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(fl. ca. 1220) 

mechanics, mathematics. 

Although Jordanus has been justly proclaimed the most important mechanician of the Middle Ages and one of the most 
significant mathematicians of that period, virtually nothing is known of his life. That he lived and wrote during the first half of 
the thirteenth century, is suggested by the inclusion of his works in the Biblionomia, a catalogue of Richard de Fournival’s 
library compiled sometime between 1246 and 1260.1 In all, twelve treatises are ascribed to Jordanus de Nemore, whose name 
is cited four times in this form.2 Since most of his genuine treatises are included, it seems reasonable to infer that Jordanus’ 
productive career antedated the Biblionomia. 

The appellation “Jordanus de Nemore” is also found in a number of thirteenth-century manuscripts of works attributed to 
Jordanus. The meaning and origin of “de Nemore” are unknown. It could signify “from” or “of Nemus,” a place as yet 
unidentified (the oft-used alternative “Nemorarius,” frequently associated with Jordanus, is apparently “a later derivation from 
“Nemore”)”, or it may have derived from a corruption of “de numeris” or “de numero” from Jordanus’ arithmetic manusripts.3 

Identification of Jordanus de Nemore with Jordanus de Saxonia (or Jordanus of Saxony), the master general of the Dominican 
order from 1222 to 1237, has been made on the basis of a statemetn by Nicholas Trivet (in a chronicle called Annales sex 
regum Angliae) that Jordanus of Saxony was an outstanding scientist who is said to have written a book on weights and a 
treatise entitled De lineis datis.4 Although a late manuscript of a work definitely written by Jordanus de Nemore is actually 
ascribed to “Jordanus de Alemannia” (Jordanus of Germany, and therefore possibly Jordanus of Saxony), no mathematical or 
scientific works can be assigned to Jordanus of Saxony, whose literary output was seemingly confined to relgon and grammar. 
At no time, moreover, was Jordanus of Saxony called Jordanus de Nemore or Nemorarius. Finally, if Jordanus de Nemore 
lectured at the University of Toulouse, as one manuscript indicates,5 this could have occurred no earlier than 1229, the year of 
its foundation. As master general of the Dominican order during the years 1229-1237, the year of his death, Jordanus of 
Saxony could hardly have found time to lecture at a university. For all these reasons it seems implausible to suppose that 
Jordanus of Saxony is identical with Jordanus de Nemore. 

It was in mechanics that Jordanus left his greatest legacy to science. The medieval Latin “science of weights” (Scientia de 
ponderibus), or statics, is virtually synonymous with his name, a state of affairs that has posed difficult problems of authorship. 
So strongly was the name of Master Jordanus identified with the science of weights that manuscripts of commentaries on his 
work, or works, were frequently attributed to the master himself. Since the commentaries were in the style of Jordanus, 
original works by him are not easily distinguished. At present only one treatise, the Elementa Jordani super demonstrationem 
ponderum,, may be definitely assigned to Jordanus. Whether he inherited the skeletal frame of the Elementa in the form of its 
seven postulates and the enunciations of its nine theorems, for which he then supplied proofs, is in dispute.6 Indisputable, 
however, is the graet significance of the treatise. here, under the concept of “positional gravity” (gravitas secundum situm), we 
find the introduction of component forces into statics. The concept is expressed in the fourth and fifth postulates, where it is 
assumed that “weight is heavier positionally, when, at a given position, its path of descent is less oblique” and that “a more 
oblique descent is one in which, for a given distance, there is a smaller component of the vertical.”7 In a constrained system the 
effective weight of a suspended body is proportional to the directness of its descent, directness or obliquity of descent being 
measured by the projection of any segment of the body’s arcal path onto the vertical drawn through the fulcrum of the lever or 
balance. It is implied that the displacement which measures the positional gravity of a weight can be infinitely small. Thus, by 
means of a principle of virtual displacement (since actual movement cannot occur in a system in equilibrium, positional gravity 
can be measured only by “virtual” displacements) Jordanus introduced infinitesimal considerations into statics. 

These concepts are illustrated in Proposition 2, where Jordanus demonstrates that “when the beam of a balance of equal arms is 
in horizontal position, then if equal weights are suspended from its extremities, it will not leave the horizontal position; and if 
it should be moved from the horizontal position, it will revert to it.”8 If the balance is depressed on the side of B (see Figure 1), 
Jordanus argues that it will return to a 

horizontal position because weight c at C will be positionally heavier than weight b at B, a state of affairs which follows from 
the fact that if any two equal arcs are measured downward from C and B, they will project unequal intercepts onto diameter 
FRZMAKYE. If the equal arcs are CD and BG, Jordanus can demonstrate (by appeal to his Philotegni, or De triangulis, as it 
was also called) that the intercept of arc CD—ZM—is greater than the intercept of arc BG—KY—and the “positionally heavier 
c will cause C to descend to a horizontal position. The concept of positional heaviness, although erroneous when applied to 
arcal paths, may have derived ultimately from application of an idea in the Pseudo-Aristotelian Mechanica, where it was 



argued that the further a weight is from the fulcrum of a balance, the more easily it will move a weight on the other side of the 
fulcrum, since “a longer radius describes a larger circle. So with the exertion of the same force the motive weight will change 
its position more than the weight which it moves, because it is further from the fulcrum.”9 It was by treating the descent of b 
independently from the ascent of c that Jordanus fell into error. A comparison of the ratio of paths formed by a small descent 
of b and an equal ascent of c with the ratio of paths formed by a small descent of c and an equal ascent of b would have 
revealed the equality of these ratios and demonstrated the absence of positional advantage. As we shall see below, however, 
when the concept of positional gravity was applied to rectilinear, rather than arcal, constrained paths, perhaps by Jordanus 
himself, it led to brilliant results. 

More important than positional gravity is Jordanus’ proof of the law of the lever by means of the principle of work. In Figure 
2, ACB is a balance beam and 

a and b are suspended weights. If we assume that b-a = AC/BC, no movement of the balance will occur. The demonstration 
takes the form of an indirect proof. It is assumed that the balance descends on B’s side so that as b descends through vertical 
distance HE, it lifts a through vertical distance DG.If a weight l, equal to b, is now suspended at L, Jordanus shows, on the 
basis of similar triangles DCG and ECH, that DG/EH = b-a. On the assumption that CL = CB and drawing perpendicular LM, 
he concludes that LM = EH. Therefore DG-LM = b/a = l-a. At this point the principle of work is applied, for “what suffices to 
lift a to D, would suffice to lift l through the distance LM. Since therefore l and b are equal, and LC is equal to CB, l is not 
lifted by b; and, as was asserted, a will not be lifted by b.”10 If a weight is thus incapable of lifting an equal weight the same 
distance that it descends, it cannot raise a proportionally smaller weight a proportionally greater distance. 

The principles of positional gravity and work were superbly employed in the De ratione ponderis, which contains forty-five 
propositions and is probably the most significant of all medieval statical treatises. If, as the manuscripts indicate, it was by 
Jordanus himself11 (although there is some doubt about this),12 not only did Jordanus extend his own concept of positional 
gravity to rectilinear paths (the incorrect application to arcal paths was, however, retained in a few propositions) but he also 
applied that concept, in conjunction with the principle of work, to a formulation of the first known proof—long before 
Galileo—of the conditions of equilibrium of unequal weights on planes inclined at different angles. Paradoxically, in Book I, 
Proposition 2, the De ratione ponderis included reasoning which, if rigorously applied, would have destroyed the notion that 
an elevated weight has greater positional gravity with which to restore the equilibrium of a balance.13 

In Book I, Proposition 9, Jordanus (for convenience we shall assume his authorship) shows that positional gravity—the 
heaviness or force of a weight—along an inclined plane (see Figure 3) is the same at any 

point. Thus a given weight at D or E will possess equal force, since for equal segments of the inclined path AB—DF and EG—
equal segments of the vertical AC will be intercepted—DK and EM 

On the basis of Postulates 4 and 5 of the DE Elementa, which are also Postulates 4 and 5 of the De ratione ponderis, and Book 
I, Proposition 9, the inclined plane proof is enunciated in Book I, Proposition 10, as follows: “If two weights descend along 
diversely inclined planes, then, if the inclinations are directly proportional to the weights, they will be of equal force in 
descending.”14 Jordanus demonstrates that weights e and h, on differently inclined planes, are of 

equal force. He first assumes that a weight g, equal to e, is on another plane, DK, whose obliquity is equal to that of DC and 
then assumes that if e moves to L through vertical distance ER, it will also draw h up to M. should this occur, however, it 
would follow by the principle of work that what is capable of moving h to M can also move g to N, since it can be shown that 
MXǀNZ = gǀh. But g is equal to e and at the same inclination; hence, by Book I, Proposition 9, they are of equal force because 
they will intercept equal segments of vertical DB. therefore e is incapable of raising g to N and, consequently, unable to raise h 
to M. By substituting a straight line for an arcal path and utilizing Postulate 5 of the Elementa (see above), Jordanus was, in 
modern terms, measuring the obliquity of descent, or ascent, by the sine of the angle of inclination. The force along the 
rectilinear oblique path, or incline, is thus equivalent to 

F = W sin a, 

where W is the free weight and a is the angle of inclination of the oblique path. 

The principle of work, which was but a vague concept prior to Jordanus, was not only used effectively in the proof of the 
inclined plane and, as indicated above, in the law of the lever in the Elemenenta, a proof repeated in Book I, Proposition 6, of 
the De ratione ponderis, but was also applied successfully to the first proof of the bent lever in Book I, Proposition 8, of the De 
ratione ponderis, which reads; “If the arms of a balance are unequal, and form an angle at the axis of support, then, if their 
ends are equidistant from the vertical line passing through the axis of support, equal weights suspended from them will, as so 
placed, be of equal heaviness.”15 In this proof there is also an anticipation of the concept of static moment, that the effective 
force of a weight is dependent on the weight and its horizontal distance from a vertical line passing through the fulcrum.16 

Over and above his specific contributions to the advance of statics, Jordanus marks a significant departure in the development 
of that science. He joined the dynamical and philosophical approach characteristic of the dominant Aristotelian physics of his 
day with the abstract and rigorous mathematical physics of Archimedes. Thus the postulates of the Elementa and De ratione 



ponderis were derived from, and consistent with, Aristotelian dynamical concepts of motion but were arranged in a manner 
that permitted the derivation of rigorous proofs within a mathematical format modeled on Archimedean statics and Euclidean 
geometry. 

The extensive commentary literature on the statical treatises ascribed to Jordanus began in the middle of the thirteenth century 
and continued into the sixteenth. Through printed editions of the sixteenth century, the content of this medieval science of 
weights, identified largely with the name of Jordanus, became readily available to mechanicians of the sixteenth and 
seventeenth centuries. Dissemination was facilitated by works such as Peter Apian’s Liber Iordani Nemorarii. . .de ponderibus 
propositiones XIII et earunaem demonstrationes (Nuremberg, 1533); Nicolo Tartaglia’s Questii ed invenzioni diverse (Venice, 
1546, 1554, 1562, 1606; also translated into English, German, and French), which contained a variety of propositions from 
Book I of the De ratione ponderis; and Jordani Opusculum de ponderositate (Venice, 1565), a version of the De ratione 
ponderis published by Curtius Trojanus from a copy owned by Tartaglia, who had died in 1557. 

Concepts such as positional gravity, static moment, and the principle of work, or virtual displacement, were now available and 
actually influenced leading mechanicians, including Galileo, although some preferred to follow the pure Greek statical 
tradition of Archimedes and Pappus of Alexandria. In commenting on Guido Ubaldo del Monte’s Le mechaniche (1577), 
which he himself had translated into Italian, Filippo Pigafetta remarked that Guido Ubaldo’s more immediate predecessors 

. . .are to be understood as being the writers on this subject cited in various places by the author [Guido Ubaldo], among them 
Jordanus, who wrote on weights and was highly regarded and to this day has been much followed in his teachings. Now our 
author [Guido Ubaldo] has tried in every way to travel the road of the good ancient Greeks, . . . in particular that of 
Archimedes of Syracuse . . .and Pappus of Alexandria . . .17 

Guido Ubaldo’s attitude was costly, for it led him to reject Jordanus’ correct inclined-plane theorem in favor of an erroneous 
explanation by Pappus. 

Since few editions of his mathematical treatises have been published, and critical studies and evaluations are largely lacking, 
Jordanus’ place in the history of medieval and early modern mathematics has yet to be determined. Treatises on geometry, 
algebra, proportions, and theoretical and practical arithmetic have been attributed to him. 

The Liber Philotegni de triangulis, a geometrical work extant in two versions, represents medieval Latin geometry at its 
highest level. In the four books of the treatise we find propositions concerned with the ratios of sides and angles; with the 
division of straight lines, triangles, and quadrangles under a variety of given conditions; and with ratios of arcs and plane 
segments in the same circle and in different circles. The fourth book contains the most significant and sophisticated 
propositions. In IV.20 Jordanus presents three solutions for the problem of trisecting an angle, and IV.22 offers two solutions 
for finding two mean proportionals between two given lines. A proof of Hero’s theorem on the area of a triangle—A= , where s 
is the semiperimeter and a, b and c are the sides of the triangle—may also have been associated with the De 
triangulis.Jordanus drew his solutions largely from Latin translations of Arabic works, which were themselves based on Greek 
mathematical texts. He did not always approve of these proofs and occasionally displayed a critical spirit, as when he deemed 
two proofs of the trisection of an angle based on mechanical means inadequate and uncertain (although no source is mentioned, 
they were derived from the Verba filiorum of the Banū Mūsā) and offered what is apparently his own demonstration,18 in 
which a proposition from Ibn al-Haytham’s Optics is utilized. In IV.16 a nonArchimedean proof of the quadrature of the circle 
may have been original. It involves “finding a third continuous proportional.” Here is the proof.19 

To Form a Square Equal to a Given Circle. 

For example, let the circle be A [see Figure 5]. 

Disposition: Let another circle B with its diameter be added; let a square be described about each of those circles. And the 
circumscribed square [in each case] will be as a square of the diameter of the circle. Hence, by [Proposition] XII.2 [of the 
Elements], circle A-circle B = square DE-square FG. Therefore, by permutation, DE/ A = FG/ B. Let there be formed a third 
surface C, which is a [third] proportional [term] following DE and A. Now C will either be a circle or a surface of another kind, 
like a rectilinear surface. In the first place, let it be a circle which is circumscribed by square HK. And so, DE/ A = A/ C but 
also, by [proposition] XII.2 [of the Elements], DE/ A = HK/C. Therefore, HK as well as A is a mean proportional between DE 
and C. Therefore, circle A and square HK are equal, which we proposed. 

Next, let C be some [rectilinear] figure other than a circle. Then let it be converted into a square by the last [proposition] of 
[Book] II [of the Elements], with its angles designated as R, S, Y, and X. And so, since DE is “the larger extreme (among the 
three proportion terms) DE is” greater than a side [of RY]. Therefore, let MT, equal to RX, be cut from MD. Then a 
parallelogram MN—contained by ME and MT—is described. Therefore, MN is the mean proportional between DE and RY, 
which are the squares of its sides, since a rectangle is the mean proportional between the squares of its sides. But circle A was 
the mean proportional between them [i.e., between square DE and C (or square RY)]. Therefore, circle A and parallelogram 
MN are equal. Therefore, let MN be converted to a square by the last [proposition] of [Book] II [of the Elements], and this 
square will be equal to the given circle A, which we proposed. 



The De numeris datis, Jordanus’ algebraic treatise in four books, which was praised by Regiomontanus, was more formal and 
Euclidean than the algebraic treatises derived from Arabic sources. Indeed it has recently been claimed20 that in the De numeris 
datis Jordanus anticipated ViÈte in the application of analysis to algebraic problems. This may be seen in Jordanus’ procedure, 
where he regularly formulated problems in terms of what is known and what is to be found (this is tantamount to the 
construction of an equation), and subsequently transforms the initial equation into a final form from which a specific 
computation is made with determinate numbers that meet the general conditions of the problem. 

The general pattern of every proposition is thus (1) formal enunciation of the proposition; (2) proof; and (3) a numerical 
example, which is certainly non-Euclidean and was perhaps patterned after Arabic algebraic treatises. In this wholly rhetorical 
treatise, Jordanus used letters of the alphabet to represent numbers. An unknown number might be represented as ab or abc, 
which signify a + b and a + b + c respectively. Occasionally, when two unknown numbers are involved, one would be 
represented as ab, the other as c. 

Typical of the propositions in the De numeris datis are Book I, Proposition 4, and Book IV, Proposition 7. In the first of these, 
a given number, say s.21 is divided into numbers x and y, whose values are to be determined. It is assumed that g, the sum of x2 
and y2, is also known. Now s2 − g = 2 xy = e and g − e = h = (x − y)2. Therfore (x − y) = √ h = d.Since d is the difference 
between the unknown numbers x and y, their values can be determined by Book I, Proposition 1, where Jordanus demonstrated 
that “if a given number is divided in two and their difference is given, each of them will be given,” The numbers are found 
from their sum and difference. Since x + y = s and x − y = d, it follows that y − d, it follows that y + d = x and, therefore, 2 y + d 
= x + y = s; hence 2 y = s − d, y = (s − d)-2, and x = s − y. Should we be given the ratio between x and y, say r, and the product 
of their sum and difference, say p, the values of x and y are determinable by Book IV, Proposition 7, as follows: since x- y = r, 
x2/ y2 = r2; moreover, since (x + y) (x − y) = p, therefore x2 − y2 = p. Now x2 = r2y2, so that (r2 − 1) y2 = p and In the numerical 
example r = 3 and p = 32, which yields y = 2 and x = 6. 

In the Arithmeticathe third and probably most widely known of his three major mathematical works, Jordanus included more 
than 400 propositions in ten books which became the standard source of theoretical arithmetic in the Middle Ages. Proceeding 
by definitions, postulates, and axioms the Arithmetica was modeled after the arithmetic books of Euclid’s Elementsa treatise 
which Jordanus undoubtedly used, although the proofs frequently differ. Jordanus’ Arithmetica contrasts sharply with the 
popular, non- formal, and often philosophical Arithmetica of Boethius. A typical proposition, which has no counterpart in 
Euclid’s Elements, is Book I, Proposition 9: 

The [total sum or] result of the multiplication of any number by however many numbers you please is equal to [est quantum] 
the result of the multiplication of the same number by the number composed of all the others. 

Let A be the number multiplied by B and C to produces D and E [respectively]. I say that the composite [or sum] of D and E is 
produced by multiplying A by the composite of B and C. For it is obvious by Definition [7] that B measures [numerat] D A 
times and that C measures E by the same number, namely, A times. By the sixth proposition of this book, you will easily be 
able to argue this.22 

Thus Jordanus proves that if A · B = D and A · C = E, then D + E = A (B + C). By Definition 7, D- B = A and E/C = A. And 
since D and E are equimultiples of B and C, respectively, then, by Proposition 6, it follows that B + C = 1/n (D + E) and, 
assuming n = A, we obtain A (B + C) = D + E. 

The Arabic number system also attracted Jordanus’ attention—if the Demonstratio Jordani de algorismo and a possible earlier 
and shorter version of it, the Opus numerorum, are actually by Jordanus. Once again Jordanus proceeded by definitions and 
propositions in a manner that differed radically from Johannes Sacrobosco’s Algorismus vulgaris, or Common Algorism. 
Unlike Sacrobosco, Jordanus described the arithmetic operations and extraction of roots succinctly and formally and without 
examples. Among the twenty-one definitions of the Demonstratio Jordani are those for addition, doubling, halving, 
multiplication, division, extraction of a root (these definitions are illustrated as propositions), simple number, composite 
number, digit, and article (which is ten or consists of tens). Propositions equivalent to the following are included: 

3. If a: b = c: d, then a · 10n: b = c · 10n: d 

12. 1 · 10n + 9 · 10n = 1 · 10n+1 

19. a · 10n + b · 10n = (a + b) 10n 

32. If a1 = a · 10, a2 = a · 100, a3 = a · 1,000, then (a · a1/ a2 = (a1· a2)- a2
1 = (a2 · a3)/ a2

2 = ... 

An algorithm of fractions, called Liber or Demonstratio de minutiis in some manuscripts, may also have been written by 
Jordanus. It describes in general terms arithmetic operations with fractions alone and with fractions and integers. He also 
composed a Liber de proportionibus, a brief treatise containing propositions akin to those in Book V of Euclid’s Elements. 
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BIBLIOGRAPHY 
I. Original Works.. In Richard Fournival’ Biblionomia twelve works are attributed to jordanus In codex 43 we find (1) The 
Philotegni, or De triangulis; (2) De ratione ponderum (3) De ponderum proportione; and (4) De quadratura circuli. In codex 
45 three works are listed (5) Practica, or Algorismus;(6) Practica de minutiis; and (7) Experimenta super algebra. Codex 47 
contains the lenghy (8) Arithmetica.Codex 48 includes (9) De numeris datis;(10) Quedam experimenta super progressione 
numerorum; and (11) Liber de proportionibus. Codex 59 includes a treatise called (12) Suppletiones plane spere. 

Numbers (2) and (3) are obviously statices. The De ratione ponderum is probably the De ratione ponderis edited and translated 
by E. A. Moody in E. A. Moody and M. Clagett, The Medieval Science of Weights (Scientia de ponderibus) (Madison, Wis., 
1952);its attribution to Jordanus has been questioned by Joseph E. Brown, The Scientia de ponderibus in the Later Middle 
Ages (ph.D. diss., University of Wis., 1967), pp. 64-66. In the same volume Moody has also edited and translated the Elementa 
Jordani super demonstrationem ponderum, a genuine work of Jordanus, which perphaps corresponds to the De ponderum 
proportione of the Biblionomia. 



The Philotegni, Or De triangulis, exists in two versions. The longer, and apparently later, version was published by 
Maximilian Curtze, “Jordani Nemorarii Geometria vel De triangulis libri IV”in Mitteilunge des Copperniucs-Vereins Für 
Wissenschaft und Kunst zu Thorn 6 (1887), from MS Dresden, Sachsisc Landesbibliothek, Db 86, fols. 50r-61v. Utilizing 
additional MSS, Marshall Clagett reedited and translated Props. IV.16 (quadrature of the circle), IV.20 (trisection of an angle), 
and IV. 22 (finding of two mean proportionals) in his Archimedes in the Middle Ages, I, The Arabo-Latin Tradition (Madison, 
Wis., 1964), 572-575, 672-677, and 662-663, respectively A shorter version, which lacks Props. II.9-12, 14-16, and IV.10 and 
terminates at IV.9 or IV.11, has been identified by Clagett. Both versions wil be reedited by Clagett in vol. IV of his 
Archimedes in the Middle Ages. of the 17 MSS of the two versions which Clagett has found thus far, we may note, in addition 
to the Dresden MS used by Curtze, the following: Paris, BN lat. 7378A, 29r-36r; London, Brit. Mus., Sloane 285, 80r-92v; 
Florence, Bibl. Naz. Centr., Conv. Soppr. J. V. 18, 17r-29v; and London, Brit. Mus., Harley 625, 12r-130r. 

The De quadratura circuli attributed to Jordanus as a separate treatise in Fournival’s Biblionomia may be indentical with BK. 
IV, Prop. 16 of the De triangulis, which bears the title “To From a Square Equal to a Given Circle” (quoted above; for the 
Latin text, see Clagett, Archimedes in the Middle Ages, I, 572, 574). In at least one thirteenthcentury MS (Oxford, Corpus 
Christi College 251, 84v) the proposition stands by itself completely separated from the rest of the De triangulis, an indication 
that it may have circulated independently (for other MSS, see Clagett, Archimedes, I, 569). 

The De numeris datis has been edited three times. It was first published on the basis of a single fourteenth-century MS, Basel 
F. II. 138v-145v, by P. Treutlein, “Der Traktat des Jordanus Nemorarius “De numeris datis” in Abhandlungen zur Geschichte 
der Mathematik, no. 2 (Leipzig, 1879), pp. 125-166. Relyin on MS Dresden Db86 supplemented by MS Dresden C80, 
Maximilian Curtze reedited the De numeris datis and subdivided it into four books in “Commentar zu dem ‘Tractatus de 
numeris datis’ des Jordanus Nemorarius “in Zeitschrift fü Mathematik und Physik, hist.-lit. Abt., 36 (1819), 1-23, 41-63, 81-
95, 121-138. In MS Dresden C80 Curtze found additional propositions (IV.16-IV.35) beyond the concluding propositiopn in 
Treuleins’s ed. The additional proposition included on proofs but only the enunciations of the propositions followed 
immediately by a single numerical example for each. That these extra propositions formed a genuine part of the De numeris 
datis was verified by MSS Vienna 4770 and 5303, which included not only the additional propositions but also their proofs. 
Using MS Vienna 4770, from which 5303 was copied, R. Daublebsky von Sterneck published complete versions of Props. IV. 
15-IV.35 and also supplied corrections and additions to a few propositions in Bk., I in Zur Vervollstündigung der Ausgaben 
der Schrift des Jordanus Nemorarius: ‘Tractatus de numerise datis’” in Monatshefte für Mathematik und Physik, 7 (1896), 165-
179. A third ed., with the first English trans., has been completed by Barnabas Hughes: The De numeris datis of Jordanus de 
Nemore, a Critical Edition, Analysis, Evaluation and Translation (Ph.D.diss., Stanford University, 1970). Hughes’s through 
study also includes pp.104) a history of previous editions, as well as a description of twelve MSS, whose relationships are 
discussed in detail. 

A Russian translation from Curtze’s edition was made by S. N.sreĺder, “The Beginnings of Algebra in Medieval Europe in the 
Treatise De numeris datis of Jordanus de Nemore” in Istoriko-Matematicheskie issledovaniya, 12 (1959), 679-688. 

As yet there is no ed. of the ten-book Arithmetica, although the enunciations of the propositions were published by Jacques 
LefÈvre d’Etaples (Jacobus Faber Stapulensis), who supplied his own demonstrations and comments in Arithmetica (lordani 
Nemorarii) decem libris demonstrata (Paris, 1496, 1503, 1507, 1510, 1514). At least sixteen complete or partial MSS of it are 
presently known, among which are two excellent and complete thirteenthcentury MSS: Paris, BN 16644, 2r-93v; and Vat. lat., 
Ottoboni MS 2069, lr-51v. 

The Latin text of the definitions and enunciations of the 34 propositions of the Demonstratio Jordani de algorismo were 
published by G. Eneström, “über die ‘Demonstratio Jordani de algorismo,’” in Bibliotheca mathematica, 3rd ser., 7 (1906-
1907), 24-37, from MSS Berlin, lat. 4° 510, 72v-77r (königliche Bibliothek, renamed Preussische Staatsbibliothek in 1918; the 
fate of this codex after World War II when the basic collection was divided between East and West Germany, is unknown to 
me) and Dresden Db 86, 169-175r The Demonstratio appears to be an altered version of a similar and earlier work beginning 
with the words “Communis et consuetus. . .,” which Eneström called Opus numerorum. The Latin text of its introduction and a 
comparison of its propositions with those of the Demonstratio Jordani were published by Eneström as “über eine dem 
Jordanus Nemorarius zugeschriebene kurze Algorismusschrift,” in Bibliotheca mathematica, 3rd ser., 8 (1907-1908). 135-153. 
He relied primarily on MS Vat. lat. Ottob. 309, 114r-117r, supplemented by MSS Vat. lat. Reg. Suev. 1268, 69r-71r; Florence, 
Bibl. Naz. Centr., Conv. Soppr. J. V.18 (cited by Eneström as San Marco 216, its previous designation), 37r-39r; “and Paris 
Mazarin 3642-96r 105r”. Since the “Demonstratio Jor dani was definitely” ascribed to Jordanus, and the Opus numerorum 
seemed an earlier version of it, Eneström conjectured that the Opus was a more likely candidate for Jordanus’ original work, 
while the Demonstratio Jordani, which omits most of the introduction but expands the text itself, may have been revised by 
Jordanus or someone else. 

Each of these two treatises has associated with it a brief work, attributed in some MSS to Jordanus, on arithmetic operations 
with fractions. The treatise associated with the Opus numerorum, which Eneström, calls Tractatus minutiarum contains an 
introduction and 26 highly abbreviated propositions; the work on fractions associated with the Demonstratio Jordani de 
algorismo, which Eneström calls Demonstratio de minutiis, consists of an introduction and 35 propositions. Although the 
introductions difer, all 26 propositions of the Tractatus minutia have, according to Eneström, identical counterparts in the 
longer Demonstratio de minutiis In “Das Bruchrechnen des Jordanus Nemorarius,” in Bibliotheca mathematica 3rd ser., 14 
(1913-1914), 41-54, Eneström includes a list of MSS for both treatises (pp. 41-42), the Latin texts of the introductions the texts 
of the enunciations of the propositions, and analytic representations of the propositions, By analogy with his reasoning about 



the relations obtaining between the Opus numerorum and Demonstratio Jordani de algorismo Eneström conjectures that 
Jordanus is the auther of the Tractatus minutiarum, the briefer treatise associated with the Opus numerorum. One of the MSS is 
Bibl. Naz. centr., Conv. Soppr. J. V. 18. 39r-42r, which follows immediately after the Opus numerorum in the same codex 
cited above; correspondingly, MS Berlin, lat. 4 510, 72r-77r, of the Demonstratio Jordani de algorismo is followed 
immediately by a version of the Demonstratio de minutiis on fols. 77r-81v, a relation which also seems to obtain in Bibl. Naz. 
centr., Conv. soppr. J. I. 32, 113r-118v 118v-124r. Whether the two algorithm treatises and the two associated treatises on 
fractions bear any relation to works (5), (6) (7), or (10), cited above from the Biblionomia, has yet to be determined and may 
indeed be impossible to determine. The Algorismus demonstratus published in 1534 by J. Suchöner and formerly ascribed to 
Jordanus, was composed by a Master Gernardus, who is perhaps identical with Gerard of Brussels. 

The Liber de proportionibus mentioned in the Biblionomia, is probably a brief work by Jordanus beginning with the words 
“Proportio est rei ad rem determinata secundum quantitatem habitude....” A seemingly complete MS of it is Florence, Bibl. 
Naz. centr. Conv. Soppr. J.V. 30, 8r-9v. Other MSS are listed in L. Thorndike and P. kibre, A Catalogue of Incipits of 
Mediaeval Scientific Writings in Latin rev. ed. (Cambridge, Mass., 1963), col. 1139. The Suppletiones plane spere of the 
Biblionomia is probably a commentary on Ptolemy’s Planisphaerium. According to G. Sarton, Introduction to the History of 
Science 3 vols. in 5 pts., II, pt. 2 (Baltimore, 1931), 614, it is “a treatise on mathematical astronomy, which contains the first 
general demonstration of the fundamental property of stereographic projection i.e., that circles are projected as circles (ptolemy 
had proved it only in special cases)” In Thorndike and Kibre op cit., Jordanus’ Planisphaerium is listed under three separate 
and different incipits (see cols. 1119, 1524, and 1525, where MSS are lished for each). An edition appeared at Venice in 1558, 
under the title Ptolemaei Planisphaerium: Iordani Planisphaerium; Federici Commandi Urbinatis in Ptolemaei 
Planisphaerium commentarius A work on isoperimetric figures, De figuris ysoperimetris, is also attributed to Jordanus; MSS 
Florence, Bibl. Naz. Centr., Conv. Soppr. J. V. 30, 12v (a fragment) and Vienna 5203, 142r-146r, the latter actually copied by 
Regiomontanus who was also acquainted with Jordanus’ De triangulis, Planisphaerium, Arithmetica, De numeris datis and De 
proportionibus; the enunciations of the eight propositions in the Vienna MS were published by Maximilian Curtze, “Eine 
Studienreise,” in Zentralblatt für Bibliothekswesen 16 (1899), 264-265. 

II. Secondary Literature. The most significant studies on Jordanus are monographic in character and have been cited above, 
since they are associated with editions and translations of his works. No general appraisal and evaluation of his scientific 
works has yet been published. To what has already been cited the following may be added; O. Klein, “Who was Jordanus 
Nemorarius?,” in Nuclear Physics 57 (1964), 345-350; Benjamin Ginzberg, “Duhem and Jordanus Nemorarius,” in Isis 25 
(1936), 341-362, which seeks to refute Duhem’s claims for medieval science and for Jordanus’statics in particular (Ginzberg 
seriously misread Duhem and was also ignorant of Jordanus’ subsequent impact on later statics, believing mistakenly that all 
of it was rediscovered); M, Clagett, The Science of Mechanics in the Middle Ages (Madison, Wis., 1959), ch.2, which is a 
summary of medieval contributions in statics, including source selections from the works of Jordanus; Joseph E. Brown, The 
Scientia de ponderibus in the Later Middle Ages (Ph. D. diss., University of Wis., 1967), which includes summaries and 
evaluations of the major principles in Jordanus’statical treatises and their subsequent influence in the commentary literature; 
and G., Wertheim, über die Lösung einiger Aufgaben in De numeris daits,” in Bibliotheca mathematica, 1 (1900), 417-420. 
Additional bibliography is given in Sarton, op. cit., II, pt. 2, 614-616. 
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