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(b. Königsberg, Germany [now Kaliningrad, R.S.F.S.R.], 23 January 1862; d. Göttingen, Germany, 14 
February 1943) 

mathematics. 

Hilbert was descended from a Protestant middleclass family that had settled in the seventeenth century near 
Freiberg, Saxony. His great-grandfather, Christian David, a surgeon, moved to Künigsberg, East Prussia. 
David’s grandfather and father were judges in Königsberg. His father’s Christian name was Otto; his 
mother’s maiden name was Erdtmann. Hilbert’s inclination to mathematics is said to have been inherited 
from his mother. From 1870 he attended the Friedrichskolleg in Königsberg; his last year of high school 
was spent at the Wilhelms-Gymnasium. In 1880 he took the examination for university admission. He 
studied at the University of Königsberg from 1880 to 1884, except for his second semester, when he went 
to Heidelberg. After his doctoral examination in 1884 and receipt of his Ph.D. in 1885, he traveled to 
Leipzig and Paris. In June 1886 he qualified as Privatdozent at Königsberg University. In 1892 Hilbert was 
appointed professor extraordinary to replace Adolf Hurwitz at Königsberg, and in the same year he married 
Käthe Jerosch. In 1893 he was appointed ordinary professor, succeeding F. Lindemann. He was appointed 
to a chair at Gölttingon University in 1895, remaining there until his official retirement in 1930. In 1925 he 
fell ill with pernicious anemia, which at that time was considered incurable. New methods of treatment 
enabled him to recover, although he did not resume his full scientific activity. He died in 1943. 

Königsberg, the university where Immanuel Kant had studied and taught, became a center of mathematical 
learning through Jacobi’s activity (1827–1842). When Hilbert began his studies there, the algebrist 
Heinrich Weber, Dedekind’s collaborator on the theory of algebraic functions, was a professor at 
Königsberg. In 1883 Weber left. His successor was Lindemann, a famous but muddle-headed 
mathematician who the year before had had the good luck to prove the transcendence of π Lindemann 
displayed an astonishing seminar activity. (The notes of the Lindemann seminar are at present in the 
possession of Otto Volk.) Under his influence Hilbert became interested in the theory of invariants, his first 
area of research. At that time Königsberg boasted a brilliant student, Hermann Minkowski, two years 
younger than Hilbert but one semester ahead of him, who in 1883 received the Grand Prize of the Paris 
Academy. In 1884 Hurwitz, three years older than Hilbert and a mature mathematician at that time, was 
appointed professor extraordinary at Königsberg. For eight years he was Hilbert’s guide in all of 
mathematics. In his obituaries of Minkowski and Hurwitz, Hilbert acknowledged the great influence of 
these two friends on his mathematical development. In 1892 Hurwitz left for Zurich and was soon followed 
by Minkowski. In 1902 Hilbert was reunited with Minkowski at Göttingen, where a new mathematics chair 
had been created for Minkowski at Hilbert’s instigation. 

The mathematician whose work most profoundly influenced Hilbert was the number theoretician Leopold 
Kronecker, although Hilbert took exception to Kronecker’s seemingly whimsical dogmatism on 
methodological purity and hailed Georg Cantor’s work in set theory, which had been criticized by 
Kronecker. 



Hilbert’s scientific activity can be roughly divided into six periods, according to the years of publication of 
the results: up to 1893 (at Königsberg), algebraic forms; 1894–1899, algebraic number theory; 1899–1903, 
foundations of geometry; 1904–1909, analysis (Dirichlet’s principle, calculus of variations, integral 
equations, Waring’s problem); 1912–1914, theoretical physics; after 1918, foundations of mathematics. 

One should further mention his famous choice of mathematical problems which he propounded to the 
Second International Congress of Mathematicians at Paris in 1900. 

At the end of a paper read at the International Mathematical Congress at Chicago in 1893, Hilbert said: 

In the history of a mathematical theory three periods can easily and clearly be distinguished: the naïve, the 
formal, and the critical ones. As to the theory of algebraic invariants, its founders Cayley and Sylvester are 
also representatives of the naïve period; when establishing the simplest invariant constructions and 
applying them to solving the equations of the first four degrees, they enjoyed their prime discovery. The 
discoverers and perfectioners of the symbolic calculus Clebsch and Gordan are the representatives of the 
second period, whereas the critical period has found its expression in the above mentioned theorems 6–13. 

Whatever this historical tripartition means, it is obvious that Hilbert would have characterized his own 
numerous contributions to the theory of invariants from 1885 to 1888 as still belonging to the first two 
periods. Yet when he delivered his Chicago address, the theory of invariants was no longer what it had 
been five years before. Hilbert had perplexed his contemporaries by a revolutionary approach, his 
contemporaries by a revolutionary approach, nicknamed “theology” by Gorand, the “King of Invariants,” 
What Hilbert had called Clebsch’s and Gordan’s formal period was the invention and skillful handling of 
an apparatus, the symbolic method, which still can elicit the ejobyment of the historian who is faced with it. 
Hilbert’s new approach was quite different: a direct, nonalgorithmioc method, foreshadowing and 
preparing what would be called abstract algebra in the twentieth centur. It has often been consdered a 
mustery why, after his Chicago address, Hilber left the field of invariants, never to return to it. But it should 
be pointed out that Hilbert was not the only mathematician to do so. It was said that Hilbert had solved all 
problems of the theory of invariants. This, of course, is not true. Never has a blooming mathematical theory 
withered away so suddenly. The theory of invariants died as a separate discipline. Hilbert had not finished 
the theory of invariants by solving all of its problems but, rather, by viewing invariants under a broader 
aspect. This often happens in mathematics. From a higher standpoint, paramount ideas can become 
futilities, profound facts trivialities, and sophisticated methods obsolete. Nevertheless, it is striking that the 
fortune of the theory of invariants changed so abruptly, that its fall was so great, and that it was caused by a 
single man. 

In more modern terms, the theory of invariants dealt with linear groups G acting on N-space R and the 
polynomials on R, invariant under G. The groups actually studies at that time were mainly the linear 
representations of the special linear group of n-space by m-fold symmetric tensor products—in the 
terminology of the time, the invariants of an n-ary form of degree m. Up to that time much skill had been 
applied to finding and characterizing full systems of invariants. The invariants formed a ring with a flnite 
basis, as far as one could tell from the examples available. Generally these basic invariants I1,...., Ik are not 
algebraically independent; the polynomial relators, called syzygies, form an ideal, which again, according 
to the examples, has a finite ideals basis, F1..., Fi The F1,...Fl need not be ideal-independent; there can be 
relations R1F1+...+RlFl=0 among them, so that one obtains an ideal of relators R1...., R1 or of “second-order 
syzygies,” and so on. 

When Hilbert started his work, the finiteness of a ring basis for invariants had been tackled by algorithmic 
methods which apply to very special cases only. Hilbert did not solve the total problem, and it still has not 
been solved. He also restricted himself to very special groups; explaining general methods through 
examples became one of the outstanding features of Hilbert’s work. It is one of the reasons why he could 
build such a strong school. 



It may be guessed that Hilbert started with the finiteness of the ideal basis of syzygies. In fact he proved the 
finiteness of the basis for any ideal in any polynomial ring. It was mainly this bold generalization and its 
straightforward proof which perplexed his contemporaries. The present formulation of Hilbert’s basic 
theorem is as follows: The property of a ring R with one element of letting every ideal have a finite basis 
shared by it polynomial ring R[x]. It has proved fundamental far outside the theory of invariants. of course, 
it applied to the ideals of syzygies of any order as well. Moreover, Hilbert showed that the cascade of 
syzygies stops at last after m steps. This latter result looks like a nicety, and so it seems to have been 
considered for half a century, since no textbook used to mention it. Its revival in today’s homological 
algebra is a new proof of Hilbert’s prophetic vision. 

Applied to the ring of invariants itself, Hilbert’s basic theorem says that any invariant I can be presented in 
the form A1I1+...+ AkIk where A1,..., A1 are polynomials which may be supposed of lower degree than I. If G 
is finite or compact, they can be changed into invariants by averaging over G. The new A1,... A1 can be 
expressed in the I I1,..., Ik in the same way as I has been; this process is continued until the degree of the 
coefficeints have reached zero. This more modern averaging idea stems for Hurwitz. Hilbert himself used a 
differential operation, Cayley’s Ω process, to reach the goal. 

Further of Hilbert’s results connected the invariants to fields of algebraic functions and algebraic varieties, 
in particular the Nullstellensatz: If a polynomial f vahishes in all zeros of a polyomial idea, M, then some 
power of f belongs to that ideal. 

Other work from the same period dealt with the representation of definite polynomials or rational functions 
as terms of squares, a problem to which Artin made the definitive contribution thrity years later. There is 
also Hilbert’s irreducibility theorem, which says that, in generaly, irreducibility is preserved if, in a 
polynomial of several variable with integral coefficients, some of the variables with integral coefficients, 
some of the variable are replaced by integers. An isolated algebraic subject of later years is his 
investigation of the ninth-degree equation, solved by algebraic functions of four variables only and 
suggesting the still open problem of the most economic solving of algebraic equations. 

There is no field of mathematics which by its beauty has attracted the elite of mathematicians with such an 
irresistible force as number theory—the “Queen of Mathematics,” according to Gauss—has done. So from 
the theory of invariants Hillbert turned to algebraic number theory. At the 1893 meeting at Munich the 
Deutsche Mathematiker-Vereinigung, which Hilbert had presented with new proofs of the splitting of the 
prime ideal, charged Hilbert and Minkowski with preparing a report on number theory within two years. 
Minkowski soon withdrew, although he did read the proofs of what would be known as Der Zahlbericht, 
dated by Hilbert 10 April 1897. The Zahlbericht is infinitely more than a report; it is one of the classics, a 
masterpiece of mathematical literature. For half a century it was the bible of all who learned algebraic 
number theory, and perhaps it is still. In it Hilbert collected all relevant knowledge on algebraic number 
theory, reorganized it under striking new unifying viewpoints, reshaped formulations and proofs, and laid 
the groundwork for the still growing edifice of class field theory. Few mathematical treatises can rival the 
Zahlbericht in lucidity and didactic care. Starting with the quadratic field, Hilbert step by step increases the 
generality, with a view to a complete theory of relative Abelian fields; but from the beginning he chooses 
those methods which foreshadow the general principles. 

At the end of the preface of the Zahlbericht, Hilbert said: 

The theory of number fields is an edifice of rare beauty and harmony. The most richly executed part of this 
building as it appears to me, is the theory of Abelian fields which Kummer by his work on the higher laws 
of reciprocity, and Kronecker by his investigations on the complex multiplication of elliptic functions, have 
opened up to us. The deep glimpses into the theory which the work of these two mathematicians affords, 
reveals at the same time that there still lies an abundance of priceless treasures hidden in this domain, 
beckoning as a rich reward to the explorer who knows the value of such treasures and with love pursues the 
art to win them. 



It is hard, if not unfeasible, in a short account to evoke a faint idea of what Hilbert wrought in algebraic 
number theory. Even in a much broader context it would not be easy. Hilbert’s own contributions to 
algebraic number theory are so overwhelming that in spite of the achievements of his predecessors, one 
gets the impression that algebraic number theory started with Hilbert—other than the theory of invariants, 
which he completed. So much has happened since Hilbert that one feels uneasy when trying to describe his 
work in algebraic number theory with his own terms, although it should be said that many modernizations 
of the theory are implicitly contained or foreshadowed in Hilbert’s work. 

Hilbert’s work centers on the reciprocity law and culminates in the idea of the class field, where the ideals 
of the original field become principal ideals. The reciprocity law, as it now stands, has gradually developed 
from Gauss’s law for quadratic residues. Hilbert interpreted quadratic residues as norms in a quadratic field 
and the Gauss residue symbol as a norm residue symbol. In this interpretation it can be generalized so as to 
be useful in the study of power residues in the most efficient way. The odd behavior of the even prime p = 
2, which in general does not admit extending solutions of x2 = a mod pk to higher values, of k, is corrected 
by seeking solutions not in ordinary integers but in p-adic numbers, could not occur explicitly in Hilbert’s 
exposition. Likewise, the totality of prime spots, although not explicitly mentioned, is Hilbert’s invention. 
In fact, to save the reciprocity law, he introduced the infinite prime spots. His formulation of the reciprocity 
law as IIp (α/p) = 1 foreshadowed idèles, and his intuition of the class field has proved an accurate guide for 
those who later fried to reach the goals he set. 

Algebraic number theory was the climax of Hilbert’s activity. He abandoned the field when almost 
everything had yet to be done. He left it to his students and successors to undertake the completion. 

Hilbert turned to foundations of geometry. Traditional geometry was much easier than the highly 
sophisticated mathematics he had engaged in hitherto. The impact of his work in foundations to geometry 
cannot be compared with that of his work in the theory of invariants, in algebraic number theory, and in 
analysis. There is hardly one result of his Grundlagen der Geometrie which would not have been 
discovered in the course of time if Hilbert had not written this book. But what matters is that one man alone 
wrote this book, and that it is a fine book. Grundlagen der Geometrie, published in 1899, reached its ninth 
edition in 1962. This means that it is still being read, and obviously by more people than read Hilbert’s 
other work. It has gradually been modernized, but few readers realize that foundations of geometry as a 
field has developed more rapidly than Grundlagen der Geometrie as a sequence of reeditions and that 
Hilbert’s book is now a historical document rather than a basis of modern research or teaching. 

The revival of mathematics in the seventeenth century had not included geometry. Euclid’s choice of 
subjects and his axiomatic approach were seldom questioned before the nineteenth century. Then projective 
and non-Euclidean geometries were discovered, and the foundations of geometry were scrutinized a new by 
a differential geometry (Riemann) and the group theory approach (Helmholtz). G.K.C. von Staudt (1847) 
tried an axiomatic of projective geometry but, unaware of the role of continuity axioms, he failed. The first 
logically closed axiomatic system of projective and Euclidean geometry was Pasch’s (1882), modified and 
elaborated by the Itlian school. Hilbert is often quoted as having urged: “It must be possible to replace in all 
geometric statements the words point, line, plane by table, chair, mug.” But Pasch had earlier said the same 
thing in other words. Moreover, this was not all that had to be done to understand geometry as a part of 
mathematics, independent of spatial reality; one needs to understand the relations between those points, 
lines, and planes in the same abstract way. The insight into the implicitly defining character of an axiomatic 
system had been reached in the Grundlagen der Geometrie, but at the end of the nineteenth century it was 
in the air; at least G. Fano had formulated it, even more explicitly, before Hilbert. It is true that this idea has 
become popular thanks to Hilbert, although quite slowly, against vehement resistance. 

What Hilbert meant to do in his book, and actually did, is better characterized by the following statement at 
the end of the Grundlagen: 

The present treatise is a critical inquiry into the principles of geometry; we have been guided by the maxim 
to discuss every problem in such a way as to examine whether it could not be solved in some prescribed 



manner and by some restricted aids. In my opinion this maxim contains a general and natural prescription; 
indeed, whenever in our mathematical considerations we meet a problem or guess a theorem, our desire for 
knowledge would not be satisfied as long as we have not secured the complete solution and the exact proof 
or clearly understood the reason for the impossibility and the necessity of our failure. 

Indeed, the present geometrical inquiry tries to answer the question which axioms, suppositions or sids are 
necessary for the proof of an elementary geometric truth; afterwards it will depend on the standpoint which 
method of proof one prefers. 

Hilbert’s goals in axiomatics were consistency and independence. Both problems had been tackled before 
him. Non-Euclidean geometry was invented to show the independence of the axiom of parallel lines, and 
models of non-Euclidean geometry within Euclidean geometry proved its relative consistency. Hilbert’s 
approach was at least partially different; his skillfully used tool was algebraization. Algebraic models and 
countermodels were invoked to prove consistency and independence. 

Algebraization as a tool in foundations of geometry was not new at that time. It goes as far back as Staudt’s 
“calculus of throws,” although before Hilbert it seems not to have been interpreted as a relative consistency 
proof. For independence proofs, algebraization had been tried, just before Hilbert, in the Italian school; but 
Hilbert surpassed all his predecessors. In Hilbert’s work and long afterward, algebraization of geometries 
has proved an important force in creating new algebraic structures. Isolation and interplay of incidence 
axioms and continuity axions are reflected by analogous phenomena in the algebraic models. In Hilbert’s 
work they led to structures which foreshadow the ideas of field and skew field, on the one hand, and 
topological space, on the other, as well as various mixtures of both. Indeed, Hilbert taught the 
mathematicians how to axiomatize and what to do with an axiomatic system. 

In 1904 Hilbert perplexed the mathematical world by salvaging the Dirichlet principle, which had been 
brought into discredit by Weierstrass’ criticism. Before Weierstrass it had been taken for granted in the 
theory of variations that the lower bound of a functional F is assumed and hence provides a minimum. If 
some integral along the curves joining two points was bounded from below, a minimum curve must exist. 
The boundary value problem for the potential equation was solved according to the Dirichlet principle by 
minimizing F(u) = ∫│grad u│2dω under the given boundary conditions. After Weierstrass had shown that 
this argument was unjustified, the Dirichlet principle was avoided or circumvented. 

Hilbert proved the Dirichlet principle by brute force, as straightforwardly as he had solved the finiteness 
problem of the theory of invariants. A sequence un is chosen such that limnF(un) = infu F(u); the │grad un│ 
may be supposed bounded. Then a now-classic diagonal process yields a subsequence which converges 
first in a countable dense subset, and consequently everywhere and uniformly. Its limit solves the minimum 
problem. The method seems trivial today because it has become one of the most widely used tools of 
abstract analysis. 

Hilbert also enriched the classical theory of variations, but his most important contribution to analysis is 
integral equations, dealt with in a series of papers from 1904 to 1910. In the course of the nineteenth 
century it had been learned that in integral equations the type ƒ – Aƒ = g (where A is the integral operator 
and ƒ the unknown function) is much more accessible than the type Aƒ = g. Liouville (1837) once 
encountered such an equation and solved it by iteration. So did August Beer (1865), when trying to solve 
the boundary problem of potential theory by means of a double layer on the boundary; Carl Neumann 
mastered it (1877) by formal in version of 1 – A. The same method proved useful in Volterra’s equations 
(1896). When Poincare (1894) investigated the boundary problem Δƒ + λƒ = h, turned into an integral 
equation ƒ – λAƒ = g by means of Green’s function, the parameter λ was analytically involved in the 
solution. This allowed analytic continuation through the λ plane except, of course, for certain polar 
singularities. To solve this kind of equation Fredholm (1900, 1902) devised a determinant method, but his 
greatest merit is to have more clearly understood the λ singularities as eigenvalues of the homogeneous 
problems. 



At this point Hilbert came in. He deliberately turned from the inhomogeneous to the homogeneous 
equations, from the noneigen-values to the eigen-values—or, rather, he turned form the linerar equation to 
the quadratic form, that is, to its transformation on principal axes. Fredholm’s method told him how this 
transformation had to be approached from the finite-dimension case. It was a clumsy procedure and was 
soon superseded by Erhard Schmidt’s much more elegant one (1905). With a fresh start Hilbert then 
coordinatized function space by means of an orthonormal basis of continuous functions and entered the 
space of number sequence with convergent square sums, of Hilbert space, as it has been called since. Here 
the transformation on principal axes was undertaken anew, first on the quadratic forms called “completely 
continuous” (“compact,” in modern terminology) and then on bounded forms, where Hilbert discovered 
and skillfully handled the continuous spectrum by means of Stieltjes’ integrals. The term “spectrum” was 
coined by Hilbert, who, indeed, must be credited with the invention of many suggestive terms. “Spectrum” 
was even a prophetic term; twenty years later physicists called upon spectra of operators, as studied by 
Hilbert, to explain optical spectra. 

Hilbert’s turn to the space of number sequences seems odd today, but at that time it was badly needed; 
Hilbert space in a modern sense was not thinkable before the Fischer-Riesz theorem (1907), and its abstract 
formulation dates from the late 1920’s. Hilbert’s approach to spectral resolution, utterly clumsy and 
suffering from the historical preponderance of the resolvent, was greatly simplified later, essentially by F. 
Riesz (1913); the theory was extended to unbounded self-adjoint operators by J. von Neumann and M. H. 
Stone about 1930. 

Today the least studied and the most obsolete among Hilbert’s papers are probably those on integral 
equations. Their value is now purely historical, as the most important landmark ever set out in 
mathematics: the linear space method in analysis, with its geometrical language and its numerous 
applications, quite a few of which go back to Hilbert himself. 

From Hilbert’s analytic period one rather isolated work, and the most beautiful of all he did, should not be 
overlooked: his proof of Waring’s hypothesis that every positive integer can be represented as a sum of, at 
most, m lth powers, m depending on l only. 

From about 1909 Hilbert showed an ever increasing interest in physics, which, he asserted, was too difficult 
to be left to physicists. The results of this activity have only partially been published (kinetic gas theory, 
axiomatics of radiation, relativity). It is generally acknowledged that Hilbert’s achievements in this field 
lack the profundity and the inventiveness of his mathematical work proper. The same is true of his highly 
praised work in the foundations of mathematics. (It is still a sacrilege to say so, but somebody has to be the 
first to commit this crime.) In this field even lesser merits have made people famous but, according to the 
standards set by Hilbert himself, his ideas in foundations of mathematics look poor and shallow. This has 
become clear with the passing of time. His contemporaries and disciples were much impressed, and even 
now it is difficult not to be impressed, by his introduction of the “transfinite” functor τ, which for every 
predicate A choose an object τA such that A(τA)→ A(x)— the so-called Aristides of corruptibility, who, if 
shown to be corruptible, would prove the corruptibility of all Athenians. Indeed, it is a clever idea to 
incorporate all transfinite tools of a formal system, such as the universal and the existential quantifier, and 
the choice axiom into this one symbol τ and afterward to restore the finitistic point of view by 
systematically eliminating it. For many years the delusive profundity of that artifice led investigators the 
wrong way. But how of all people could Hilbert, whose intuitions used to come true like prophecies, ever 
believe that this tool would work? Asking this question means considering the tremendous problem of 
Hilbert’s psychological makeup. 

One desire of Hilbert’s first axiomatic period was still unfulilled: after the relative consistency of geometry 
he wanted to prove the consistency of mathematics itself—or, as he put it, the consistency of number 
theory. This desire, long suppressed, finally became an obsession. As long as mathematics is no more than 
counting beans, its consistency is hardly a problem. It becomes one when mathematicians start to treat 
infinities as though they were bags of beans. Cantor had done so in set theory, and the first to reap glory by 
the same kind of boldness in everyday mathematics was Hilbert. Is it to be wondered that he was haunted 
by the need to justify these successes? 



He conceived the idea of formalism: to reduce mathematics to a finite game with an infinite but finitely 
defined treasure of formulas. This game must be consistent; it is the burden of metamathematics to prove 
that while playing this game, one can never hit on the formula 0 ≠ 0. But if a vicious circle is to be avoided, 
metamathematics must restrict itself to counting beans. If some chain of the game delivered 0 ≠ 0, one 
should try to eliminate all links involving the transfinite Ä and to reduce the chain to one in which simple 
beans were counted—this was Hilbert’s idea of a consistency proof. 

From the outset there were those who did not believe this idea was feasible. Others rejected it as irrelevant. 
The most intransigent adversary was L. E. J. Brouwer, who from 1907 held that it is truth rather than 
consistency that matters in mathematics. He gradually built up a new mathematics, called intuitionism, in 
which many notions of classic mathematics became meaningless and many classic theorems were 
disproved. In the early 1920’s Hermann Weyl, one of Hilbert’s most famous students, took Brouwer’s side. 
Both Hilbert and Brouwer were absolutists; for both of them mathematics was no joking matter. There must 
have been tension between them from their first meeting; although disguised, it can be felt in the 
discussions of the 1920’s between a crusading Brouwer and a nervous Hilbert. 

The mathematical world did not have to decide whether formalism was relevant. The catastrophe came in 
1931, when Kurt Gödel proved that Hilbert’s approach was not feasible. It was a profound iscovery, 
although there had been intimations, such as the Löwenheim-Skolem paradox. Had Hilbert never doubted 
the soundness of his approach? All he published in this field is so naïve that one would answer “yes.” But 
how was it possible? 

Hilbert, as open-minded as a mathematician could be, had started thinking about foundations of 
mathematics with a preconceived idea which from the outset narrowed his attitude. He thought that 
something he wished to be true was true indeed. This is not so strange as it seems. It is quite a different 
thing to know whether mathematics is consistent, or whether some special mathematical hypothesis is true 
or not. There seems to be so much more at stake in the first case that it is difficult to deal with it as 
impartially as with the second. 

At closer look, 1931 is not the turning point but the starting point of foundations of mathematics as it has 
developed since. But then Hilbert can hardly be counted among the predecessors, as could Löwenheim and 
Skolem. This is a sad statement, but it would be a sadder thing if those who know nothing more about 
Hilbert than his work in foundations of mathematics judged his genius on this evidence. 

In 1900 Hilbert addressed the International Congress of Mathematicians on mathematical problems, saying: 
“This conviction of the solvability of any mathematical problem is a strong incentive in our work; it 
beckons us: this is the problem, find its solutions. You can find pure thinking since in mathematics there is 
no Ignorabimus! [Gesammelte Abhandlungen, III, 298]”. With these words Hilbert introduced twenty-three 
problems which have since stimulated mathematical investigations: 

1. The cardinality of the continuum. After a great many unsuccessful attempts the problem was solved in 
1963 by Paul J. Cohen, although in another sense than Hilbert thought: it has been proved unsolvable. In 
the same connection Hilbert mentions well-ordering, which was accomplished by Zermelo. 

2. The consistency of the arithmetic axioms. The history of this problem has already been dealt with. 

3. The existence of tetrahedrons with equal bases and heights that are not equal in the sense of division and 
completion. The question was answered affirmatively shortly afterward by Max Dehn. 

4. The straight line as the shortest connection The problem is too vague. 

5. The analyticity of continuous groups. The analyticity has been proved by small steps, with the final result 
in 1952. 



6. The axioms of physics. Even today axiomatics of physics is hardly satisfactory. The best example is R. 
Giles’s Mathematical Foundations of Thermodynamics (1964), but in general it is not yet clear what 
axiomatizing physics really means. 

7. Irrationality and transcendence of certain numbers From C. L. Siegel (1921) and A. O. Gelfond (1929) 
to A. Baker (1966–1969), problems of this kind have been tackled successfully. 

8. Prime number problems. Riemann’s hypothesis is still open, despite tremendous work. In algebraic 
fields it has been answered by E. Hecke (1917). Goldbach’s hypothesis has successfully been tackled by L. 
Schnirelmann (1930), I. M. Vinogradov (1937), and others. 

9. Proof of the most general reciprocity law in arbitrary number fields. The problem has been successfully 
tackled from Hilbert himself to Artin (1928) and I. R. Šafarevič (1950). 

10. Decision on the solvability of a Diophantine equation. A rather broad problem, this has often been dealt 
with—for instance, by Thus (1908) and by C. L. Siegel (1929). The general problem was answered 
negatively by J. V. Matijasevič in 1969. 

11. Quadratic forms with algebraic coefficients. Important results were obtained by Helmuth Hasse (1929) 
and by C. L. Sigel (1936, 1951). Connections to idèles and algebraic groups were shown by A. Weil and T. 
Ono (1964–1965). 

12. Kronecker’s theorem on Abelian fields for arbitrary algebraic fields. This relates to finding the 
functions which for an arbitrary field play the same role as the exponential functions for the rational field 
and the elliptic modular functions for imaginary quadratic fields. Much has been done on this problem, but 
it is still far from being solved. 

13. Impossibility of solving the general seventh-degree equation by functions of two variables. Solved by 
V. I. Arnold (1957), who admits continuous functions, this is still unsolved if analyticity is required. 

14. Finiteness of systems of relative integral functions. This was answered in the negative by Masayoshi 
Nagata (1959). 

15. Exact founding of Schubert’s enumerative calculus. Although enumerative geometry has been founded 
in several ways, the justification of Schubert’s calculus as such is still an open problem. 

16. Topology of real algebraic curves and surfaces. The results are still sporadic. 

17. Representation of definite forms by squares. This was solved by Artin (1926). 

18. Building space from congruent polyhedrons. The finiteness of the number of groups with fundamental 
domain was proved by Ludwig Bieberbach (1910). A Minkowski hypothesis on the covering of space with 
cubes was proved by Georg Hajos (1941). 

19. The analytic character of solutions of variation problems. A few special results have been obtained. 

20. General boundary value problems. Hilbert’s own salvage of the Dirichlet problem and many other 
investigations have been conducted in this area. 

21. Differential equations with a given monodromy group. This was solved by Hilbert himself (1905). 

22. Uniformization. For curves, this was solved by Koebe and others. 



23. Extension of the methods of variations calculus. Hilbert himself and many others dealt with this. 

If I were a painter, I could draw Hilbert’s portrait, so strongly have his features engraved themselves into 
my mind, forty years ago when he stood on the summit of his life. I still see the high forehead, the shining 
eyes looking firmly through the spectacles, the strong chin accentuated by a short beard, even the bold 
Panama hat, and his sharp East Prussian voice still sounds in my ears [F. W. Levi, Forscher und 
Wissenschaftler im heutigen Europa, p. 337]. 

This description by Levi is confirmed by many others. People who met Hilbert later were gravely 
disappointed. 

Hilbert was a strong personality, and an independent thinker in fields other than mathematics. As an East 
Prussian he was inclined to political conservatism, but he abhorred all kinds of nationalist emotions. During 
World War I he refused to sign the famous Declaration to the Cultural World, a series of “it-is-not-true-
that” statements; and when the French mathematician Darboux died during the war, he dared to publish an 
obituary. 

Biographical sketches written during Hilbert’s lifetime are more or less conventional but never Byzantine. 
The oral tradition is more characteristic; it has been collected by Constance Reid, who in her biography of 
Hilbert gives a truthful and understanding image of the man and his world. Her biography also contains a 
reprint of Weyl’s obituary, which is the most expert analysis of his work and reflects Hilbert’s personal 
influence on his students and collaborators: “the sweet flute of the Pied Piper that Hilbert was, seducing so 
many rats to follow him into the deep river of mathematics.” There are more witnesses concerning Hilbert: 
Hilbert himself, telling about his friend Minkowski; and the list of sixty-nine theses written under his 
guidance, many of them by students who became famous mathematicians. 
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