek 
Geometrical Analysis,” in Archive for History of Exact Sciences, 5 (1968), 318–348. On its influence in the early seventeenth 
century, see Mahoney, “The Royal Road” (diss., Princeton, 1967), ch. 3. 

5. Fermat’s original Latin reads: fit locus loco. The last word is not redundant, as several authors have thought; rather, the 
phrase is elliptic, lacking the word datus. Fermat’s terminology here comes directly from Euclid’s Data (linea positione data: a 
line given, or fixed, in position). 

Regarding the algebraic symbolism that follows here and throughout the article, note that throughout his life Fermat employed 
the notation of Viète, which used the capital vowels for unknowns and the capital consonants for knowns or parameters. To 
avoid the confusion of an unfamiliar notation, this article employs Cartesian notation, translating Fermat’s A uniformly as x, E 
as y, etc. 



6. Pappus, Mathematical Collection VII, prop. 61. The geometrical formulation is too complex to state here without a figure 
and in addition requires some interpretation. In Fermat’s algebraic formulation, the problem calls for the determination of the 
minimum value of the expression 

where a, b, c are given line segments. 

7. The modern foundation of Fermat’s method is the theorem that if P(x) has a local extreme value at x = a, then P(x)= (x – 
a)2R(x), where R(a) ≠ 0. 

8. Fermat’s original version of the method is contained in the “Methodus ad disquirendam maximam et minimam” (Oeuvres, I, 
133–136); in its most finished form it is described in a memoir sent to Descartes in June 1638 (Oeuvres, II, 154–162). 

9. Fermat to Mersenne, 15 June 1638 (Oeuvres, supp., pp. 84–86). 

10. Descartes’s most famous remark, made to Frans van Schooten, who related it to Huygens (Oeuvres, IV, 122), was the 
following: “Monsieur Fermat est Gascon, moi non. II est vrai, qu’il a inventé plusieurs belles choses particulières, et qu’il est 
homme de grand esprit. Mais quant à moi j’ai toujours étudié à considerer les choses fort généralement, afin d’en pouvoir 
concluire des règles, qui aient aussi ailleurs de l’usage.” The connotation of “troublemaker” implicit in the term “Gascon” is 
secondary to Descartes’s charge, believed by some of his followers, that Fermat owed his reputation to a few unsystematic 
lucky guesses. 

11. In his treatise On Spirals. 

12. “De aequationum localium transmutatione et emendatione ad multimodam curvilineorum inter se vel cum rectilineis 
comparationem, cui annectitur proportionis geometricae in quadrandis infinitis parabolis et hyperbolis usus” (Oeuvres, I, 255–
285). The treatise was written sometime between 1657 and 1659, but at least part of it dates back to the early 1640’s. 

13. Huygens to Leibniz, 1 September 1691 (Oeuvres, IV, 137). 

14. “De linearum curvarum cum lineis rectis comparatione dissertatio geometrica. Autore M.P.E.A.S.” The treatise was 
published with La Loubère’s Veterum geometric promota in septem de cycloide libris, et in duabus adjectis appendicibus 
(Toulouse, 1660). 

15. The dispute is recorded in Wallis’ Commercium epistolicum de quaestionibus quibusdam mathematicis nuper habitum 
(Oxford, 1658). The participants were William Brouncker, Kenelm Digby, Fermat, Bernard Frénicle, Wallis, and Frans van 
Schooten. 

16. Published as part of Samuel Fermat’s edition of Diophantus in 1670 (see note 2). 
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