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(b. Edinburgh, Scotland, 13 June 1831; d. Cambridge, England, 5 November 1879) 

Physics. 

Maxwell was a descendant of the Clerks of Penicuik, a family prominent in Edinburgh from 1670 on, who had twice 
intermarried during the eighteenth century with the heiresses of the Maxwells of Middlebie, illegitimate offspring of the eighth 
Lord Maxwell. His father, John Clerk (Maxwell), younger brother of Sir George Clerk, M.P., inherited the Middlebie property 
and took the name Maxwell in consequence of some earlier legal manipulations which prevented the two family properties 
being held together. The estate, some 1,500 acres of farmland near Dalbeattie in Galloway (southwestern Scotland), descended 
to Maxwell; and much of his scientific writing was done there. Maxwell’s mother was Frances Cay, daughter of R. Hodshon 
Cay, a member of a Northumbrian family residing in Edinburgh. She died when he was eight years old. On both parents’ sides 
Maxwell inherited intellectual traditions connected with the law, as was common in cultivated Edinburgh families. John Clerk 
Maxwell had been trained as an advocate, but his chief interest was in practical, technical matters. He was a fellow of the 
Royal Society of Edinburgh and published one scientific paper, a proposal for an automatic-feed printing press. Maxwell’s 
father was a Presbyterian and his mother an Episcopalian. Maxwell himself maintained a strong Christian faith, with a strain of 
mysticism which has affinities with the religious traditions of the Galloway region, where he grew up. 

From 1841 Maxwell attended Edinburgh Academy, where he met his lifelong friend and biographer, the Platonic scholar 
Lewis Campbell, and P. G. Tait. He entered Edinburgh University in 1847 and came under the influence of the physicist and 
alpinist James David Forbes and the metaphysician Sir William Hamilton. In 1850 he went up to Cambridge (Peterhouse one 
term, then Trinity), where he studied under the great private tutor William Hopkins and was also influenced by G. G. Stokes 
and William Whewell. He graduated second wrangler and first Smith’s prizeman (bracketed equal with E. J. Routh) in 1854. 
He became a fellow of Trinity in 1855. Maxwell held professorships at Marischal College, Aberdeen, and King’s College, 
London, from 1856 to 1865, when he retired from regular academic life to write his celebrated Treatise on Electricity and 
Magnetism and to put into effect a long-cherished scheme for enlarging his house. During the four years 1866, 1867, 1869, and 
1870, he also served as examiner or moderator in the Cambridge mathematical tripos, instituting some widely praised reforms 
in the substance and style of the examinations. In 1871 he was appointed first professor of experimental physics at Cambridge 
and planned and developed the Cavendish Laboratory. On 4 July 1858 he married Katherine Mary Dewar, daughter of the 
principal of Marischal College and seven years his senior. They had no children. He died in 1879 at the age of forty-eight from 
abdominal cancer. 

Maxwell’s place in the history of physics is fixed by his revolutionary investigations in electromagnetism and the kinetic 
theory of gases, along with substantial contributions in several other theoretical and experimental fields: (1) color vision, (2) 
the theory of Saturn’s rings, (3) geometrical optics, (4) photoelasticity, (5) thermodynamics, (6) the theory of servomechanisms 
(governors),(7) viscoelasticity, (8)reciprocal diagrams in engineering structures, and (9) relaxation processes. He wrote four 
books and about one hundred papers. He was joint scientific editor with T. H. Huxley of the famous ninth edition of the 
Encyclopaedia Britannica, to which he contributed many articles. His grasp of both the history and the philosophy of science 
was exceptional, as may be seen from the interesting philosophical asides in his original papers and from his general writings. 
His Unpublished Electrical Researches of the Hon. Henry Cavendish (1879) is a classic of scientific editing, with a unique 
series of notes on investigations suggested by Cavendish’s work. 

It was Maxwell’s habit to work on different subjects in sequence, sometimes with an interval of several years between 
successive papers in the same field. Six years elapsed between his first and second papers on electricity (1855, 1861), twelve 
years between his second and third major papers on kinetic theory (1867, 1879). The account of his work must therefore be 
grouped by subject rather than in strict chronological order; a description of his juvenile papers and the studies on color vision 
and Saturn’s rings is useful in illustrating his intellectual development up to 1859. 

Juvenilia (1845–1854). Maxwell’s first paper was published when he was fourteen years old. It followed the efforts of D. R. 
Hay, a well-known decorative artist in Edinburgh, to find a method of drawing a perfect oval similar to the string property of 
the ellipse. Maxwell discovered that when the string used for the ellipse is folded back on itself n times toward one focus and 
m times toward the other, a true oval is generated, one of the kind first studied by Descartes in connection with the refraction 
of light. Although Descartes had described ways of generating the curves, Maxwell’s method was new. His father showed the 
results to J. D. Forbes, who secured publication in the Proceedings of the Royal Society of Edinburgh. Shortly afterward 
Maxwell wrote a remarkable manuscript, which is reproduced in facsimile by his biographers, on the geometrical and optical 
properties of ovals and related curves of higher order. It afforded a foretaste of two of his lifelong characteristics: thoroughness 
and a predilection for geometrical reasoning. Both qualities, traditional in Scottish education, were powerfully reinforced for 



Maxwell by his teacher at Edinburgh Academy, James Gloag, a man of “strenuous character and quaint originality” to whom 
“mathematics was a mental and moral discipline.”1 

Three of Maxwell’s next four papers were on geometrical subjects. One, “On the Theory of Rolling Curves” (1848), analyzed 
the differential geometry of families of curves generated like the cycloid, by one figure rolling on another. Another (1853) was 
a brief investigation in geometrical optics, leading to the beautiful discovery of the “fish-eye” lens. The third was 
“Transformation of Surfaces by Bending,” which extended work begun by Gauss. The only paper from this period with a 
strictly physical subject was “On the Equilibrium of Elastic Solids,” written in 1850 shortly before Maxwell went up to 
Cambridge. In 1847 he had been taken by his uncle John Cay to visit the private laboratory of the experimental optician 
William Nicol, from whom he received a pair of polarizing prisms. With these he investigated the phenomenon of induced 
double refraction in strained glass, which had been discovered in 1826 by another famous Scottish experimenter, Sir David 
Brewster. Maxwell’s studies led him to the papers of Cauchy and Stokes. He developed a simple axiomatic formulation of the 
general theory of elasticity, solved various problems, and offered a conjectural explanation of induced double refraction based 
on strain functions. The alternative interpretation based on stress functions had been given earlier by F. E. Neumann, but 
Maxwell’s theory was independent and better. The usefulness of photoelastic techniques in studying stress distributions in 
engineering structures is well-known: retrospectively the paper is even more important as Maxwell’s first encounter with 
continuum mechanics. Its significance for his researches on the electromagnetic field and (more surprisingly) gas theory will 
shortly appear. 

Color Vision (1850–1870). Maxwell created the science of quantitative colorimetry. He proved that all colors may be matched 
by mixtures of three spectral stimuli, provided subtraction as well as addition of stimuli is allowed. He revived Thomas 
Young’s three-receptor theory of color vision and demonstrated that color blindness is due to the ineffectiveness of one or 
more receptors. He also projected the first color photograph and made other noteworthy contributions to physiological optics. 

Credit for reviving Young’s theory of vision is usually given to Helmholtz. His claim cannot be sustained. The paper it is 
based on, published in 1852, contained useful work, but Helmholtz overlooked the essential step of putting negative quantities 
in the color equations and explicitly rejected the three-receptor hypothesis;2 and although Grassmann in 1854 pointed out 
fallacies in his reasoning, there is no evidence that Helmholtz followed the argument through to a conclusion until after 
Maxwell’s work appeared. Artists had indeed known centuries before Maxwell or Helmholtz that the three so-called primary 
pigments, red, yellow, and blue, yield any desired hue by mixture; but several things clouded interpretation of the phenomena 
and hindered acceptance of Young’s idea. One was the weight of Newton’s claim that the prismatic spectrum contains seven 
primary colors rather than three. Another was the cool reception given to Young’s theory of light, which extended to his theory 
of vision. The course of speculation between Young and Maxwell has never been clearly charted. In Britain the three-receptor 
theory did nearly gain acceptance during the 1820’s. It was favorably discussed by John Herschel and Dalton as well as by 
Young: Herschel in particular suggested that Dalton’s red blindness might come from the absence of one of Young’s three 
receptors.3 A curious complication supervened, however. During the 1830’s Brewster performed experiments with absorption 
filters by which he claimed to demonstrate the existence of three kinds of light, distributed in various proportions throughout 
the spectrum. Color according to him was thus an objective property of light, not a physiological function of the human eye. 
Brewster’s interpretations were founded on his stubborn belief in the corpuscular theory of light, but the experiments seemed 
good and were accepted even by Herschel until Helmholtz eventually traced the effects to imperfect focusing. During the same 
period from 1830 on, wide general progress was made in physiological optics throughout Europe, in which the names of 
Purkinje, Haidinger, Johannes Müller, and Wartmann are memorable. In Britain the first statistical survey of color deficiency 
was conducted by George Wilson of Edinburgh—the chemist, and biographer of Cavendish—who brought to the subject a nice 
touch of topical alarmism through his lurid warnings about the dangers inherent in nighttime railway signaling. It was in an 
appendix to Wilson’s monograph On Colour Blindness (1855) that Maxwell’s first account of his researches appeared. 

Maxwell began experiments on color mixing in 1849 in Forbes’s laboratory at Edinburgh. At that time Edinburgh was 
unusually rich in students of color: besides Forbes, Wilson, and Brewster, there were William Swan, a physician interested in 
the eye, and D. R. Hay, who, in addition to his work in the geometry of design, had written a book entitled Nomenclature of 
Colours (1839) and supplied Forbes and Maxwell with tinted papers and tiles for their investigations. The experiments 
consisted in observing hues generated by colored sectors on a rapidly spinning disk. Forbes first repeated a standard 
experiment in which a series of colors representing those of the spectrum combine to give gray. He then tried to produce gray 
from combinations of red, yellow, and blue but failed—“and the reason was found to be, that blue and yellow do not make 
green, but a pinkish tint, when neither prevails in the combination.”4 No addition of red to this could produce a neutral tint. 

Using a top with adjustable sectors of tinted paper, Forbes and Maxwell went on to obtain quantitative color equations, 
employing red, blue, and green as primaries. Interestingly, Young, in one little-known passage, had made the same 
substitution.5 The standard rules for mixing pigments were explained by Maxwell, and independently by Helmholtz, as a 
secondary process, with the pigments acting as filters to light reflected from the underlying surface. 

In 1854, after his graduation from Cambridge, Maxwell was able to resume these researches, which Forbes had been 
compelled by a severe illness to abandon. He improved the top by adding a second set of adjustable sectors of smaller diameter 
than the first, to make accurate color comparisons, and obtained equations for several groups of observers which could be 
manipulated algebraically in a consistent manner. For color-deficient observers only two variables were needed. Maxwell then 
went on to prove that Newton’s method of displaying colors on a circle with white at the center implicitly satisfies the three-
receptor theory, since it is equivalent to representing each color datum by a point in a threedimensional space. With the 



experimental results plotted on a triangle having red, blue, and green corners, after the method of Young and Forbes, there is a 
white point w inside and an ordered curve of spectral colors outside the triangle very similar to Newton’s circle. Adapting 
terminology from D. R. Hay, Maxwell distinguished three new variables—hue (spectral color), tint (degree of saturation), 
shade (intensity of illumination)—corresponding to “angular position with respect to w, distance from w, and coefficient [of 
intensity].” There is an easy transformation from these variables and to the representation of colors as a sum of three primaries: 
hence “the relation between the two methods of reducing the elements to three becomes a matter of geometry.”6 All this is 
most modern. In later correspondence with Stokes (1862), Maxwell described manipulations of color coordinates to reduce 
data from different observers to a common white point. The advantages of this procedure were also pointed out by C. J. Monro 
in a letter to Maxwell, dated 3 March 1871, which was published in Campbell and Garnett’s Life of James Clerk Maxwell 
(1882), although other workers in colorimetry entirely ignored the idea until Ives and Guild rediscovered it fifty years later.7 

To go further, a new instrument less susceptible than the color top to conditions of illumination and properties of paper was 
called for. Accordingly Maxwell devised what he called his “colour-box,” in which mixtures of spectral stimulants were 
directly compared with a matching white field. The original version, perfected in 1858, consisted of two wooden boxes, each 
about three feet long, joined at an angle, containing a pair of refracting prisms at the intersection. An eyepiece was placed at 
one end; at the other were three slits, adjustable in position and aperture, which could be set at positions corresponding to any 
three wavelengths A, B, C in the spectrum formed by projecting white light through the eyepiece. By the principle of 
reciprocity, white light entering the slits yielded mixtures of A, B, C at the eyepiece, with intensities determined by the widths 
of the slits. Light from the same source (a sheet illuminated by sunlight) entered another aperture and was reflected past the 
edge of the second prism to the eyepiece, where the observer saw, side by side, two fields which he could match in hue and 
intensity. The spectrum locus determined by Maxwell’s observer K (his wife) is shown in Figure 1, together with the results of 
König and Abney (1903, 1913) and the 1931 standard observer. The Maxwells come out of the comparison rather well. 
Maxwell designed two other “colourboxes” on the same general principle. The second was made portable by the use of folded 
optics on the principle afterward adapted to the spectroscope by Littrow. The third gave hues of exceptional spectral purity by 
adopting a “double monochromator” principle, illuminating the slits with the spectrum from a second train of prisms 
symmetrically disposed rather than with direct sunlight. With it Maxwell studied variations of color sensitivity across the 
retina, a subject he had become interested in through his observations of the “Maxwell spot.” 

––– ○ Maxwell 1860 (observer K) 

––– □ König, Abney 1903, 1913 (recalculated Weaver) 

—— • C.I.E. standard observer 1931 (Wright, Guild) 

Most people, when they look at an extended source of polarized light, intermittently perceive a curious pair of yellow 
structures resembling a figure eight, with purple wings at the waist. These are the “brushes” discovered by Haidinger in 1844. 
They may be seen especially clearly by looking at a blue surface through a Nicol prism. Maxwell studied them with the prisms 
he had received from Nicol; and at the British Association meeting of 1850 he proposed attributing them to a polarizing 
structure in the yellow spot on the retina, a hypothesis which brought him into an amusing confrontation with Brewster, who 
attributed them to the cornea.8 Maxwell’s explanation is now accepted. In 1855 he noticed, in the blue region of the spectrum 
formed by looking through a prism at a vertical slit, an elongated dark spot which moved up and down with the eye and 
possessed the same polarizing structure as Haidinger’s brushes. This is the Maxwell spot. Later his wife discovered that she 
could not see the spot, there being almost no yellow pigment on her retinas. Noticing also a large discrepancy between her 
white point and his, Maxwell then found that his own color matches contained much less blue in the extrafoveal region and he 
proceeded to investigate variations of sensitivity across the retina for a large number of observers. He was able to exhibit the 
yellow spot—as he wrote to C. J. Monro in 1870—to “all who have it,—and all have it except Col. Strange, F. R. S., my late 
father-in-law and my wife,—whether they be Negroes, Jews, Parsees, Armenians, Russians, Italians, Germans, Frenchmen, 
Poles, etc.”9 Summaries of the work appeared in two brief papers and in a delightful correspondence with Monro, which also 
contains an interesting discussion on differences in color nomenclature between ancient and modern languages. 

In 1861 Maxwell projected the first trichromatic color photograph at the Royal Institution before an audience which included 
Faraday. The subject was a tartan ribbon photographed through red, green, and blue filters by Thomas Sutton, a colleague at 
King’s College, London, and then projected through the same filters. An odd fact which remained without explanation for 
many years was that the wet collodion plates used should not have given any red image, since that photographic process is 
completely insensitive to red. Yet contemporary descriptions make it clear that the colors were reproduced with some fidelity. 
In 1960 R. M. Evans and his colleagues at Kodak Research Laboratories, in a first-class piece of historical detective work, 
established that the red dyes in Maxwell’s ribbon also reflected ultraviolet light in a region just coinciding with a pass band in 
the ferric thiocyanate solution used as a filter. The “red” image was really obtained with ultraviolet light! The hypothesis is 
confirmed by the fact that the original red plate preserved at Cambridge is slightly out of focus, although Sutton carefully 
refocused the camera for visible red light. A repetition of the experiment under modern conditions gave a “surprisingly 
colorful reproduction of the original scene.”10 

Saturn’s Rings (1855–1859) . In 1855 the topic of the fourth Adams prize at Cambridge was announced as an investigation of 
the motions and stability of the rings of Saturn. Some calculations on Saturn’s rings, treated as solid bodies, had been given as 
early as 1787 by Laplace. He established that a uniform rigid ring would disintegrate unless (1) it is rotating at a speed where 
the centrifugal force balances the attraction of the planet and (2) the ratio ρr/ρs of its density to the density of Saturn exceeds a 



critical value 0.8, such that the attractions between inner and outer portions of the ring exceed the differences between 
centrifugal and gravitational forces at different radii. Also, the motions of a uniform ring are dynamically unstable: any 
displacement from equilibrium leads to an increased attraction in the direction of displacement, precipitating the ring against 
the planet. Laplace conjectured, however, that the motion is somehow stabilized by irregularities in the mass distribution; and 
in his dogmatic way asserted that the rings of Saturn are irregular solid bodies. That was where the theory still stood in 1855; 
meanwhile, a new dark ring and further divisions in the existing rings had been observed, along with some evidence fox slow 
changes in the overall dimensions of the system during the 200 years since its discovery. The examiners, James Challis, 
Samuel Parkinson, and William Thomson (the future Lord Kelvin), called for explanations of each point and an investigation 
of dynamical stability on the hypothesis that the rings are: (1) solid, (2) fluid, (3) composed of “masses of matter not mutually 
coherent,”11 These were the questions on which Maxwell spent much time between 1855 and 1859 in the essay to which the 
prize was awarded. 

Maxwell took up first the theory of the solid ring where Laplace had left it, and determined conditions for stability of a ring of 
arbitrary shape. Forming equations of motion in terms of the potential at the center of Saturn due to the ring, he obtained two 
restrictions on the first derivatives of the potential for uniform motion, and then, by a Taylor expansion, three more conditions 
on the second derivatives for stable motion. Maxwell next transformed these results into conditions on the first three 
coefficients of a Fourier series in the mass distribution. He was able to show that almost every conceivable ring was unstable 
except the curious special case of a uniform ring loaded at one point with a mass between 4.43 and 4.87 times the remaining 
mass. There the uneven distribution makes the total attraction act toward a point outside the ring in such a way that the 
instabilities affecting the moment of inertia are counteracted by a couple which alters the angular momentum. But such a ring 
would collapse under the uneven stress, and its lopsidedness would be plainly visible. The hypothesis of a solid ring is 
untenable. 

In considering nonrigid rings Maxwell again utilized Fourier’s theorem, but in a different way, examining the stability of 
various rings by expanding disturbances in their form into a series of waves. He took as a starting model, with which more 
complex structures could later be compared, a ring of solid satellites, equally spaced and all of equal mass. The motions may 
be resolved into four components: rotation about Saturn with constant angular velocity ω and small displacement ρ, σ, ζ in 
directions radial, tangential, and normal to the plane of the ring, Normal displacements of any satellite are manifestly stable, 
for the components of attraction to the other bodies always constitute a restoring force. Tangential disturbances might be 
expected to be unstable, since the attractions to neighboring satellites are in the direction of displacement; but Maxwell 
discovered that radial and tangential waves of a given order may be coupled together in a stable manner because the radial 
motions generate Coriolis forces through the rotation about the planet, which counterbalance the gravitational forces due to 
tangential motions, Detailed analysis revealed four kinds of waves, grouped in two pairs, all of which are stable if the mass of 
the central body is great enough. The motions are rather complicated; and Maxwell, “for the edification of sensible image 
worshippers,”12 had a mechanical model constructed to illustrate them in a ring of thirty-six satellites. Waves of the first two 
kinds move in opposite directions with respect to a point on the rotating ring, with a velocity nearly equal to ω/n, where ω is 
the angular velocity of the ring and n the number of undulations, Thus if there are five undulations the wave velocity is 1/5 of 
the ring velocity. Each satellite describes an elliptical path about its mean position in a sense opposite to the rotation of the ring 
itself, the major axis of the ellipse being approximately twice the minor axis and King near the tangential plane. If the number 
of satellites is μ, the highest-order waves, which are most likely to disrupt the ring, have μ/2 undulations. The stability criterion 
is 

S and R being the masses of Saturn and the ring, Stability is determined by tangential forces; the parameter defining them must 
lie between 0 and 0.07ω2. 

For rings of finite breadth Maxwell’s procedure was to examine simplified models which bracket the true situation. He began 
with rings whose inner and outer parts are so strongly bound together that the rotate uniformly. Such rings may be called 
semirigid. They are evidently subject to Laplace’s criterion of cohesion ρr/ρs > 0.8 but, like a ring of satellites, are also subject 
to conditions of stability against tangential disturbances. Maxwell established that tangential forces disrupt a semirigid ring of 
particles unless ρr/ρs < 0.003 and the of incompressible fluid unless ρr/ρs < 0.024. Since neither is compatible with Laplace’s 
criterion, neither kind of semirigid ring is stable. Various arguments then disposed of other gaseous and liquid rings, leaving as 
the only stable structute concentric circles of small satellites, each moving at a speed appropriate lo its distance from Saturn. 
Such rings cannot be treated independently: they attract one another. Maxwell presented a lengthy investigation of mutual 
perturbations between two rings. Usually they are stable; but at certain radii waves of different order may come into resonance 
and cause disruption, making particles fly off in all directions and collide with other rings. Maxwell estimated the rate of loss 
of energy and concluded that the whole system of rings would slowly spread out, as the observations indicated. He did not then 
study the general problem of motion among colliding bodies, but his unpublished manuscripts include one from 1863 applying 
the statistical methods that he later developed in the kinetic theory of gases to Saturn’s rings. 

In 1895 A. A. Belopolsky and C. Keeler independently confirmed the differential rotation of the rings by spectroscopic 
observations. Later the gaps between successive rings were attributed to resonance between orbital motions of the primary 
satellites of Saturn and local ring oscillations. More recently A. F. Cook and F. A. Franklin, using kinetic theory techniques, 
have shown that heat generated in collisions makes the rings expand in thickness unless it is removed by radiation, and have 
obtained closer restrictions on structure and density. Maxwell’s density limit ρr/ρs > 0.003 hits sometimes been interpreted as a 
limit on the actual rings; in reality it applies only to semirigid rings, where stability depends on tangential forces. With 
differential rotation the tangential waves are heavily damped and stability depends on radial motions. The true upper limit on 



ρr/ρs appears to be in the range 0.04 to 0.20. Spectroscopic evidence suggests the particles may be crystals of ice or carbon 
dioxide.13 

The essay tin Saturn’s rings illustrates Maxwell’s debt to Cambridge as sharply as the experiments on color vision reveal his 
debt to Edinburgh. It also established his scientific maturity. Success with a classical problem of such magnitude gave a 
mathematical self-assurance vitally important to his later work. Many letters testify to the concentrated effort involved, not the 
least interesting amongst them being one to a Cambridge friend, H. R. Droop: “I am very busy with Saturn on top of my 
regular work. He is all remodelled and recast, but I have more to do to him yet for I wish to redeem the character of 
mathematicians and make it intelligible.”14 To the graceful literary style and analytical clarity established there, two further 
broad qualities were added in Maxwell’s work over the next two decades. The great papers of the 1860’s continued at much 
the same level of analytical technique, with epoch-making advances in physical and philosophic insight. The books and articles 
of the 1870’s display growing mastery of mathematical abstraction in the use of matrices, vectors and quaternions, 
Hamiltonian dynamics, special functions, and considerations of symmetry and topology. The contrasting ways in which these 
different phases of Maxwell’S mature researches reflect his interaction with his contemporaries and his influence on the next 
scientific generation form a fascinating study which has not yet received due attention. 

Electricity, Magnetism, and the Electromagnetic Theory of Light (1854 1879) . Maxwell’s electrical researches began a 
few weeks after his graduation from Cambridge in 1854, and ended just before his death twenty-live years later with a 
referee’s report on a paper by G. F. FitzGerald. They fall into two broad cycles, with 1868 roughly the dividing point: the first 
a period of five major papers on the foundations of electromagnetic theory, the second a period of extension with the Treatise 
on Electricity and Magnetism, the Elementary Treatise on Electricity, and a dozen shorter papers on special problems. The 
position of the Treatise is peculiar. Most readers come to it expecting a svstemalie exposition of its authors ideas which makes 
further reference to earlier writings unnecessary. With many writers the expectation might be legitimate; with Maxwell it is a 
mistake. In a later conversation he remarked that the aim of the Treatise was not to expound his theory finally to the world but 
to educate himself by presenting a view of the stage he had reached.15 This is a clue well worth pondering. The truth is that by 
1868 Maxwell had already begun to think beyond his theory. He saw electricity not as just another branch of physics but as a 
subject of unique strategic importance, “as an aid to the interpretation of nature … and promoting the progress of science.”16 
Wishing, therefore, to follow up questions with wider scientific ramifications, he gave the Treatise a loose-knit structure, 
organized on historical and experimental rather than deductive lines. Ideas are exhibited at different phases of growth in 
different places; different sections are developed independently, with gaps, inconsistencies, or even flat contradictions in 
argument. It is a studio rather than a finished work of art. The studio, being Maxwell’S. is tidily arranged; and once one has 
grasped what is going on, it is wonderfully instructive to watch the artist at work; but anyone who finds himself there unawares 
is courting bewilderment, the more so if he overlooks Maxwells advice to read the four parts of the Treatise in parallel rather 
than in sequence. It is, for example, disconcerting to be told on reaching section 585, halfway through volume II , that 
Maxwell is now about to “begin again from a new foundation without any assumption except those of the dynamical theory as 
stated in Chapter VII ,” Similar difficulties occur throughout, The next fifty years endorsed Maxwells judgment about the 
special importance of electricity to physics as a whole, His premature death occurred just as his ideas were gaining adherents 
and he was starting an extensive revision of the Treatise. Not the least unfortunate consequence was that the definitive 
exposition of his theory which he intended was never written. 

Seen in retrospect, the course of physics up to about 1820 is a triumph of the Newtonian scientific program. The “forces” of 
nature—heat, light, electricity, magnetism, chemical action—were being progressively reduced to instantaneous attractions and 
repulsions between the particles of a series of fluids. Magnetism and static electricity were already known to obey inverse-
square laws similar to the law of gravitation. The first forty years of the nineteenth century saw a growing reaction against such 
a division of phenomena in favor of some kind of “correlation of forces.” Oersted’s discovery of electromagnetism in 1820 
was at once the first vindication and the most powerful stimulus of the new tendency, yet at the same time it was oddly 
disturbing. The action he observed between an electric current and a magnet differed from known phenomena in two essential 
ways: it was developed by electricity in motion, and the magnet was neither attracted to nor repelled by—but set transversely 
to—the wire carrying the current. To such a strange phenomenon widely different reactions were possible. Faraday took it as a 
new irreducible fact by which his other ideas were to be shaped. Andrè Marie Ampere and his followers sought to reconcile it 
with existing views about instantaneous action at a distance. 

Shortly after Oersted’S discovery Ampère discovered that a force also exists between two electric currents and put forward the 
brilliant hypothesis that all magnetism is electrical in origin. In 1826 he established a formula (not to be confused with the one 
attached to his name in textbooks) which reduced the known magnetic and electromagnetic phenomena to an inverse-square 
force along the line joining two current elements idl, i’ dl’ separated by a distance r, 

where G is a complex geometrical factor involving the angles between r, dl, and dl’. In 1845 F. E. Neumann derived the 
potential function corresponding to Ampère’s force and extended the theory to electromagnetic induction. Another extension 
developed by Wilhelm Weber was to combine Ampere’s law with the law of electrostatics to form a new theory, which also 
accounted for electromagnetic induction, treating the electric current as the flow of two equal and opposite groups of charged 
particles, subject to a force whose direction was always along the line joining two particles e, e’, but whose magnitude 
depended on their relative velocity ṙ and relative acceleration r ̈ along that line, 

c being a constant with dimensions of velocity. In 1856 Kohlrausch and Weber determined c experimentally by measuring the 
ratio of electrostatic to electrodynamic forces. Its value in the special units of Weber’s theory was about two-thirds the velocity 



of light. Equations (2) and (3) and Neumann’s potential theory provided the starting points for almost all the work done in 
Europe on electromagnetic theory until the 1870’s. 

The determining influences on Maxwell were Faraday and William Thomson. Faraday’s great discoveries—electromagnetic 
induction, dielectric phenomena, the laws of electrochemistry, diamagnetism, magneto-optical rotation—all sprang from the 
search for correlations of forces. They formed, in Maxwell’s words, “the nucleus of everything electric since 1830.”17 His 
contributions to theory lay in the progressive extension of ideas about lines of electric and magnetic force. His early discovery 
of electromagnetic rotations (the first electric motor) made him skeptical about attractive and repulsive forces, and his ideas 
rapidly advanced after 1831 with his success in describing electromagnetic induction by the motion of lines of magnetic force 
through the inductive circuit. In studying dielectric and electrolytic processes he imagined (wrongly) that their transmission in 
curved lines could not be reconciled with the hypothesis of direct action at a distance, attributing them instead to successive 
actions of contiguous portions of matter in the space between charged bodies. In his work on paramagnetism and 
diamagnetism he conceived the notion of magnetic conductivity (permeability); and finally, in the most brilliant of his 
conceptual papers, written in 1852, when he was sixty, he extended the principle of contiguous action in a general qualitative 
description of magnetic and electromagnetic phenomena, based on the assumption that lines of magnetic force have the 
physical property of shortening themselves and repelling each other sideways. A quantitative formulation of the last hypothesis 
was given by Maxwell in 1861. 

Thomson’s contribution began in 1841, while he was an undergraduate at Cambridge. His first paper established a formal 
analogy between the equations of electrostatics and the equations for flow of heat. Consider a point source of heat P embedded 
in a homogeneous conducting medium. Since the surface area of a sphere is 4πr2 the heat flux ø through a small area dS at a 
distance r from P is proportional to 1/r2 in analogy with Coulomb’s electrostatic law; thus by appropriate substitution a 
problem in electricity may be transposed into one in the theory of heat. Originally Thomson used the analogy as a source of 
analytical technique; but in 1845 he went on to examine and dispose of Faraday’s widely accepted claim that dielectric action 
cannot be reconciled with Coulomb’s law and, conversely, to supply the first exact mathematical description of lines of electric 
force. Later Thomson and Maxwell between them established a general similitude among static vector fields subject to the 
conditions of continuity and incompressibility, proving that identical equations describe (1) streamlines of frictionless 
incompressible fluids through porous media, (2) lines of flow of heat, (3) current electricity, and (4) lines of force in 
magnetostatics and electrostatics. 

Since it was Thomson’s peculiar genius to generate powerful disconnected insights rather than complete theories, much of his 
work is best described piecemeal along with Maxwell’s; but certain of his ideas from the 1840’s may first be mentioned, 
notably the method of electric images, a second formal analogy between magnetic forces and rotational strains in an elastic 
solid, and, most important, the many applications of energy principles to electricity which followed his involvement with 
thermodynamics. Amongst other things Thomson is responsible for the standard expressions and for energy in an inductance 
and in a condenser. He and (independently) Helmholtz also applied energy principles to give an extraordinarily simple 
derivation of Neumann’s induction equation. It so happened that the discussion of energy principles had a curious two-sided 
impact on Weber’s hypothesis. In 1846 Helmholtz presented an argument which seemed to show that the hypothesis was 
inconsistent with the principle of conservation of energy. His conclusion was widely accepted and formed one of the grounds 
on which Maxwell opposed the theory, but in 1869 Weber succeeded in rebutting it. By then, however, Maxwell had 
developed his theory, and the implication of the Thomson-Helmholtz argument had become clearer: that any theory which is 
consistent with energy principles automatically predicts induction. In retrospect, therefore, although Helmholtz was wrong in 
his first criticism, the agreement between Weber’s theory and experiment was also less compelling than Weber and his friends 
had supposed. 

Maxwell’s first paper, “On Faraday’s Line of Force” (1855–1856), was divided into two parts, with supplementary) examples. 
Its origin may he traced in a long correspondence with Thomson, edited by Larmor in 1936.18 Part 1 was an exposition of the 
analogy between lines of force and streamlines in an incompressible fluid. It contained one notable extension to Thomson’s 
treatment of the subject and also an illuminating opening discourse on the philosophical significance of analogies between 
different branches of physics. This was a theme to which Maxwell returned more than once. His biographers print in full an 
essay entitled “Analogies in Nature,” which he read a few months later (February 1856) to the famous Apostles Club at 
Cambridge; this puts the subject in a wider setting and deserves careful reading despite its involved and cryptic style. Here, as 
elsewhere, Maxwell’s metaphysical speculation discloses the influence of Sir William Hamilton, specifically of Hamilton’s 
Kantian view that all human knowledge is of relations rather than of things. The use Maxwell saw in the method of analogy 
was twofold. It crossfertilized technique between different fields, and it served as a golden mean between analytic abstraction 
and the method of hypothesis. The essence of analogy (in contrast with identity) being partial resemblance, its limits must be 
recognized as clearly as its existence; yet analogies may help in guarding against too facile commitment to a hypothesis. The 
analogy of an electric current to two phenomena as different as conduction of heat and the motion of a fluid should, Maxwell 
later observed, prevent physicists from hastily assuming that “electricity is either a substance like water, or a state of agitation 
like heat.”19 The analogy is geometrical: “a similarity between relations, not a similarity between the things related.”20 

Maxwell improved the presentation of the hydrodynamic analogy chiefly by considering the resistive medium through which 
the fluid moves. When an incompressible fluid goes from one medium into another of different porosity, the flow is continuous 
but a pressure difference develops across the boundary. Also, when one medium is replaced by another of different porosity, 
equivalent effects may be obtained formally by introducing appropriate sources or sinks of fluid at the boundary. These results 
were an important aid to calculation and helped in explaining several processes that occur in magnetic and dielectric materials. 



Another step was to consider a medium in which the porosity varies with direction. The necessary equations had been supplied 
by Stokes in a paper on the conduction of heat in crystals. They led to the remarkable conclusion that the vector a which 
defines the direction of fluid motion is not in general parallel to α , the direction of maximum pressure gradient. The two 
functions are linked by the equation 

where K is a tensor quantity describing the porosity. Applying the analogy to magnetism, Maxwell distinguished two vectors, 
the magnetic induction and the magnetic force, to which he later attached the symbols B and H . The parallel quantities in 
current electricity were the current density I and the electromotive intensity E . The distinction between B and H provided the 
key to a description of “magnecrystallic induction,” a force observed in crystalline magnetic materials by Faraday. Maxwell 
later identified the two quantities with the two definitions of magnetic force that Thomson had found to be required in 
developing parallel magnetostatic and electromagnetic theories of magnetism. The question of the two magnetic vectors B and 
H has disturbed several generations of students of electromagnetism. Maxwell’s discussion gives a far clearer starting point 
than anything to be found in the majority of modern textbooks on the subject. 

This physical distinction based on the hydrodynamic analogy led Maxwell to make an important mathematical distinction 
between two classes of vector functions, which he then called “quantities” and “intensities,” later “fluxes” and “forces.” A flux 
a is a vector subject to the continuity equation and is integrated over a surface; a force α (in Maxwell’s generalized sense of the 
term) is a vector usually, but not always, derivable from a single-valued potential function and is integrated along a line. The 
functions B and I are fluxes; H and E are forces. 

The close parallel that exists between electric currents and magnetic lines of force, which had been seen qualitatively by 
Faraday, was the concluding theme of Part 1 of Maxwell’s paper. Part 2 covered electromagnetism proper. In it Maxwell 
developed a new formal theory of electromagnetic processes. The starting point was an identity established by Ampère and 
Gauss between the magnetic effects of a closed electric current and those of a uniformly magnetized iron shell of the same 
perimeter. In analytic method the discussion followed Thomson’s “Mathematical Theory of Magnetism” (1851), as well as 
making extensive use of a theorem first proved by Thomson in 1847, in a letter to Stokes, and first published by Stokes as an 
examination question in the Smith’s prize paper taken by Maxwell in February 1854. This was the well-known equality 
(Stokes’s theorem) between the integral of a vector function around a closed curve and the integral of its curl over the enclosed 
surface. The original analysis given by Maxwell was Cartesian, but since in 1870 he himself introduced the terms “curl,” 
“divergence,” and “gradient” to denote the relevant vector operations, the notation may legitimately be modernized. The 
relationship between the flux and force vectors a and α contained in equation (4) has already been discussed. Pursuing a line of 
analysis started by Thomson, Maxwell now proceeded to show that any flux vector a may be related to a second, distinct force 
vector α , through the equation 

where β is a scalar function. Applying (4), (5) and other equations, Maxwell obtained a complete set of equations between the 
four vectors E, I, B, H , which describe electric currents and magnetic lines of force. He then went on to derive another vector 
function, for which he afterward used the symbol A , such that 

where the second term on the right-hand side may, in the absence of free magnetic poles, be eliminated by appropriate change 
of variables. Maxwell proved that the electromotive force E developed during induction is −δ/δt and that the total energy of an 
electromagnetic system is ∫ I · A dv. Thus the new function provided equations to represent ordinary magnetic action, 
electromagnetic induction, and the forces between closed currents. Maxwell called it the electrotonic function, following some 
speculations of Faraday’s about a hypothetical state of stress in matter, the “electrotonic state.” Later he identified it as a 
generalization of Neumann’s electrodynamic potential and established other properties (to be discussed shortly). 

The 1856 paper has been eclipsed by Maxwell’s later work, but its originality and importance are greater than is usually 
thought. Besides interpreting Faraday’s work and giving the electrotonic function, it contained the germ of a number of ideas 
which Maxwell was to revive or modify in 1868 and later: (1) an integral representation of the field equations (1868), (2) the 
treatment of electrical action as analogous to the motion of an incompressible fluid (1869, 1873), (3) the classification of 
vector functions into forces and fluxes (1870), and (4) an interesting formal symmetry in the equations connecting A, B, E , 
and H , different from the symmetry commonly recognized in the completed field equations. The paper ended with solutions to 
a series of problems, including an application of the electrotonic function to calculate the action of a magnetic field on a 
spinning conducting sphere. 

Maxwell’s next paper, “On Physical lines of Force” (1861–1862), began as an attempt to devise a medium occupying space 
which would account for the stresses associated by Faraday with lines of magnetic force. It ended with the stunning discovery 
that vibrations of the medium have properties identical with light. The original aim was one Maxwell had considered in 1856, 
and although he explicitly rejected any literal interpretation of the analogy between magnetic action and fluid motion, the 
meaning of the analogy can be extended by picturing a magnet as a kind of suction tube which draws in fluid ether at one end 
and expels it from the other. That idea had been suggested by Euler in 1761;21 it leads to a most remarkable result first 
published by Thomson in 1870 but probably known to Maxwell earlier.22 Geometrically the flow between two such tubes is 
identical with the lines of force between two magnets, but physically the actions are reciprocal: like ends of the tubes are 
attracted according to the inverse-square law; unlike ends are repelled. The difference is that in a fluid the Bernoulli forces 
create a pressure minimum where the streamlines are closest, while Faraday’s hypothesis requires a pressure maximum. 



The clue to to a medium having a right stress distribution came from an unexpected source. During the 1840’s the engineer W. 
J. M. Rankine (who like Maxwell had been a student of Forbes’s at Edinburgh) worked out a new theory of matter with 
applications to thermodynamics and the properties of gases, based on the hypothesis that molecules are small nuclei in an 
ethereal atmosphere, fixed in space but rotating at speeds proportional to temperature. In 1851 Thomson refereed one of 
Rankine’s papers. He was then concerning himself with thermodynamics, but five years later it dawned on him that molecular 
rotation was just the thing to account for the magneto-optical effect.23 Faraday had observed a slight rotation in the plane of 
polarization of light passing through a block of glass between the poles of a magnet. Using an analogy with a pendulum 
suspended from a spinning arm, Thomson concluded that the effect could be attributed to coupling between the ether 
vibrations and a spinning motion of the molecules of glass about the lines of force. Maxwell’s theory of physical lines of force 
consisted in extending this hypothesis of rotation in the magnetic field from ordinary matter to an ether. The influence of 
Thomson and Rankine is established by direct reference and by Maxwell’s use of Rankine’s term “molecular vortices” in the 
titles of each of the four parts of the paper. The charm of the story is that barely twelve months had passed since Maxwell had 
given the death blow to Rankine’s theory of gases through his own work on kinetic theory. 

Consider an array of vortices embedded in incompressible fluid. Normally the pressure is identical in all directions, but 
rotation causes centrifugal forces which make each vortex contract longitudinally and exert radial pressure. This is exactly the 
stress distribution proposed by Faraday for physical lines of force. By making the angular velocity of each vortex proportional 
to the local magnetic intensity, Maxwell obtained formulas identical with the existing theories for forces between magnets, 
steady currents, and diamagnetic bodies. Next came the problem of electromagnetic induction. It required some understanding 
of the action of electric currents on the vortex medium. That tied in with another question: how could two adjacent vortices 
rotate freely in the same sense, since their surfaces move in opposite directions? Figure 2, reproduced from Part 2 of the paper, 
illustrates Maxwell’s highly tentative solution. Each vortex is separated from its neighbors by a layer of minute particles, 
identified with electricity, counter-rotating like the idle wheels of a gear train. 

On this view electricity, instead of being a fluid confined to conductors, becomes an entity of a new kind, disseminated 
through space. In conductors it is free to move (though subject to resistance); in insulators (including the ultimate insulator, 
space) it remains fixed. The magnetic and inductive actions of currents are then visualized as follows. When a current flows in 
a wire A, it makes the adjacent vortices rotate; these in turn engage the next layer of particles and so on until an infinite series 
of vortex rings, which constitute lines of force, fills the surrounding space. For induction consider a second wire B with finite 
resistance, parallel to A. A steady current in A will not affect B; but any change in A will communicate an impulse through the 
intervening particles and vortices, causing a reverse current in B, which is then dissipated through resistance. This is induction. 
Quite unexpectedly 

pectedly the model also suggested a physical interpretation of the electrotonic function. In analyzing machinery several 
engineers, including Rankine, had found it useful to add to the motion of a mechanical part terms incorporating effects of 
connected gears and linkages, which they called the “reduced” inertia or momentum of the system. Maxwell discovered that 
the electrotonic function corresponds to the reduced momentum of the vortex system at each point. The equation for induced 
electromotive force E =δA /δ t is the generalized electrical equivalent of Newton’s equation between force and rate of change 
of momentum. 

There is good evidence internal and external to the paper that Maxwell meant originally to end here and did not begin Part 3 
until Part 2 had been printed.24 Meanwhile, he had been considering the relation between electric currents and the induction of 
charge through a dielectric. In 1854 he had remarked to Thomson that a literal treatment of the analogy between streamlines 
and lines of electric force would make induction nothing more than an extreme case of conduction.25 Now, with the picture of 
electricity as disseminated in space, Maxwell hit upon a better description, based partly on Faraday’s ideas, by making the 
vortex medium elastic. The forces between charged bodies could be attributed to potential energy stored in the medium by 
elastic distortion, as magnetic forces are attributed to stored rotational energy; and the difference between conduction and static 
electric induction is analogous to the difference between viscous and elastic processes in matter. 

Two amazing consequences swiftly followed. First, since the electric particles surrounding a conductor are now capable of 
elastic displacement, a varying current is no longer entirely confined like water in a pipe: it penetrates to some extent into the 
space surrounding the wire. Here was the first glimmering of Maxwell’s “displacement current.” Second, any elastic substance 
with density ρ and shear modulus m can transmit transverse waves with velocity . Making some ad hoc assumptions about the 
elastic structure of the vortex medium, Maxwell derived while he was in Scotland formulas connecting ρ and m with 
electromagnetic quantities, which implied a numerical relationship between v and Weber’s constant c. Returning to London for 
the academic year, Maxwell looked up the result of Kohlrausch and Weber’s experiment to determine c, and after putting their 
data in a form suitable for insertion into his equation he found that for a medium having a magnetic permeability μ equal to 
unity v was almost equal to the velocity of light. With excitement manifested in italics he wrote: “we can scarcely avoid the 
inference that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic 
phenomena.”26 Thus the great discovery was made; and Maxwell, following a calculation on the dielectric properties of 
birefringent crystals, returned in Part 4 to his starting point, the magneto-optical effect, and replaced Thomson’s spinning 
pendulum analogy with a more detailed theory in better accord with experiment. 

In 1861 the British Association formed a committee under Thomson’s chairmanship to determine a set of internationally 
acceptable electrical standards following the work of Weber. At Thomson’s urging, a new absolute system of units was 
adopted, similar to Weber’s, but based on energy principles rather than on a hypothetical electrodynamic force law. The first 



experiment was on the standard of resistance, and in 1862 Maxwell was appointed to the committee to help with that task. His 
third paper, “On the Elementary Relations of Electrical Quantities,” written in 1863 with the assistance of Fleeming Jenkin, 
supplied a vital step in his development, often overlooked through its having been, most unfortunately, omitted from the 
Scientific Papers.27 Extending a procedure begun by Fourier in the theory of heat, Maxwell set forth definitions of electric and 
magnetic quantities related to measures M, L, T of mass, length, and time, to provide the first—and one may also think the 
most lucid—exposition of that dual system of electrical units commonly but incorrectly known as the Gaussian system.28 The 
paper introduced the notation, which was to become standard, expressing dimensional relations as products of powers of M, L, 
T enclosed in brackets, with separate dimensionless multipliers. For every quantity the ratio of the two absolute definitions, 
based on forces between electric charges and forces between magnetic poles, proved to be some power of a constant c with 
dimensions [LT-1] and magnitude times Weber’s constant, or very nearly the velocity of light. The analysis disclosed five 
different classes of experiments from which c might be determined. One was a direct comparison of electrostatic and 
electromagnetic forces carried out by Maxwell and C. Hockin in 1868, and two others were started by Maxwell at Cambridge 
in the 1870’s.29 The results of many experiments over the next few years progressively converged with the measured velocity 
of light. 

By 1863, then, Maxwell had found a link of a purely phenomenological kind between electromagnetic quantities and the 
velocity of light. His fourth paper, “A Dynamical Theory of the Electromagnetic Field,” published in 1865, clinched matters. It 
provided a new theoretical framework for the subject, based on experiment and a few general dynamical principles, from 
which the propagation of electromagnetic waves through space followed without any special assumptions about molecular 
vortices or the forces between electric particles. This was the work of which Maxwell, in a rare moment of unveiled 
exuberance, wrote to his cousin Charles Cay, the mathematics master at Clifton College: “I have also a paper afloat, containing 
an electromagnetic theory of light, which, till I am convinced to the contrary, I hold to be great guns.”30 

Several factors, scientific and philosophical, settled the disposition of Maxwell’s artillery. From the beginning he had stressed 
the provisional character of the vortex model, especially its peculiar gearing of particles and vortices. Rankine was a 
cautionary example. In an article on thermodynamics written in 1877 Maxwell illuminated his own thought by observing that 
the vortex theory of matter, which at first served Rankine well, later became an encumbrance, distracting his attention from the 
general considerations on which thermodynamic formulas properly rest.31 Maxwell wished to avoid that trap. Yet he did not 
abandon all the ground gained in 1862. The idea of treating light and electromagnetism as processes in a common medium 
remained sound. Furthermore, the new theory was, as the title of the paper stated, a dynamical one: the medium remained 
subject to the general principles of dynamics. The novelty consisted in deducing wave propagation from equations related to 
electrical experiments instead of from a detailed mechanism; that was why the theory became known as the electromagnetic 
theory of light. Again Sir William Hamilton’s influence is discernible. Maxwell’s decision to replace the vortex model of 
electromagnetic and optical processes by an analysis of the relations between the two classes of phenomena is a concretization 
of Hamilton’s doctrine of the relativity of knowledge: all human knowledge is of relations between objects rather than of 
objects in themselves. 

More specifically the theory rested on three main principles. Maxwell retained the idea that electric and magnetic energy are 
disseminated, merely avoiding commitment to hypotheses about their mechanical forms in space. Here it is worth noticing that 
his formal expressions B. H /8π and D. E /8π for the two energy densities simply extend and interpret physically an integral 
transformation of Thomson’s.32 Next Maxwell revived various ideas about the geometry of lines of force from the 1856 paper. 
Third, and most important, he replaced the vortex hypothesis with a new macroscopic analogy between inductive circuits and 
coupled dynamical systems. The analogy seems to have germinated in Maxwell’s mind in 1863, while he was working out the 
theory of the British Association resistance experiment.33 In part it goes back to Thomson, especially to Thomson’s use of 
energy principles in the theory of the electric telegraph.34 It may be illustrated in various ways, of which the model shown in 
Figure 3, which Maxwell had constructed in 1874, is the most convenient.35 Two wheels, P and Q, are geared together through 
a 

differential mechanism with adjustable flyweights. Rotations of P and Q represent currents in two circuits; the moments of 
inertia represent coefficients of induction; a frictional band attached to Q represents the resistance of the secondary circuit. 
Every feature of electromagnetic induction is seen here. So long as P rotates uniformly, Q remains stationary; but when P is 
started or stopped, a reverse impulse is transmitted to Q. This impulse is determined by the acceleration, the coefficient of 
coupling, and the inertia and resistance of Q, in exact analogy with an electrical system. Again the definitive quantity has the 
nature of momentum, determined in the mechanical model by the positions of the flyweights and in the electromagnetic analog 
by the geometry of the circuits. The total “electrokinetic momentum” p is Li + Σj Mjij, where L and i are the self-inductance 
and current in a particular circuit and the Mj’s and ij’s are the mutual inductances and currents of neighboring circuits. Since p 
is the integral of the function A round the circuit, the analogy carries through at the macroscopic level Maxwell’s identification 
of A with the “reduced momentum” of the field. Combined with conservation of energy, it also gives the mechanical actions 
between circuits. Helmholtz and Thomson had applied energy principles to deduce the law of induction from Ampère’s force 
law; Maxwell inverted and generalized their argument to calculate forces from the induction formulas. Thus his first analytic 
treatment of the electrotonic function was metamorphosed into a complete dynamical theory of the field. 

In the Treatise Maxwell extended the dynamical formalism by a more thoroughgoing application of Lagrange’s equations than 
he had attempted in 1865. His doing so coincided with a general movement among British and European mathematicians about 
then toward wider use of the methods of analytical dynamics in physical problems. The course of that movement in Britain 
may be followed through Cayley’s two British Association reports on advanced dynamics of 1857 and 1862, Routh’s Treatise 



on the Dynamics of a System of Rigid Bodies (1860, 1868), and Thomson and Tait’s Treatise on Natural Philosophy (first 
edition 1867). Maxwell helped Thomson and Tait with comments on many sections of their text. Then, with the freshness of 
outlook that makes his work so appealing, he turned the current fad to his own ends by applying it to electromagnetism. Using 
arguments extraordinarily modern in flavor about the symmetry and vector structure of the terms, he expressed the Lagrangian 
for an electromagnetic system in its most general form. Green and others had developed similar arguments in studying the 
dynamics of the luminiferous ether, but the use Maxwell made of Lagrangian techniques was new to the point of being almost 
a new approach to physical theory—though many years were to pass before other physicists fully exploited the ground he had 
broken. The beauty of the Lagrangian method is that it allows new terms to be incorporated in the theory automatically as they 
arise, with a minimum of physical hypothesis. One that Maxwell devoted a chapter of the Treatise to was the magneto-optical 
effect. By a powerful application of symmetry considerations he put Thomson’s argument of 1856 on a rigorous basis and 
proved that any dynamical explanation of the rotation of the plane of polarized light must depend on local rotation in the 
magnetic field. In later terminology, the induction B is an axial vector, and the electrons in matter precess about the applied 
field: these are the elements of truth behind the molecular vortex hypothesis. Characteristically Maxwell did not limit his 
thinking to the general symmetry argument: he tested it by attempting to invent counter-examples. Elsewhere he wrote, “I have 
also tried a great many hypotheses [to explain the magneto-optical effect] besides those which I have published, and have been 
astonished at the way in which conditions likely to produce rotation are exactly neutralized by others not seen at first.”36 A 
further instance of the power of the Lagrangian methods, covered in the Treatise, is Maxwell’s analysis of cross-terms linking 
electrical and mechanical phenomena. This he did partly at the suggestion of J. W. Strutt (Lord Rayleigh)37. He identified three 
possible electromechanical effects, later detected by Barnett (1908), Einstein and de Haas (1916), and Tolman and Stewart 
(1916). The Barnett effect is a magnetic moment induced in a rapidly spinning iron bar. Maxwell himself had looked for the 
inverse phenomenon in 1861 during an experiment in search of the angular momentum of molecular vortices. 

In 1865, and again in the Treatise, Maxwell’s next step after completing the dynamical analogy was to develop a group of 
eight equations describing the electromagnetic field. They are set out in the table with subsidiary equations according to the 
form adopted in the Treatise. The principle they embody is that electromagnetic processes are transmitted by the separate and 
independent action of each charge (or magnetized body) on the surrounding space rather than by direct action at a distance. 
Formulas for the forces between moving charged bodies may indeed be derived from Maxwell’s equations, but the action is 
not along the line joining them and can be reconciled with dynamical principles only by taking into account the exchange of 
momentum with the field.39 Maxwell remarked that the equations might be condensed, but “to eliminate a quantity which 
expresses a useful idea would be rather a loss than a gain in this stage of our enquiry.”40 He had in fact simplified the equations 
in his fifth major paper, the short but important “Note on the Electromagnetic Theory of Light” (1868), writing them in an 
integral form without the function A , based on four postulates derived from electrical experiments. This may be called the 
electrical formulation of the theory, in contrast with the original dynamical formulation. It was later independently developed 
by Heaviside and Hertz and passed into the textbooks. It has the advantage of compactness and analytical symmetry, but its 
scope is more restricted and to some extent it concealed from the next generation of physicists ideas familiar to Maxwell which 
proved important later on. Two points in the table deserve comment for the modern reader. Equations(B) and (C) appear 
slightly unfamiliar, because (B) contains terms defined for a particular laboratory frame of reference, while (C), the so-called 
Lorentz force formula, contains a term in grad Ω for the force on isolated magnetic poles, should such exist. Elsewhere in the 
Treatise41 Maxwell began the investigation of moving frames of reference, a subject which in Einstein’s hands was to 
revolutionize physics. The second point concerns the addition of the displacement current D to the 

Note: Maxwell used S rather than I for electric current density. 

current of conduction I’ . In Maxwell’s treatment (unlike later textbooks) the extra term appears almost without explanation, 
arising as it does from his analogy between the paired phenomena of conduction and static induction in electricity and viscous 
flow and elastic displacement in the theory of materials. More will be said below about the implications of Maxwell’s view. 

Maxwell gave three distinct proofs of the existence of electromagnetic waves in 1865, 1868, and 1873. The disturbance has 
dual form, consisting in waves of magnetic force and electric displacement with motions perpendicular to the propagation 
vector and to each other. An alternative view given in the Treatise is to represent it as a transverse wave of the function A. In 
either version the theory yields strictly transverse motion, automatically eliminating the longitudinal waves which had 
embarrassed previous theories of light. 

Among later developments, the generation and detection of radio waves by Hertz in 1888 stands supreme; but there were 
others of nearly comparable interest. In the Treatise Maxwell established that light, on the electromagnetic theory, exerts a 
radiation pressure. Radiation pressure had been the subject of much speculation since the early eighteenth century; before 
Maxwell most people had assumed that its existence would be a crucial argument in favor of a corpuscular rather than a wave 
theory of light. When William Crookes discovered his radiometer effect in 1874, shortly after the publication of Maxwell’s 
Treatise, some persons thought that he had observed radiation pressure, but the disturbance was much larger than the predicted 
value and in the wrong direction, and was caused, as will be explained below, by convection currents in the residual gas. 
Maxwell’s formula was confirmed experimentally by Lebedev in 1900. The effect has implications in many branches of 
physics. It accounts for the repulsion of comets’ tails by the sun; it is, as Boltzmann proved in 1884, critical to the theory of 
blackbody radiation; it may be used in deriving classically the time-dilation formula of special relativity; it fixes the mass-
range of stars. 



Another very fruitful new area of research started by Maxwell was on the connections between electrical and optical properties 
of bodies. He obtained expressions for the torque on a birefringent crystal suspended in an electric field, for the relation 
between refractive index and dielectric constant in transparent media, and for the relation between optical absorption and 
electrical conductivity in metals. In the long wavelength limit the refractive index may be expected on the simplest theory to be 
proportional to the square root of the dielectric constant. Measurements by Boltzmann, J. E. H. Gordon, J. Hopkinson, and 
others confirmed Maxwell’s formula in gases and paraffin oils, but in some materials (most obviously, water) they revealed 
large discrepancies. These and like problems, including Maxwell’s own observation of a discrepancy between the observed 
and predicted ratios of optical absorption to electrical conductivity in gold leaf, formed a basis for decades of research on 
electro-optical phenomena. Much of what was done during the 1880’s and 1890’s should be seen as the beginnings of modern 
research on solid-state physics, though a full interpretation waited on the development of the quantum theory of solids. 

In classical optics Maxwell’s theory worked a revolution that is now rarely perceived. A popular fiction among twentieth-
century physicists is that mechanical theories of the ether were universally accepted and universally successful during the 
nineteenth century, until shaken by the null result of the Micheslon-Morley experiment on the motion of the earth through the 
ether. This little piece of textbook folklore is wrong in both its positive and its negative assertions. More will be said below 
about the Micheslon-Morley experiment, but long before that the classical ether theories were beset with grave difficulties on 
their own ground. The problem was to find a consistent dynamical foundation for the wave theory of light. During the 1820’s 
Fresnel had given his well-known formulas for double refraction and for the reflection of polarized light; they were confirmed 
later with extraordinary experimental accuracy, but Eresne’s successors had immense trouble in reconciling them with each 
other on any mechanical theory of the ether. In 1862 Stokes summarized forty years of arduous research, during which a dozen 
different ethers had been tried and found wanting, by remarking that in his opinion the true dynamical theory of double 
refraction was yet to be found.42 In 1865 Maxwell obtained Fresne’s wave surface for double refraction from the electro-
magnetic theory in the most straightforward way, completely avoiding the ad hoc supplementary conditions required in the 
mechanical theories. He did not then derive the reflection formulas, being uncertain about boundary conditions at high 
frequency;43 but in 1874 H. A. Lorentz obtained them also very simply, using the static boundary condition Maxwell had given 
in 1856. An equivalent calculation, probably independent, appears in an undated manuscript of Maxwell’s at Cambridge. The 
whole matter was investigated in two very powerful critical papers by Rayleigh (1881) and Gibbs (1888), and in the cycle of 
work begun by Thomson in his 1884 Baltimore Lectures. Rayleigh and Gibbs proved that Maxwell’s were the only equations 
that give formulas for refraction, reflection, and scattering of light consistent with each other and with experiment.44 Brief 
reference is appropriate here to James MacCullagh’s semi-mechanical theory of 1845, in which the ether was assigned a 
property of rotational elasticity different from the elastic properties of any ordinary substance. After Stokes in 1862 had raised 
formidable objections against the stability of MacCullagh’s medium, it was taken as disproved until FitzGerald and Larmor 
noticed a formal resemblance between MacCullagh’s and Maxwell’s equations. Since then the two theories have usually been 
considered homologous. In truth neither Stokes’s objections to, nor Larmor’s claims for, MacCullagh’s theory can be 
sustained. A dynamically stable medium with rotational elasticity supplied by gyrostatic action was invented by Thomson in 
1889.45 On the other hand, whereas MacCullagh made kinetic energy essentially linear and elastic energy rotational. Maxwell 
identified magnetism with rotational kinetic energy and electrification with a linear elastic displacement. Very peculiar 
assumptions about the action of the ether on matter are necessary to carry MacCullagh’s theory through at the molecular level; 
Maxwell’s extends naturally and immediately to the ionic theory of matter. Even as an optical hypothesis, apart from its other 
virtues, the position of Maxwell’s theory is unique. 

Maxwell’s statements about the luminiferous ether have an ambiguity which needs double care in view of the intellectual 
confusion of much twentieth-century comment on the subject. Selective quotation can make him sound as mechanistic as 
Thomson became in the 1880’s or as Machian as Einstein was in the early 1900’s. The Treatise concludes flatly that “there 
must be a medium or substance in which … energy exists after it leaves one body and before it reaches [an] other”;46 a later 
letter dismisses the ether as a “most conjectural scientific hypothesis.”47 Some remarks simply express the ultimate skepticism 
behind Maxwell’s working faith in science. Others hinge on the view he inherited from Whewell that reality is ordered in a 
series of tiers, each more or less complete in itself, each built on the one below, and that the key to discovery lies in finding 
“appropriate ideas”48 to describe the tier one is concerned with. By 1865 Maxwell was convinced that magnetic and electric 
energy are disseminated in space. As a “very probable hypothesis” he favored identifying the two forms of energy with “the 
motion and the strain of one and the same medium,”49 but definite knowledge about one tier must be distinguished from 
reasonable speculation about the next. That was the philosophic point of the Lagrangian method. In Hamilton’s terminology 
the best short statement of Maxwell’s position is that we may believe in the existence of the ether without direct knowledge of 
its properties; we know only relations between the phenomena it accounts for. In a striking passage from the article on 
thermodynamics mentioned above, perhaps written after seeing the famous bells at Terling near Rayleigh’s estate, Maxwell 
compared the situation to that of a group of bellringers confronted with ropes going to invisible machinery in the bell loft. 
Lagrange’s equations supply the “appropriate idea” expressing neither more nor less than is known about the visible motions: 
whether more detailed information about the machinery can be gained later remains open. In Maxwell’s, as in many later 
applications of Lagrange’s method, the energies involve electrical, not mechanical, quantities. If the “very probable 
hypothesis” is followed out and one term is equated with ordinary kinetic energy, then, as Thomson found in 1855, a lower 
limit to the density ρ of a mechanical ether can be calculated from the known energy density of sunlight.50 The flaw in 
Thomson’s argument lies in assuming an energy density it is resolved in relativistic dynamics by the mass-energy relation; the 
rest mass of the photon is zero. Considerations of this kind indicate the subtlety of the scientific transformation wrought by 
relativity theory. It eliminated the arguments for an ether of fixed position and finite density, yet it preserved intact Maxwell’s 
equations and his fundamental idea of disseminated electrical energy. More light is thrown on Maxwell’s own opinions about 
the problem of relative and absolute motion and the connection between dynamics and other branches of physics by the 
delightful monograph Matter and Motion, published in 1876. 



Maxwell’s influence in suggesting the Michelson-Morley ether-drift experiment is widely acknowleged, but the story is a 
curiously tangled one. It originates in the problem of the aberration of starlight. During the course of a year the apparent 
positions of stars, as fixed by transit measurements, vary by ±20.5 arc-seconds. This effect was discovered in 1728 by Bradley. 
He attributed it to the lateral motion of the telescope traveling at velocity v with the earth about the sun. On the corpuscular 
theory of light the motion causes a displacement of the image, while the particles travel from the objective to the focus, 
through an angular range ν/c just equal to the observed displacement. An explanation of aberration on the wave theory of light 
is harder to come by If the ether were a gas like the earth’s atmosphere (as was first supposed), it would be carried along with 
the telescope and one scarcely would expect any displacement. Young in 1804 therefore proposed that the ether must pass 
between the atoms in the telescope wall “as freely perhaps as the wind passes through a grove of trees.”51 The idea had 
promise, but in working it out other phenomena needed to be considered, many of which further illustrate the difficulties of 
classical ethers. To explain Maxwell’s involvement I depart from chronology and give the facts roughly in the order in which 
they presented themselves to him. 

In 1859 Fizeau proved experimentally that the velocity of light in a moving column of water is greater downstream than 
upstream. A natural supposition is that the water drags the ether along with it. This contradicts Young’s hypothesis in its most 
primitive form; however, the modified velocity was not c + w but c + w(l — l/μ2) where μ is the refractive index of water, and 
that tallied with a more sophisticated theory of aberration due to Fresnel. Fresnel held the conviction (not actually verified until 
1871) that the aberration coefficient in a telescope full of water must remain unchanged, which on Young’s theory it does not. 
He was able to satisfy that requirement by combining Young’s hypothesis with the further assumption that refraction is due to 
condensation of the ether in ordinary matter, the ether-density in a medium of refractive index μ being μ2 times its value in free 
space. With the excess ether carried along by matter one obtains the quoted formula, which is in consequence still known as 
the “Fresnel drag” term, though it stands on broader foundations, as Larmor afterwards proved. Indeed Fresnel’s condensation 
hypothesis is logically inconsistent with another principle that became accepted in the 1820’s, namely, that the ether, to convey 
transverse but not longitudinal waves, must be an incompressible solid. A dissatisfaction with Fresnel’s “startling 
assumptions” made Stokes in 1846 propose a radically new theory of aberration, treating the ether as a viscoelastic substance, 
like pitch or glass. For the rapid vibrations of light the ether acts as a solid, but for the slow motions of the solar system it 
resembles a viscous liquid, a portion of which is dragged along with each planetary body. A plausible circuital condition on the 
motion gives a deflection v/c for a beam of light approaching the earth, identical with the displacement that occurs inside the 
telescope in the other theories. 

Some time in 1862 or 1863 Maxwell read Fizeau’s paper and thought out an experiment to detect the ether wind. Since 
refraction is caused by differences in the velocity of light in different media, one might expect the Fresnel drag to modify the 
refraction of a glass prism movingthrough the ether. Maxwell calculated that the additional deflection in a 60° prism moving at 
the earth’s velocity would be 17 arc-seconds. He arranged a train of three prisms with a return mirror behind them in the 
manner of his portable “colour-box,” and set up what would now be called an autocollimator to look for the deflection, using a 
telescope with an illuminated eyepiece in which the image of the crosshair was refocused on itself after passing to and fro 
through the prisms. The displacement from ether motion could be seen by mounting the apparatus on a turntable, where the 
effect would reverse on rotating through 180°, giving an overall deflection after the double passage of 2½ arc-minutes: easily 
measurable. Maxwell could detect nothing, so in April 1864 he sent Stokes a paper for the Royal Society concluding that “the 
result of the experiment is decidedly negative to the hypothesis about the motion of the ether in the form stated here.”52 

Maxwell had blundered. Though he did not then know it, the French engineer Arago had done a crude version of the same 
experiment in 1810 (with errors too large for his result to have real significance), and Fresnel had based his theory on Arago’s 
negative result. Stokes knew all this, having written an article on the subject in 1845; he replied, pointing out Maxwell’s error, 
which had been to overlook the compensating change in density that occurs because the ether satisfies a continuity equation at 
the boundary.53 Maxwell withdrew the paper. He did give a description of the experiment three years later, with a corrected 
interpretation, in a letter to the astronomer William Huggins, who included it in his pioneering paper of 1868 on the 
measurement of the radial velocities of stars from the Doppler shifts of their spectral lines.54 There the matter rested until the 
last year of Maxwell’s life. Then in his article “Ether” for the Encyclopaedia Britannica he again reviewed the problem of 
motion through the ether. The only possible earth-based experiment was to measure variations in the velocity of light on a 
double journey between two mirrors. Maxwell concluded that the time differences in different directions, being of the order 
ν2/c2 would be too small to detect. He proposed another method from timing the eclipses of the moons of Jupiter, which he 
later described in more detail in a letter to the American astronomer D. P. Todd, published after his death in the Royal Society 
Proceedings and in Nature.55 His statements there about the difficulties of the earth-based experiment served as a challenge to 
the young Albert Michelson, who at once invented his famous interferometer to do it. 

The negative result of the experiment swung Michelson and everyone else behind Stokes’s theory of aberration. In 1885, 
however, Lorentz discovered that Stokes’s circuital condition on the motion of the ether is incompatible with having the ether 
stationary at the earth’s surface. Lorentz advanced a new theory combining some of Stokes’s ideas with some of Fresnel’s he 
also pointed out an oversight in Michelson’s (and Maxwell’s) analysis of the experiment, which halved the magnitude of the 
predicted effect, bringing it near the limits of the observations, Michelson and Morley then repeated the experiment with many 
improvements. Their conclusive results were published in 1887. In 1889 FitzGerald wrote to the American journal Science 
explaining the negative result by his contraction hypothesis.56 The same idea was advanced independently by Lorentz in 1893. 
Physics texts often refer to the FitzGerald-Lorentz contraction as an ad hoc assumption dreamed up to save appearances. It was 
not. The force between two electric charges is a function of their motion with respect to a common frame: Maxwell had shown 
it (incompletely and in another context) in the Treatise.57 Hence, as FitzGerald stated, all one need assume to explain the 
negative result of the Michelson-Morley experiment is that intermolecular forces obey the same laws as electromagnetic 



forces. The real (and great) merit of the special theory of relativity was pedagogical. It arranged the old confusing material in a 
clear deductive pattern. 

Reference may be made to some more technical contributions from Maxwell’s later work. A short paper of 1868, written after 
seeing an experiment by W. R. Grove, gave the first theoretical treatment of resonant alternating current circuits.58 Portions of 
the Treatise applied quaternion formulas discovered by Tait to the field equations, and paved the way for Heaviside’s and 
Gibbs’s developments of vector analysis. Maxwell put these and various related matters in a wider context in a paper of 1870, 
“On the Mathematical Classification of Physical Quantities.” He coined the terms “curl,” “convergence” (negative 
divergence), and “gradient” for the various products of the vector operator ▽ on scalar and vector quantities, with the less 
familiar but instructive term “concentration” for the operation ▽2 which gives the excess of a scalar V at a point over its 
average through the surrounding region.59 He extended also his previous treatment of force and flux vectors, introduced the 
important distinction between what are now (after W. Voigt) known as axial and polar vectors, and in other papers gave a 
useful physical treatment of the two classes of tensors later distinguished mathematically as covariant and contravariant.60 
Further analytical developments in the Treatise include applications of reciprocal theorems to electrostatics, a general 
treatment of Green’s functions, topological methods in field and network theory, and the beautiful polar representation of 
spherical harmonic functions.61 The Treatise also contains important contributions to experimental technique, such as the well-
known “Maxwell bridge” circuit for determining the magnitude of an inductance.62 

A consequence of the displacement hypothesis which Maxwell himself did not truly grasp until 1869 is that all electric 
currents, even in apparently open circuits, are in reality closed.63 But with that a new interpretation of electric charge became 
necessary. This is a subject of great difficulty, one of the most controversial in all Maxwell’s writings. Many critics from 
Heinrich Hertz on have come to feel that a consistent view of the nature of charge and electric current, compatible with 
Maxwell’s statements, simply does not exist. I believe these authors to be mistaken, although I admit that Maxwell gave them 
grounds for complaint, both by his laziness over plus and minus signs and by the fact that in parts of his work where the 
interpretation of charge was not the central issue he slipped back into terminology—and even ideas—not really compatible 
with his underlying view. The question is all the harder because the problem it touches (the relation between particles and 
fields) has continued as a difficulty in physics down to the present day. A full critical discussion would take many pages. I 
shall content myself with a short dogmatic statement, cautioning the reader that other opinions are possible. 

Before Maxwell, electricity had been represented as an independent fluid (or pair of fluids), the excess or deficiency of which 
constitutes a charge. But if currents are invariably closed, how can charge accumulate anywhere? Part, but only part, of the 
answer lies in the hypothesis, hinted at by Faraday and clearly stated by Maxwell in 1865, that electrostatic action is entirely a 
matter of dielectric polarization, with the conductor serving not as a receptacle for electric fluid but as a bounding surface for 
unbalanced polarization of the surrounding medium. The difference between the old and new interpretations of charge, 
illustrated in Figure 4(a) and (b), looks simple; but underneath are problems that Maxwell’s followers found bafflingly 
obscure. One source of confusion was that the polarization in 4(b) differs from that in the theory of material dielectrics 
proposed earlier by Thomson and Mossotti64 (Figure 4[c]), which made the effective charge Q at the boundary the sum of a 
real charge Q0 on the conductor and an apparent charge —Q′ on the dielectric surface. In Maxwell’s interpretation the 
polarization extends from material dielectrics to space itself; all charge is in a sense apparent charge, and the motion is in the 
opposite direction. All might have been well had Maxwell in the Treatise not discussed the difference between charge on a 
conductor and charge on a dielectric surface in language similar to Mossotti’s and if he had adopted a less liberal approach to 
the distinction between plus and minus signs. As it was, with the 

further novelty of totally closed currents, most people from Hertz on shook their heads in despair. 

Yet the two analogies on which Maxwell based his ideas—those between the motion of electricity and an incompressible fluid 
and between static induction and displacement—are both sound. The escape lies in recognizing the radical difference in 
meaning of the two charges illustrated in 4(a) and 4(b). Maxwell’s current is not the motion of charge, but the motion of a 
continuous uncharged quantity (not necessarily a substance); his charge is the measure of the displacement of that quantity 
relative to space. To the question puzzling Hertz—whether charge is the cause of polarization or polarization the cause of 
charge—the answer is “neither.” For Maxwell electromotive force is the fundamental quantity. It causes polarization; 
polarization creates stresses in the field; charge is the measure of stress. All these ideas are traceable to Maxwell; but nowhere, 
it must be conceded, are they fairly set out. The representation of electricity as an uncharged fluid may seem incompatible with 
electron theory. Actually it is not; and one of the oddities in Maxwell’s development is that the clue to reconciling the two 
ideas rests in the treatment of charges as sources and sinks of incompressible fluid given in his 1856 paper. That essentially 
was the principle of the ether-electron theory worked out by Larmor in 1899. 

Few things illustrate better the subtlety of physical analogy than Maxwell’s developing interpretations of the function A . His 
original discussion in 1856 was purely analytic. The dynamical theory led him to its representation as a property of electricity 
analogous to momentum, which reached fulfillment after his death in the expression (mv + eA/c) for the canonical momentum 
of the electron, mv being the momentum of the free particle and eA/c the reduced momentum contributed by sources in the 
surrounding field. In 1871 he perceived another, entirely different analogy for A. Considered in relation to electro-dynamic 
forces it resembles a potential, as may be seen by comparing the equation F = grad(i · A) for force on a conductor carrying a 
current with the equation F grad(eΦ) for force on a charged body. Maxwell introduced the terms “vector” and “scalar 
potential” for A and Φ and recognized, probably for the first time, that A was a generalization of F. E. Neumann’s 
electrodynamic potential, though his formulation differed in spirit and substance from Neumann’s, since it started from the 



field equations and incorporated displacement current. The formulas were later rearranged by FitzGerald, Liénard, and 
Wiechert as retarded potentials of the conduction currents, thus uncovering their common ground with L. V. Lorenz’s 
propagated action theory of electrodynamics. Both of Maxwell’s analogies may be carried through in detail: that is, equations 
in A exist analogous to every equation in dynamics involving momentum and every equation in potential theory involving Φ. 
The resemblance of a single function to two quantities so different as momentum and potential depends on the peculiar relation 
between electro-motive and electrodynamic forces: the electromotive force generated by induction is proportional to the 
velocity of the conductor times the electrodynamic force acting on it. The momentum analogy was little appreciated until 1959, 
when Y. Aharonov and D. J. Bohm pointed out some unexpected effects tied to the canonical momentum in quantum 
mechanics.65 

Statistical and Molecular Physics (1859–1878) . The problem of determining the motions of large numbers of colliding 
bodies came to Maxwell’s attention while he was investigating Saturn’s rings. He dismissed it then as hopelessly complicated; 
but in April 1859, as he was finishing his essay for publication, he chanced to read a new paper by Rudolf Clausius on the 
kinetic theory of gases, which convinced him otherwise and made him transfer his interest to gas theory. 

The idea of attributing pressure in gases to the random impacts of molecules against the walls of the containing vessel had 
been suggested before. Prevailing opinion, however, still favored Newton’s hypothesis of static repulsion between molecules 
or one of its variants, such as Rankine’s vortex hypothesis. Maxwell had been taught the static theory of gases as a student at 
Edinburgh. Behind the victory of kinetic theory led by Clausius and Maxwell lay two distinct scientific advances: the doctrine 
of conservation of energy, and an accumulation of enough experimental information about gases to shape a worthwhile theory. 
Many of the new discoveries from 1780 on, such as Dalton’s law of partial pressures, the law of equivalent volumes, and 
measurements on the failure of the ideal gas equation near liquefaction, came as by-products of chemical investigations. Two 
developments especially important to Maxwell were Thomas Graham’s long series of experiments on diffusion, transpiration, 
and allied phenomena, also begun as chemical researches, and Stokes’s analysis of gas viscosity, made in 1850 as part of a 
study on the damping of pendulums for gravitational measurements. Maxwell had used Stokes’s data in treating the hypothesis 
of gaseous rings for Saturn. Viscosity naturally became one of his first subjects for calculation in kinetic theory; to his 
astonishment the predicted coefficient was independent of the pressure of the gas. The experiments of his wife and himself 
between 1863 and 1865, which confirmed this seeming paradox, fixed the success of the theory. 

Clausius’ work appeared in two papers of 1857 and 1858, each of which contained results important to Maxwell. The first gave 
a greatly improved derivation of the known formula connecting pressure and volume in a system of moving molecules: 

where m is the mass of a molecule, its mean square velocity, and n the total number of molecules, from which, knowing the 
density at a given pressure, Clausius deduced (as others had done earlier) that the average speed must be several hundred 
meters per second. Another matter, whose full significance only became apparent after Maxwell’s work, was the exchange of 
energy between the translational and rotational motions of molecules. Clausius guessed that the average energies associated 
with the two types of motion would settle down to a constant ratio σ and from thermodynamical reasoning he derived an 
equation relating σ to the ratio γ of the two specific heats of a gas. 

Clausius’ second paper was written to counter a criticism by the Dutch meteorologist C. H. D. Buys Ballot, who objected that 
gas molecules could never be going as fast as Clausius imagined, since the odor of a pungent gas takes minutes to permeate a 
room. Clausius replied that molecules of finite diameter must be repeatedly colliding and rebounding in new directions, and he 
deduced from statistical arguments that the probability W of a molecule’s traveling a distance L without collision is 

where l is a characteristic “mean free path.” Assuming for convenience that all molecules have equal velocity, Clausius found 

where S is their diameter and N their number density. He could not determine the quantities explicitly but guessed that l/s 
might be about 1,000, from which l had to be a very small distance. Since by equation (8) only a minute fraction of molecules 
travel more than a few mean free paths without collision, Buys Ballot’s objection to kinetic theory was fallacious. 

Although Clausius had based his investigation on the simplifying assumption that all molecules of any one kind have the same 
velocity, he recognized that the velocities would in reality spread over a range of values. The first five propositions of 
Maxwell’s “Illustrations of the Dynamical Theory of Gases” (1860) led to a statistical formula for the distribution of velocities 
in a gas at uniform pressure, as follows. Let the components of molecular velocity in three axes be x, y, z. Then the number dN 
of molecules whose velocities lie between x and x + dx, y and y + dy, z and z + dz is N f(x) f(y) f(z) dx dy dz. But since the axes 
are arbitrary, dN depends only on the molecular speed ʋ where ʋ2 = x + 2 + z2 and the distribution must satisfy the functional 
relation 

the solution of which is an exponential. Applying the fact that N is finite, the resolved components of velocity in a given 
direction may be shown to have a distribution function identical in form with Laplace’s bell-shaped “normal distribution” in 
the theory of errors: 

where α is a quantity with dimensions of velocity. The number of particles summed over all directions with speeds between ʋ 
and ʋ + dʋ is 



Related formulas give the distributions in systems of two or more kinds of molecules. From them with (11) and (12) Maxwell 
was able to determine mean values of various products and powers of the velocities used in calculating gas properties. 

The derivation of equations (11) and (12) marks the beginning of a new epoch in physics. Statistical methods had long been 
used for analyzing observations, both in physics and in the social sciences, but Maxwell’s idea of describing actual physical 
processes by a statistical function was an extraordinary novelty. Its origin and validity deserve careful study. Intuitively 
equation (12) is plausible enough, since dNʋ approaches zero as ʋ approaches zero and infinity and has a maximum at ʋ = α, 
consistent with the natural physical expectation that only a few molecules will have very high or very low speeds. Empirically 
it was verified years later in experiments with molecular beams. Yet the assumption that the three resolved components of 
velocity are distributed independently is one which, as Maxwell later conceded, “may appear precarious”;66 and the whole 
derivation conveys a strange impression of having nothing to do with molecules or their collisions. Its roots go back to 
Maxwell’s Edinburgh days. His interest in probability theory was aroused in 1848 by Forbes, who reexamined a statistical 
argument for the existence of binary stars put forward in 1767 by the Reverend John Michell. Over the next few years he read 
thoroughly the statistical writings of Laplace and Boole and also another item of peculiar interest, a long essay by Sir John 
Herschel in the Edinburgh Review for June 1850 on Adolphe Quetelet’s Theory of Probability as Applied to the Moral and 
Social Sciences. Herschel’s review ranged over many issues, social and otherwise; and a contemporary letter to Lewis 
Campbell leases no doubt that Maxwell had read it.67 One passage embodied a popular derivation of the law of least squares 
applied to random distributions in two dimensions, based on the supposed independence of probabilities along different axes. 
The family resemblance to Maxwell’s derivation of equation (11) is striking. Thus early reading on statistics, study of gaseous 
rings for Saturn, and ideas from Clausius about probability and free path all contributed to Maxwell’s development of kinetic 
theory. 

In His slines appears to he one given by M. Kac in 1939. In his second paper, published in 1867, Maxwell offered a new 
derivation of the distribution law tied directly to molecular encounters. To maintain equilibrium the distribution function must 
satisfy the relation where v1 and are velocities of molecule 1 and v2 and of molecule 2 before and after encounter. Combination 
with the energy equation yielded formulas corresponding to (11) and (12). This established the equilibrium of the exponential 
distribution but not its uniqueness. From considerations of cyclic collision processes Maxwell sketched an argument that any 
velocity distribution would ultimately converge to the same form. The proof of the theorem in full mathematical rigor is still an 
open problem. Boltzmann gave an interesting extended version of Maxwell’s argument in his Lectures on Gas Theory (1892). 
Earlier he had formulated another approach (the H-theorem), which bears on the subject and is even more important as part of 
the development that eventually transcended gas theory and led to the separate science of statistical mechanics. One further 
point that has been examined by various writers is the status of Maxwell’s original derivation of the exponential law. Since the 
result is correct the hypotheses on which it was based must in some sense be justifiable. The best proof along Maxwell’s first 
lines appears to be one given by M. Kac in 1939.68 

Maxwell next applied the distribution function to evaluate coefficients of viscosity, diffusion, and heat conduction, as well as 
other properties of gases not studied by Clausius. He interpreted viscosity as the transfer of momentum between successive 
layers of molecules moving, like Saturn’s rings, with different transverse velocities. The probability of a molecule’s starting in 
a layer dz and ending in dz′ is found from Clausius’ equation (8) in combination with the distribution function. Integration 
gives the total frictional drag and an equation for the viscosity coefficient, 

where ρ is the density, Ī the mean free path, and v the mean molecular speed. Since Ī is inversely propertional to ρ, the 
viscosity is independent of pressure. The physical explanation of this result, given by Maxwell in a letter to Stokes of 30 May 
1859, is that although the number of molecules increases with pressure, the average distance over which each one carries 
momentum decreases with pressure.69 It holds experimentally over a wide range, only breaking down when ρ is so high that Ī 
becomes comparable with the diameter of a molecule or so low that it is comparable with the dimensions of the apparatus. 
Maxwell was able to calculate a numerical value for the free path by substituting into (13) a value for μ/ρ from Stokes’s data 
and a value for v from (7). The result was 5.6 x 106 cm. for air at atmospheric pressure and room temperature, which is within 
a factor of two of the current value. The calculations for diffusion and heat conduction proceeded along similar lines by 
determining the number of molecules and quantity of energy transferred in the gas. Applying the diffusion formulas to 
Graham’s experiments, Maxwell made a second, independent estimate of the free path in air as 6.3 x 106 cm. The good 
agreement between the results greatly strengthened the plausibility of the theory. There were, however, errors of principle and 
of arithmetic in some of the calculations, which Clausius exposed—not without a certain scholarly relish—in a new paper of 
1862. The chief mistake lay in continuing to use an isotropic distribution function in the presence of density and pressure 
gradients. Clausius offered a corrected theory; but since he persisted in assuming constant molecular velocity, it too was 
unsatisfactory. Maxwell wrote out his own revised theory in 1864; but having meanwhile become dissatisfied with the whole 
mean free path method, he withheld the details. The true value of Clausius’ criticism was to show the need for a formulation of 
kinetic theory consistent with known macroscopic equations. Maxwell was to produce it in 1867. 

One further important topic covered in the 1860 papers was the distribution of energy among different modes of motion of the 
molecules. Maxwell first established an equality, which had previously been somewhat sketchily derived by both Waterston 
and Clausius, between the average energies of translation of two sets of colliding particles with different molecular weights. 
He deduced that equal volumes of gas at fixed temperature and pressure contain the same number of molecules, accounting for 
the law of equivalent volumes in chemistry. Later, following out Clausius’ thoughts on specific heat, he studied the distribution 
of energy between translational and rotational motions of rough spherical particles and found that there too the average 
energies are equal. These two statistical equalities, between the separate translational motions of different molecular species 



and between the rotational and translational motions of a single species, are examples of a deep general principle in statistical 
mechanics, the “equipartition principle.” The second was an embarrassing surprise; for if molecules are point particles 
incapable of rotation, Clausius’ formula makes the specific heat ratio 1.666, and if they are rough spheres it makes it 1.333. 
The experimental mean for several gases was 1.408. Maxwell was so upset that he stated that the discrepancy “overturned the 
whole hypothesis.”70 His further wrestlings with equipartition in the 1870’s will be discussed below. 

The measurements of gaseous viscosity at different pressures and temperatures made by Maxwell and his wife71 in 1865 were 
their most useful contribution to experimental physics. The “Dynamical Theory of Gases,” which followed, was Maxwell’s 
greatest single paper. The experiment consisted in observing the decay of oscillations of a stack of disks torsionally suspended 
in a sealed chamber. Over the ranges studied, the viscosity μ was independent of pressure, as predicted, and very nearly a 
linear function of the absolute temperature T. But equation (12) implies that μ should vary as T½. The hypothesis that gas 
molecules are freely colliding spheres is therefore too simple, and Maxwell accordingly developed a new theory treating them 
as point centers of force subject to an inverse nth power repulsion. In a theory of this kind the mean free path ceases to be a 
clear-cut concept: molecules do not travel in straight lines but in complicated orbits with deflections and distances varying with 
velocity and initial path. Yet some quantity descriptive of the heterogeneous structure of the gas is needed. Maxwell replaced 
the characteristic distance l by a characteristic time, the “modulus of time of relaxation” of stresses in the gas. A second need, 
exposed by Clausius’ critical paper of 1862, was for a systematic procedure to connect molecular motions with the known 
macroscopic gas laws. On both points Maxwell’s thinking was influenced by Stokes’s work on the general equations of 
viscosity and elasticity. 

Elasticity may be defined as a stress developed in a body in reaction to change of form. Both solids and fluids exhibit elasticity 
of volume; solids alone are elastic against change of shape. A fluid resists changes of shape through its viscosity, but the 
resistance is evanescent: motion generates stresses proportional to velocity rather than displacement. In 1845 Stokes wrote a 
powerful paper giving a new treatment of the equations of motion of a viscous fluid. He noticed while doing so that if the time 
derivatives in the equations are replaced by spatial derivatives, they become the equations of stress for an elastic solid. Poisson 
also had noticed this transformation, but Stokes went further and remarked that viscosity and elasticity seem to be physically 
related through time. Substances like pitch and glass react as solids to rapid disturbances and as viscous liquids to slow ones. 
Stokes utilized this idea in the theory of aberration already described; other physicists also followed it up, among them Forbes, 
who, as an alpinist, applied it to the motions of glaciers. Maxwell’s early letters contain several references to Forbes’s 
opinions.72 His youthful work on elasticity made him acquainted with Stokes’s paper, and in 1861, as explained above in the 
section on electricity, he applied the analogy of viscosity and elasticity in another way to the processes of conduction and static 
induction through dielectrics. 

During the experiments on gases Maxwell’s attention was again directed to viscoelastic phenomena through having to correct 
for losses in the torsion wire from which his apparatus was suspended. His 1867 paper proposed a new method of specifying 
viscosity in extension of Stokes’s theory. In an ideal solid free from viscosity, a distortion or strain S of any kind creates a 
constant stress F equal to E times S, where E is the coefficient of elasticity for that particular kind of strain. In a viscous body F 
is not constant but tends to disappear. Maxwell conjectured that the rate of relaxation of stress is proportional to F, in which 
case the process may be described formally by the differential equation 

which gives an exponential decay of stress governed by the relaxation time τ. Processes short compared with τ are elastic; 
processes of longer duration are viscous. The viscosity μ is equal to Es times τ, where Es is the instantaneous rigidity against 
shearing stresses. A given substance may depart from solidity either by having small rigidity or short relaxation time, or both. 
Maxwell seems to have arrived at (14) from a comparison with Thomson’s telegraphy equations, inverting the anatogy 
between electrical and mechanical systems that he had developed in 1865. A test that immediately occurred to him was to look 
for induced double refraction in a moving fluid, comparable to the double refraction in strained solids discovered by Brewster, 
which he himself had analyzed in his paper of 1850 on the equilibrium of elastic solids. After some difficulty Maxwell 
eventually demonstrated in 1873 that a solution of Canada balsam in water exhibits temporary double refraction with a 
relaxation time of order 10−2 seconds.73 Maxwell’s theory of stress relaxation formed the starting point of the science of 
rheology and affected indirectly every branch of physics, as may be seen from the widespread use of his term “relaxation 
time.” Its immediate purpose lay in reaching a new formulation of the kinetic theory of gases. 

Consider a group of molecules moving about in a box. Their impact on the walls exerts pressure. If the volume is changed 
from V to V + dV, the pressure will change by an amount —p dV/V. But in the theory of elasticity the differential stress due to 
an isotropic change of volume is —E dV/V, where E is the cubical elasticity. The elasticity of a gas is proportional to its 
pressure. Suppose now the pressure is reduced until the mean free path is much greater than the dimensions of the box; and let 
the walls be rough, so that the molecules rebound at random, and also flexible. Then in addition to the pressure there will be 
continued exchange of the transverse components of momentum from wall to wall, making the box, even though it is flexible, 
resist shearing stresses. In other words, a rarefied gas behaves like an elastic solid! Let this property be called quasisolidity. 
Following the ideas expressed in equation (14), the viscosity of a gas at ordinary pressures may be conceived of as the 
relaxation of stresses by molecular encounters. Since elasticity varies as pressure, μ is proportional to pτ and the relaxation 
time of a gas at normal pressures is inversely proportional to its density. Although the concept of free path is elusive when 
there are forces between molecules, some link evidently exists between it and the relaxation time. Maxwell gave it in 1879 in a 
footnote to his last paper, added in response to a query by Thomson.74 For a gas composed of rigid-elastic spheres, the product 
of T with the mean speed ʋ of the molecules is a characteristic distance λ, whose ratio to the mean free path l¯ is 8/3π The free 
path is a special formulation of the relaxation concept applicable only to freely colliding particles of finite diameter. 



To calculate the motions of a pair of molecules subject to an inverse nth power repulsion was a straightforward exercise in 
orbital dynamics. For the statistical specification of encounters, Maxwell wrote the number dN, of molecules of a particular 
type with molecular weight M, and vetocities between ξ1 ξ1 + dξ, etc. as f (ξ1 η ζ1) dξ1 dη1 d ζ1, as in the first paper, with a 
similar expression for molecules of another type with molecular weight M2. The vetocities of two such groups being defined, 
their relative vetocity V12 is also a definite quantity; and the number of encounters between them occurring in time δt can be 
expressed in terms of orbit parameters. It is V12 db dø dN1 dN2 δt, Where b is the distance between parallel asymptotes before 
and after an encounter and ø is the angle determining the plane in which V12 and b lie. If Q is some quantity describing the 
motion of molecules in group 1, which may be any power or product of powers of the velocities or their components, and if Q′ 
is its value after an encounter, the net rate of change in the quantity for the entire group is (Q′ — Q) times the number of 
encounters per second, or 

Equation (13) is the fundamental equation of Maxwell’s revised transfer theory, replacing the earlier equations based on 
Clausius probability formula (8). With the explicit relation between Vl2 and b inserted from the orbit equation, the relative 
vetocity enters the integral of (15) as a factor V12

(n-5)/(n-1), which means that although integration generally requires knowledge 
of the distribution function f2 under nonequilibrium conditions, In The Special Case Of Molecules subject to an inverse fifth-
power repulsion V12 drops out and the final result may be written immediately as Q ̅N2 where Q ̅ is the mean value of the 
quantity and N2 is the total number of molecules of type 2. The simplification may be understood, as Boltzmann later pointed 
out, by noticing that the number of deflections through a given angle is the product of two factors, one of which (the cross 
section for scattering) decreases with V12, while the other (the number of collisions) increases with V12·

75 When n is 5, the two 
factors are exactly balanced. Molecules subject to this law are now called Maxwellian. By a happy coincidence their viscosity 
is directly proportional to the absolute temperature, in agreement with Maxwell’s experiment, although not with more precise 
measurements made later. 

With this Maxwell was in a position to determine the scattering integrals and calculate physical properties of gases. Even with 
the simplification of inverse fifth-power forces the mathematical task remained formidable, and an impressive feature was the 
notation Maxwell developed to keep track of different problems. One general equation described transfer of quantities across a 
plane with different Q′s giving the velocities, pressures, and heat fluxes in a gas. Next to he considered were variations of Q¯ 
within a given element of volume. These might occur through the actions of encounters or external forces on molecules within 
the element or, alternatively, through the passage of molecules to or from the surrounding region. Denoting variations of the 
first kind by the symbol δ and variations of the second kind by δ Maxwell got his general equation of transfer: 

where u, v, w are components of the translational velocity of the gas; the differential symbol d gives total variations with 
respect to position and time; and subscripts are added to δ to distinguish variations due to encounters with molecules of the 
same kind, molecules of a different kind, and the action of external forces. With Q equal to mass, (16) reduces to the ordinary 
equation of continuity in hydrodynamics. With Q equal to the momentum per unit volume, (16) in combination with the 
appropriate expression for QN derived from (15) reduces to an equation of motion. From this, or rather from its generalization 
to mixtures of more than one kind of molecule, Maxwell derived Dalton’s law of partial pressures, and formulas for diffusion 
applicable to Graham’s experiments. With Q energy, (16) yields an equation giving the law of equivalent volumes and 
formulas for specific heats, thermal effects of diffusion, and coefficients of viscosity in simple and mixed gases. The viscosity 
equation replacing (12) for Maxwellian molecules is 

where k is Boltzmann’s constant, M is molecular weight, and K is the scaling constant for the forces. 

The hardest area of investigation was heat conduction. That was where Maxwell had gone astray in 1860. In the exact theory 
effects of thermal gradients occur when Q in equation (16) is of the third order in ξ, η ζ,. Maxwell found an expression for the 
thermal conductivity of a gas in terms of its viscosity, density, and specific heat. The ratio of these quantities, which is known 
as the Prandtl number, “but which ought to be called the Maxwell number,”76 is one of several dimensionless ratios used in 
applying similarity principles to the solution of problems in fluid dynamics. For a monatomic gas it is nearly a constant over a 
wide range of temperatures and pressures. Another matter, in which Maxwell became interested through considering the 
stability of the earth’s atmosphere, was the equilibrium of temperature in a vertical column of gas under gravity. The correct 
result was known from thermodynamics, but its derivation from gas theory gave Maxwell great trouble. It comes out right only 
if the ratio of the two statistical averages has the particular value 3 given by the exponential distribution law. The calculation 
thus supplied evidence in favor of the law. More light on the same subject came in Boltzmann’s first paper on kinetic theory, 
written in 1868. Boltzmann Investigated the Distribution law by a method based on Maxwell’s, but included the external forces 
directly in the energy equation to be combined with Maxwell’s collision equation . The distribution function assumed the form 
e−E/KT, where E is the sum of the kinetic and potential energies of the molecule. In 1873 Maxwell gave a greatly simplified 
derivation of Boltzmann’s result during a correspondence in Nature about the equilibrium of the atmosphere. He then 
confessed that his first calculation for the 1867 paper, which gave a temperature distribution that would have generated 
unending convection currents, nearly shattered his faith in kinetic theory. 

Maxwell never attempted to solve the transfer equations for forces other than the inverse fifth power. In 1872 Boltzmann 
rearranged (16) into an integro-differential equation for f, from which the transport coefficients could in principle be 
calculated; but despite much effort he failed to reach any solution except for Maxwellian molecules. It was not until 1911–
1917 that S. Chapman and D. Enskog developed general methods of determining the coefficients. One interesting result was 
Chapman’s expression for viscosity of a gas made up of hard spheres, which had a form equivalent to (12) but with a 
numerical coefficient 50 percent higher than Maxwell’s and 12 percent higher than that obtained from the mean free path 



method with corrections for statistical averaging and persistence of velocities derived by Tait and Jeans. So even for the hard-
sphere gas the simple theory fails in quantitative accuracy. 

For some years after 1867 Maxwell made only sporadic contributions to gas theory. In 1873 he gave a revised theory of 
diffusion for the hard-sphere gas, from which he developed estimates of the size of molecules, following the work of 
Loschmidt (1865), Johnstone Stoney (1868), and Thomson (1870). In 1875, following van der Waals, he applied calculations 
on intermolecular forces to the problem of continuity between the liquid and gaseous states of matter. 

In 1876 he gave a new theory of capillarity, also based on considerations about intermolecular forces, which stimulated new 
research on surface phenomena. Of all the questions about molecules which Maxwell puzzled over during this period the most 
urgent concerned their structure. His uneasiness about the discrepancy between the measured and calculated specific heat 
ratios of gases has already been referred to. The uneasiness increased after 1868 when Boltzmann extended the equipartition 
theorem to every degree of freedom in a dynamical system composed of material particles; and it turned to alarm with the 
emergence of a new area of research: spectrum analysis. From 1858 onwards, following the experiments of Bunsen and 
Kirchhoff, several people, including Maxwell, worked out a qualitative explanation of the bright lines in chemical spectra, 
attributing them to resonant vibrations of molecules excited by their mutual collisions. The broad truth of the hypothesis 
seemed certain; but it led, as Maxwell immediately saw, to two questions, neither of which was answered until after his death. 
First, the identity of spectra implies that an atom in Sirius and an atom in Arcturus must be identical in all the details of their 
internal structure. There must be some universal dimensional constant determining vibration frequency: “each molecule … 
throughout the universe bears impressed on it the stamp of a metric system as distinctly as does the metre of the Archives of 
Paris, or the double royal cubit of the Temple of Karnac.”77 The royal cubit proved to be Planck’s quantum of action 
discovered in 1900. The other question, also answered only by quantum theory, concerned the influence of molecular 
vibrations on the specific heat ratio. There were not three or six degrees of freedom, but dozens. There was no way of 
reconciling the specific heat and spectroscopic data with each other and the equipartition principle. The more Maxwell 
examined the problem the more baffled he became. In his last discussion, written in 1877, after summarizing and rejecting all 
the attempts from Boltzmann on to wriggle out of the difficulty, he concluded that nothing remained but to adopt that attitude 
of “thoroughly conscious ignorance that is the prelude to every real advance in knowledge.”78 

During his last two years Maxwell returned to molecular physics in earnest and produced two full-length papers, strikingly 
different in scope, each among the most powerful he ever wrote. The first, “On Boltzmann’s Theorem on the Average 
Distribution of Energy in a System of Material Points,” followed a line of thought started by Boltzmann, who in 1868 had 
offered a new conjectural derivation of the distribution law based on combinatorial theory. A strange feature of the analysis 
was that it seemed to be free from restrictions on the time spent in encounters between molecules. Hence, as Maxwell was 
quick to point out,79 both the distribution factor e−E/kT and the equipartition theorem should apply to solids and liquids as well as 
gases: a conclusion as fascinating and disturbing as equipartition itself. 

Maxwell now gave his own investigation of the statistical problem, based partly on Boltzmann’s ideas and partly on an 
extension of them contained in H. W. Watson’s Treatise on the Kinetic Theory of Gases.80 Following Watson, Maxwell used 
Hamilton’s form of the dynamical equations, and adopted the device of representing the state of motion of a large number n of 
particles by the tocation of a single point in a “phase-space” of 2n dimensions, the coordinates of which are the positions and 
momenta of the particles. Boltzmann had applied similar methods in configuration space, but the Hamiltonian formalism has 
advantages in simplicity and elegance. Maxwell then postulated, as Boltzmann had done, that the system would in the course 
of time pass through every phase of motion consistent with the energy equation. This postulate obviously breaks down in 
special instances, of which Maxwell gave some examples, but he argued that it should hold approximately for large numbers of 
particles, where discontinuous jumps due to collisions make the particles jog off one smooth trajectory to another. The validity 
of this hypothesis, sometimes called the ergodic hypothesis, was afterwards much discussed, often with considerable 
misrepresentation of Maxwell’s opinions. Maxwell next introduced a new formal device for handling the statistical averages. 
In place of the actual system of particles under study, many similar systems are conceived to exist simultaneously, with 
identical energies but different initial conditions. The statistical problem is then transformed into determining the number of 
systems in a given state at any instant, rather than the development in time of a single system. The method had in some degree 
been foreshadowed by Boltzmann in 1872. It was later very greatly extended by Gibbs, following whom it is known as the 
method of “ensemble averaging,” Maxwell’s main conclusion was that the validity of the distribution and equipartition laws in 
a system of material particles is not restricted to binary encounters. An important result of a more technical kind was an exact 
calculation of the microcanonical density of the gas, with an expression for its asymptotic form as the number n of degrees of 
freedom in the system goes to infinity, while the ratio E/n is held constant. According to C. Truesdell, although the hypotheses 
on which the theorem was based were rather special, “no better proof was given until the work of Darwin and Fowler.”76 
Together with Boltzmann’s articles this paper of Maxwell’s marks the emergence of statistical mechanics as an independent 
science. 

One feature of the paper “On Boltzmann’s Theorem,” eminently characteristic of Maxwell, is that the analysis, for all its 
abstraction, ends with a concrete suggestion for an experiment, based on considering the rotational degrees of freedom. 
Maxwell proved that the densities of the constituent components in a rotating mixture of gases would be the same as if each 
gas were present by itself. Hence gaseous mixtures could be separated by means of a centrifuge. The method also promised 
much more accurate diffusion data than was hitherto available. Maxwell’s correspondence before his death discloses a plan to 
set up experiments at Cambridge.81 Many years later it became a standard technique for separating gases commercially. 



Maxwell’s last major paper on any subject was “On Stresses in Rarefied Gases Arising From Inequalities of Temperature.” 
Between 1873 and 1876 the scientific world had been stirred by William Crookes’s experiments with the radiometer, the well-
known device composed of a partially evacuated chamber containing a paddle wheel with vanes blackened on one side and 
silvered on the other, which spins rapidly when radiant heat impinges on it. At first many people, Maxwell included, were 
tempted to ascribe the motion to light pressure, but the forces were much greater than predicted from the electro-magnetic 
theory, and in the wrong direction. The influence of the residual gas was soon established; and from 1874 on partial 
explanations were advanced by Osborne Reynolds, Johnstone Stoney, and others. The tenor of these explanations was that the 
blackened surfaces absorb radiation and, being hot, make the gas molecules rebound with higher average velocity than do the 
reflecting surfaces. That plausible but false notion is still perpetuated in many textbooks. A striking observation is that the 
stresses increase as the pressure is reduced. In 1875 Tait and James Dewar drew the significant conclusion that large stresses 
occur when the mean free path is comparable with the dimensions of the vanes. At higher pressures some equalizing process 
enters to reduce the effect. 

Such was the state of affairs in 1877, when Maxwell and Reynolds independently renewed the attack. Maxwell was thoroughly 
familiar with the radiometer controversy, having acted as a referee for many of the original papers, as well as seeing and 
experimenting with radiometers himself. His work went forward in several stages, during which the comments of Thomson, 
who refereed his paper, and his own reaction as a referee for Reynolds’ paper had important influences. He began by applying 
the exact transfer theory to the hypothesis that the stresses arise from the increased velocity of molecules rebounding from a 
heated surface, expanding the distribution function in the form 

where F is a sum of powers and products of ξ, η ζ up to the third degree, and then calculating the effect of temperature 
gradients in the gas. This expansion later became the first step of Chapman’s elaborate procedure for determining transport 
coefficients under any force law, but Maxwell kept to inverse fifth-power forces “for the sake of being able to effect the 
integrations.”82 The result was a stress proportional to d2T/dn2, the second derivative of temperature with respect to distance, 
correcting a formula given earlier by Stoney, where the stress was proportional to dT/dn. The stress increases when the 
pressure is lowered, reaching a maximum when the relaxation time τ becomes comparable with the time , in which a molecule 
traverses the dimension d of the body—that is, Tait and Dewar’s conjecture in the language of the exact theory. 

At this point Maxwell made an awkward discovery. Although the stresses are indeed large, when the flow of heat is uniform 
(as in the radiometer) they automatically distribute themselves in such a way that the forces on each element of gas are in 
equilibrium. The result is a very general consequence of the fact that the stresses depend on d2T/dn2; it is almost independent of 
the shape of the source; the straightforward explanation of the motions by normal stresses must, therefore, be rejected. Yet the 
radiometer moves. To escape the dilemma, Maxwell turned to tangential stresses at the edges of the vanes. Here the 
phenomenon known as “slip” proved all-important. When a viscous fluid moves past a solid body, it generates tangential 
stresses by sliding over the surface with a finite velocity ʋs According to experiments by Kundt and Warburg in 1875, ʋs in 
gases is equal to SG/μ, where S is the stress and G is a coefficient expressed empirically by G = 8/ρ. Thus slip effects increase 
as the pressure is reduced; and as Maxwell pointed out in 1878,83 convection currents due to tangential stresses should become 
dominant in the radiometer, completely destroying the simplicity of the original hypothesis. 

The second phase of Maxwell’s investigation followed a report by Thomson urging him to treat the gas—surface interaction, 
and his own report on Reynolds’ paper. Reynolds’ also had decided that the effect must depend on tangential stresses, and he 
devised an experiment to study them under simplified conditions. When a temperature difference ΔT is set up across a porous 
plug between two vessels containing gas at pressure p, a pressure difference Δp develops between them proportional to δ/p. 
Reynolds called this new effect “thermal transpiration.” Maxwell gave a simple qualitative explanation in his report, and in an 
appendix added to his own paper in May 1879 he developed a semiempirical theory accounting for it and for the radiometer 
effect. The method was to assume that a fraction ƒ of molecules striking any surface are temporarily absorbed and reemitted 
diffusely, while the remaining (1-ƒ) are specularly reflected. Application of the transfer equations gave a formula for the 
velocity vs of gas moving past an unequally heated surface, in which one term was the standard slip formula and two further 
terms predicted convection currents due to thermal gradients. The theory Provided an explicit expression for the coefficient G, 
where is the effective mean free path; from this, using Kundt and Warburg’s data, Maxwell deduced that ƒ is about 0·5 for air 
in contact with glass. Maxwell also obtained a formula for transpiration pressure, and showed that both radiometer and 
transpiration effects are in the correct direction and increase with reduction of pressure, in agreement with experiment. 

Maxwell’s paper created the science of rarefied gas dynamics. His formulas for stress and heat flux in the body of the gas were 
contributions of permanent value, while his investigation of surface effects started a vast body of research extending to the 
present day. Quantities similar to ƒ later became known as “accommodation coefficients” and were applied to many kinds of 
gas-surface interaction. One other contribution of great beauty contained in notes added to the paper in May and June 1879 
was an application of the methods of spherical harmonic analysis to gas theory. It exemplified the process which Maxwell 
elsewhere called the “cross-fertilization of the sciences.”84 He was engaged in revising the chapter on spherical harmonics for 
the second edition of the Treatise on Electricity and Magnetism, when he realized that the harmonic expansion used in 
potential theory could equally be applied to the expansion of the components ξ, η, ζ of molecular velocity. A standard theorem 
on products of surface and zonal harmonics, which is discussed in the Treatise, eliminates odd terms in the expansion of 
variations of F, greatly simplifying the calculations.85 With this and other simplifications Maxwell carried the approximations 
to higher order and added an extra term to the equation of motion of a gas subject to variations in temperature. 



It is a tribute to Maxwell’s genius that on two occasions his papers on transfer theory stimulated fresh work long after the 
period at which science usually receives historical embalming. In 1910 Chapman read them, and “with the ignorant hardihood 
of youth,”86 knowing nothing of the fruitless toil that had been spent on the equations during the interval, began his 
investigation that yielded solutions under any force law. In 1956 E. Ikenberry and C. Truesdell again returned to Maxwell. 
They obtained an exact representation formula for the collision integral of any spherical harmonic for inverse-fifth-power 
molecules, using which they explored various iterative techniques for solving the transfer equations. One technique, which 
they called “Maxwellian iteration” from its resemblance to Maxwell’s procedure in the 1879 paper, yielded much more 
compact derivations than the ChapmanEnskog procedure; and with it Ikenberry and Truesdell carried solutions for pressure 
and energy flux in the gas one stage further than had previously been attempted. Truesdell also discovered an exact solution for 
steady rectilinear flow, by means of which he exposed certain shortcomings of the iterative methods. Speaking of the 
“magnificent genius of Maxwell” these authors concluded their appraisal by remarking that it passed over all developments in 
kinetic theory since 1879 and went back “for its source and inspiration to what Maxwell left us.”87 

Other Scientific Work . Maxwell’s remaining work may be summarized more shortly, though not as being of small account. 
His early discovery of the perfect imaging properties of the “fish-eye” lens extended to a lifelong interest in the laws of optical 
instruments. In a medium whose refractive index varies as μ0a2/(a2 + r2), where μ0 and a are constants and r is the distance 
from the origin, all rays proceeding from any single point are focused exactly at another point. The calculation was “suggested 
by the contemplation of the structure of the crystalline lens in fish,”88 Real fishes’ eyes of course only approximate roughly to 
Maxwell’s medium. Not until R. K. Luneberg revived the subject in 1944 were other instances of perfect imaging devices 
found.89 In 1853, shortly after discovering the “fish-eye,” Maxwell came across the early eighteenth-century writings on 
geometrical optics by Roger Cotes and Archibald Smith, in which, as he said to his father, “I find many things far better than 
what is new.”90 He went on to formulate a new approach to the subject, combining the principle of perfect imaging with 
Cotes’s neglected theorem on “apparent distance.” Recent years have seen a revival of interest in Maxwell’s method.91 During 
the 1870’s he returned to it and wrote three papers on the application of Hamilton’s characteristic function to lens systems, 
which seems to have been about the earliest attempt to reduce Hamilton’s general theory of ray optics to practice. Another 
striking paper was on cyclidal wave surfaces. It was illustrated with stereoscopic views of different classes of cyclide and 
contained a description of Maxwell’s real-image stereoscope. 

The most pleasing of the minor inventions was his adjustable “dynamical top” (1856), which carried a disk with four quadrants 
(red, blue, green, yellow) that formed gray when spinning axially, “but burst into brilliant colors when the axis is disturbed.” 
He was led to search records at Greenwich for evidence of the earth’s 10-month nutation predicted by Euler, which was 
detected in modified form by Chandler in 1891. 

During his regular lectures at King’s College, London, Maxwell was accustomed to present some of Rankine’s work on the 
calculation of stresses in frameworks. In 1864 Rankine offered an important new theorem,92 which Maxwell then developed 
into a geometrical discussion entitled “On Reciprocal Figures and Diagrams of Forces.” The principle was an extension of the 
well-known triangle of forces in statics. Corresponding to any rectilinear figure, another figure may be drawn with lines 
parallel to the first, but arranged so that lines converging to a point in one figure form closed polygons in the other. The lengths 
of lines in the polygon supply the ratios of forces needed to maintain the original point in equilibrium. Maxwell gave a method 
for developing complex figures systematically, and derived a series of general theorems on properties of reciprocal figures in 
two and three dimensions. He combined the method with energy principles and later, after refereeing a paper on elasticity by 
G. B. Airy, extended it to stresses in continuous media.93 Figure 5 reproduces diagrams of a girder bridge and its reciprocal 
given by Maxwell in 1870. Reciprocal theorems and diagrams are useful in many fields of science besides elasticity. Maxwell 
investigated similar theorems (some of them already known) in electricity. His student Donald MacAlister, the physiologist, 
applied the method to bone structures. Another application from a later period is the use of reciprocal lattices to determine 
atomic configurations by X-ray crystallography. 

In the British Association experiment on electrical resistance, Maxwell and his colleagues used a speed governor to ensure that 
the coil rotated uniformly. In principle it resembled James Watt’s steam-engine governor: centrifugal force made weights 
attached to the driven shaft fly out and adjust a control valve.94 Maxwell studied its behavior carefully; and four years later, in 
1868, after reading a paper by William Siemens95 on the practical limitations of governors, he gave an analytical treatment of 
the subject. He determined conditions for stability in various simple 

cases, including one fifth-order system representing a combination of two devices invented by Thomson and Fleeming Jenkin, 
and investigated effects of natural damping and of variations in the driven load as well as the onset of instabilities. Maxwell’s 
paper “On Governors” is generally regarded as the foundation of control theory. Norbert Wiener coined the name 
“cybernetics” in its honor, from kυβερνητηs, the Greek for “steersman,” from which, via a Latin corruption, the word 
“governor” is etymologically descended.96 

Maxwell’s textbook Theory of Heat was published in 1870 and went through several editions with extensive revisions. Chiefly 
an exposition of standard results, it did contain one far-reaching innovation, the “Maxwell relations” between the 
thermodynamical variables, pressure, volume, entropy, and temperature, and their partial derivatives. In conceptual spirit they 
resemble Maxwell’s field equations in electncity, by which they were obviously suggested; they are an ordered collection of 
relationships between fundamental quantities from which practically useful formulas follow. Several of the individual terms 
had previously been given by other writers. Maxwell’s derivation was a deceptively simple geometrical argument based on the 
pressure-volume diagram. Applications of geometry to thermodynamics underwent an extraordinary development in 1873 



through Gibbs’s work on entropy-volume-temperature surfaces, of which Maxwell instantly became a powerful advocate. 
Maxwell’s papers and correspondence contain much of related interest, including an independent development of the chemical 
potential and an admirable discussion of the classification of thermodynamic quantities in a little-known article, “On Gibbs’s 
Thermodynamic Formulation for Coexistent Phases.” In 1908 this paper was reprinted at the request of the energeticist W. 
Ostwald, with notes by Larmor.97 One more important personage in the Theory of Heat was Maxwell’s “sorting demon” (so 
named by Thomson), a member of a class of “very small BUT lively beings incapable of doing work but able to open and shut 
valves which move without friction and inertia”98 and thereby defeat the second law of thermodynamics. The demon points to 
the statistical character of the law. His activities are related to the so-called “reversibility paradox” discussed first by Thomson 
in 1874—that is, the problem of reconciling the irreversible increase in entropy of the universe demanded by thermodynamics 
with the dynamical laws governing the motions of molecules, which are reversible with respect to time. A more formal view of 
the statistical basis of thermodynamics was supplied by Boltzmann in 1877 in the famous equation , which relates entropy S to 
a quantity W expressing the molecular disorder of a system. 

Much of Maxwell’s last eight years was devoted to Cambridge and the Cavendish Laboratory. Many papers by Cambridge 
mathematicians of the period acknowledge suggestions by him. The design of the laboratory embodied many ingenious 
features: clear corridors and stairwells for experiments needing large horizontal and vertical distances, an iron-free room for 
magnetic measurements, built-in anti vibration tables for sensitive instruments supported by piano wires from the roof 
brackets, and so on. The construction of the building and much of the equipment were paid for by the Duke of Devonshire, but 
after 1876 Maxwell had to spend substantial sums out of his own pocket to keep the laboratory going. A characteristic of the 
work done under his direction was an emphasis on measurements of extreme precision, in marked contrast to the “string-and-
sealing-wax” tradition of research later built up by J. J. Thomson. Examples were D. MacAlister’s test of the inverse-square 
law in electrostatics; G. Chrystal’s test of the linear form of Ohm’s law; J. H. Poynting’s improved version (the first of many) 
of Cavendish’s experiment to measure the gravitational constant; and R. T. Glazebrook’s determination of the optical wave 
surface for birefringent crystals. In each instance the precision was several orders of magnitude higher than anything 
previously attempted. “You see,” wrote Maxwell to Joule, “that the age of heroic experiments is not yet past.99 
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