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(b. London, England, 27 March 1857; d. Coldharbour, Surrey, England, 27 April 1936) 

applied mathematics, biometry, statistics. 

Pearson, founder of the twentieth-century science of statistics, was the younger son and the second of three 
children of William Pearson, a barrister of the Inner Temple, and his wife, Fanny Smith. Educated at home 
until the age of nine, he was sent to University College School, London, for seven years. He withdrew in 
1873 for reasons of health and spent the next year with a private tutor. He obtained a scholarship at King’s 
College, Cambridge, in 1875, placing second on the list. At Cambridge, Pearson studied mathematics under 
E. J. Routh, G. G. Stokes, J. C. Maxwell, Arthur Cayley, and William Burnside. He received the B.A. with 
mathematical honors in 1879 and was third wrangler in the mathematical tripos that year. 

Pearson went to Germany after receiving his degree. At Heidelberg he studied physics under G. H. Quincke 
and metaphysics under Kuno Fischer. At Berlin he attended the lectures of Emil du Bois-Reymond on 
Darwinism. With his father’s profession no doubt in mind, Pearson went up to London, took rooms in the 
Inner Temple in November 1880, read in Chambers in Lincoln’s Inn, and was called to the bar in 1881. He 
received an LL.B. from Cambridge University in 1881 and an M.A. in 1882, but he never practiced. 

Pearson was appointed Goldsmid professor of applied mathematics and mechanics at University College, 
London, in 1884 and was lecturer in geometry at Gresham College, London, from 1891 to 1894. In 1911 he 
relinquished the Goldsmid chair to become the first Galton professor of eugenics, a chair that had been 
offered first to Pearson in keeping with Galton’s expressed wish. He retired in 1933 but continued to work 
in a room at University College until a few months before his death. 

Elected a fellow of the Royal Society in 1896, Pearson was awarded its Darwin Medal in 1898. He was 
awarded many honors by British and foreign anthropological and medical organizations, but never joined 
and was not honored during his lifetime by the Royal Statistical Society. 

In 1890 Pearson married Maria Sharpe, who died in 1928. They had one son, Egon, and two daughters, 
Sigrid and Helga. In 1929 he married a co-worker in his department, Margaret Victoria Child. 

At Cambridge, Pearson’s coach under the tripos system was Routh, probably the greatest mathematical 
coach in the history of the university, who aroused in Pearson a special interest in applied mathematics, 
mechanics, and the theory of elasticity. Pearson took the Smith’s Prize examination, which called for the 
very best in mathematics. He failed to become a prizeman; but his response to a question set by Isaac 
Todhunter was found, on Todhunter’s death in 1884, to have been incorporated in the manuscript of his 
unfinished History of the Theory of Elasticity, with the comment “This proof is better than De St. 
Venant’s.”1 As a result, in the same year Pearson was appointed by the syndics of the Cambridge 
University Press to finish and edit the work. 

Pearson did not confine himself to mathematics at Cambridge. He read Dante, Goethe, and Rousseau in the 
original, sat among the divinity students listening to the discourse of the university’s regius professor of 
divinity, and discussed the moral sciences tripos with a fellow student. Before leaving Cambridge he wrote 



reviews of two books on Spinoza for the Cambridge Review, and a paper on Maimonides and Spinoza for 
Mind. 

Although intensely interested in the basis, doctrine, and history of religion, Pearson rebelled at attending 
the regular divinity lectures, compulsory since the founding of King’s in 1441, and after a hard fight saw 
compulsory divinity lectures abolished. He next sought and, with the assistance of his father, obtained 
release from compulsory attendance at chapel; after which, to the astonishment and pique of the authorities, 
he continued to attend as the spirit moved him. 

Pearson’s life in Germany, as at Cambridge, involved much more than university lectures and related study. 
He became interested in German folklore, in medieval and renaissance German literature, in the history of 
the Reformation, and in the development of ideas on the position of women. He also came into contact with 
the ideas of Karl Marx and Ferdinand Lassalle, the two leaders of German socialism. His writings and 
lectures on his return to England indicate that he had become both a convinced evolutionist and a fervent 
socialist, and that he had begun to merge these two doctrines into his own rather special variety of social 
Darwinism. His given name was originally Carl; at about this time he began spelling it with a “K.” A 
King’s College fellowship, conferred in 1880 and continued until 1886, gave Pearson financial 
independence and complete freedom from duties of any sort, and during these years he was frequently in 
Germany, where he found a quiet spot in the Black Forest to which he often returned. 

In 1880 Pearson worked for some weeks in the engineering shops at Cambridge and drew up the schedule 
in Middle and Ancient High German for the medieval languages tripos. In the same year he published his 
first book, a literary work entitled The New Werther, “by Loki,” written in the form of letters from a young 
man wandering in Germany to his finacée. 

During 1880–1881 Pearson found diversion from his legal studies in lecturing on Martin Luther at 
Hampstead, and on socialism, Marx, and Lassalle at workingmen’s clubs in Soho. In 1882–1884 he gave a 
number of courses of lectures around London on German social life and thought from the earliest times up 
to the sixteenth century, and on Luther’s influence on the material and intellectual welfare of Germany. In 
addition he published in the Academy, Athenaeum, and elsewhere a substantial number of letters, articles, 
and reviews relating to Luther. Many of these were later republished, together with other lectures delivered 
between 1885–1887, in his The Ethic of Freethought (1888). 

During 1880–1884 Pearson’s mathematical talent was not entirely dormant. He gave University of London 
extension lectures on “Heat” and served as a temporary substitute for absent professors of mathematics at 
King’s College and University College, London. At the latter Pearson met Alexander B. W. Kennedy, 
professor of engineering and mechanical technology, who was instrumental in securing Pearson’s 
appointment to the Goldsmid professorship. 

During his first six years in the Goldsmid chair, Pearson demonstrated his great capacity for hard work and 
extraordinary productivity. His professorial duties included lecturing on statics, dynamics, and mechanics, 
with demonstrations and proofs based on geometrical and graphical methods, and conducting practical 
instruction in geometrical drawing and projection. Soon after assuming the professorship, he began 
preparing for publication the incomplete manuscript of The Common Sense of the Exact Sciences left by his 
penultimate predecessor, William Kingdon Clifford; and it was issued in 1885. The preface, the entire 
chapter “Position,” and considerable portions of the chapters “Quantity” and “Motion” were written by 
Pearson. A far more difficult and laborious task was the completion and editing of Todhunter’s unfinished 
History of the Theory of Elasticity. He wrote about half the final text of the first volume (1886) and was 
responsible for almost the whole of the second volume, encompassing several hundred memoirs (1893). 
His editing of these volumes, along with his own papers on related topics published during the same 
decade, established Pearson’s reputation as an applied mathematician. 

Somehow Pearson also found the time and energy to plan and deliver the later lectures of The Ethic of 
Freethought series; to complete Die Fronica (1887), a historical study that traced the development of the 



Veronica legend and the history of the Veronica-portraits of Christ, written in German and dedicated to 
Henry Bradshaw, the Cambridge University Librarian; and to collect the material on the evolution of 
western Christianity that later formed much of the substance of The Chances of Death (1897). In these 
historical studies Pearson was greatly influenced and guided by Bradshaw, from whom he learned the 
importance of patience and thoroughness in research. In 1885 Pearson became an active founding member 
of a small club of men and women dedicated to the discussion of the relationship between the sexes. He 
gave the opening address on “The Woman’s Question,” and addressed a later meeting on “Socialism and 
Sex.” Among the members of the group was Maria Sharpe, whom he married in 1890. 

In the 1890’s the sole duty of the lecturer in geometry at Gresham College seems to have been to give three 
courses per year of four lectures to an extramural audience on topics of his own choosing. Pearson’s aim in 
applying for the lectureship was apparently to gain an opportunity to present some of his ideas to a fairly 
general audience. In his first two courses, delivered in March and April 1891 under the general title “The 
Scope and Concepts of Modern Science,” he explored the philosophical foundations of science. These 
lectures, developed and enlarged, became the first edition of The Grammar of Science (1892), a remarkable 
book that influenced the scientific thought of an entire generation. 

Pearson outlined his concept of the nature, scope, function, and method of science in a series of articles in 
the first chapter of his book. “The material of science,” he said, “is coextensive with the whole physical 
universe, not only . . . as it now exists, but with its past history and the past history of all life therein,” while 
“The function of science” is “the classification of facts, the recognition of their sequence and their relative 
significance,” and “The unity of all science consists alone in its method, not its material . . . It is not the 
facts themselves which form science, but the method in which they are dealt with.” In a summary of the 
chapter he wrote that the method of science consists of “(a) careful and accurate classification of facts and 
observation of their correlation and sequence; (b)the discovery of scientific laws by aid of the creative 
imagination; (c) self-criticism and the final touchstone of equal validity for all normally constituted minds,” 
He emphasized repeatedly that science can only describe the “how” of phenomena and can never explain 
the “why,” and stressed the necessity of eliminating from science all elements over which theology and 
metaphysics may claim jurisdiction. The Grammar of Science also anticipated in many ways the 
revolutionary changes in scientific thought brought about by Einstein’s special theory of relativity. Pearson 
insisted on the relativity of all motion, completely restated the Newtonian laws of motion in keeping with 
this primary principle, and developed a system of mechanics logically from them. Recognizing mass to be 
simply the ratio of the number of units in two accelerations as “expressed briefly by the statement that 
mutual accelerations are inversely as masses” (ch. 8, sec. 9), he ridiculed the current textbook definition of 
mass as “quantity of matter.” Although recognized as a classic in the philosophy of science, the Grammar 
of Science is little read today by scientists and students of science mainly because its literary style has dated 
it. 

Pearson was thus well on the way to a respectable career as a teacher of applied mathematics and 
philosopher of science when two events occurred that markedly changed the direction of his professional 
activity and shaped his future career. The first was the publication of Galton’s Natural Inheritance in 1889; 
the second, the appointment of W. F. R. Weldon to the Jodrell professorship of zoology at University 
College, London, in 1890. 

Natural Inheritance summed up Galton’s work on correlation and regression, concepts and techniques that 
he had discovered and developed as tools for measuring the influence of heredity;2 presented all that he 
contributed to their theory; and clearly reflected his recognition of their applicability and value in studies of 
all living forms. In the year of its appearance, Pearson read a paper on Natural Inheritance before the 
aforementioned small discussion club, stressing the light that it threw on the laws of heredity, rather than 
the mathematics of correlation and regression. Pearson became quite charmed by the concept and 
implications of Galton’s “correlation,” which he saw to be a “category broader than causation . . . of which 
causation was only the limit, and [which] brought psychology, anthropology, medicine and sociology in 
large parts into the field of mathematical treatment,” which opened up the “possibility . . . of reaching 
knowledge—as valid as physical knowledge was then thought to be—in the field of living forms and above 
all in the field of human conduct.”3 Almost immediately his life took a new course: he began to lay the 



foundations of the new science of statistics that he was to develop almost single-handed during the next 
decade and a half. But it is doubtful whether much of this would have come to pass had it not been for 
Weldon, who posed the questions that impelled Pearson to make his most significant contributions to 
statistical theory and methodology.4 

Weldon, a Cambridge zoologist, had been deeply impressed by Darwin’s theory of natural selection and in 
the 1880’s had sought to devise means for deriving concrete support for it from studies of animal and plant 
populations. Galton’s Natural Inheritance convinced him that the most promising route was through 
statistical studies of variation and correlation in those populations. Taking up his appointment at University 
College early in 1891, Weldon began to apply, extend, and improve Galton’s methods of measuring 
variation and correlation, in pursuit of concrete evidence to support Darwin’s “working hypothesis.” These 
undertakings soon brought him face to face with problems outside the realm of the classical theory of 
errors: How describe asymmetrical, double-humped, and other non-Gaussian frequency distributions? How 
derive “best”—or at least “good”—values for the parameters of such distributions? What are the “probable 
errors” of such estimates? What is the effect of selection on one or more of a number of correlated 
variables? Finding the solution of these problems to be beyond his mathematical capacity, Weldon turned 
to Pearson for help. 

Pearson, in turn, seeing an opportunity to contribute, through his special skills, to the improvement of the 
understanding of life, characteristically directed his attention to this new area with astonishing energy. The 
sudden change in his view of statistics, and the early stages of his rapid development of a new science of 
statistics are evident in the syllabuses of his lectures at Gresham College in 1891–1894 and in G. Udny 
Yule’s summaries of Pearson’s two lecture courses on the theory of statistics at University College during 
the sessions of 1894–1895 and 1895–1896,5 undoubtedly the first of their kind ever given. Pearson was an 
enthusiast for graphic presentation; and his Gresham lectures on “Geometry of Statistics” (November 1891-
May 1892) were devoted almost entirely to a comprehensive formal treatment of graphical representation 
of statistical data from the biological, physical, and social sciences, with only brief mention of numerical 
descriptive statistics. In “Laws of Chance” (November 1892-February 1893) he discussed probability 
theory and the concept of “correlation,” illustrating both by coin-tossing and card-drawing experiments and 
by observations of natural phenomena. The term “standard deviation” was introduced in the lecture of 31 
January 1893, as a convenient substitute for the cumbersome “root mean square error” and the older 
expressions “error of mean square” and “mean error”; and in the lecture of 1 February, he discussed 
whether an observed discrepancy between a theoretical standard deviation and an experimentally 
determined value for it is “sufficiently great to create suspicion.” In “The Geometry of Chance” (November 
1893-May 1894) he devoted a lecture to “Normal Curves,”6 one to “Skew Curves,” and one to “Compound 
Curves.” 

In 1892 Pearson lectured on variation, and in 1893 on correlation, to research students at University 
College, the material being published as the first four of his Philosophical Transactions memoirs on 
evolution. At this time he worked out his general theory of normal correlation for three, four, and finally n 
variables. Syllabuses or summaries of these lectures at University College are not available, but much of 
the substance of the four memoirs is visible in Yule’s summaries. Those of the lectures of November 1895 
through March 1896 reveal Pearson’s early groping toward a general theory of skew correlation and 
nonlinear regression that was not published until 1905. His summary of Pearson’s lecture of 14 May 1896 
shows that considerable progress had already been made on both the experimental and theoretical material 
on errors of judgement, measurement errors, and the variation over time of the “personal equations” of 
individual observers that constituted Pearson’s 1902 memoir on these matters. 

These lectures mark the beginning of a new epoch in statistical theory and practice. Pearson communicated 
some thirty-five papers on statistical matters to the Royal Society during 1893–1901. By 1906 he had 
published over seventy additional papers embodying further statistical theory and applications. In 
retrospect, it is clear that Pearson’s contributions during this period firmly established statistics as a 
discipline in its own right. Yet, at the time, “the main purpose of all this work” was not development of 
statistical theory and techniques for their own sake but, rather, “development and application of statistical 
methods for the study of problems of heredity and evolution.”7 



In order to place the whole of Pearson’s work in proper perspective, it will be helpful to examine his 
contributions to distinct areas of theory and practice. Consider, for example, his “method of moments” and 
his system of wonderfully diverse frequency curves. Pearson’s aim in developing the method of moments 
was to provide a general method for determining the values of the parameters of a frequency distribution of 
some particular from selected to describe a given set of observational or experimental data. This is clear 
from his basic exposition of the subject in the first (1894) of his series of memoirs entitled “Contributions 
to the Mathematical Theory of Evolution.”8 

The foundations of the system of Pearson curves were laid in the second memoir of this series, “Skew 
Variation in Homogeneous Material” (1895). Types I-IV were defined and applied in this memoir; Types V 
and VI, in a “Supplement . . .” (1901); and Types VII-XII in a “Second Supplement . . .” (1916). The 
system includes symmetrical and asymmetrical curves of both limited and unlimited range (in either or both 
directions); most are unimodal, but some are U-, J-, or reverse J-shaped. Pearson’s purpose in developing 
them was to provide a collection of frequency curves of diverse forms to be fitted to data as “graduation 
curves, mathematical constructs to describe more or less accurately what we have observed.”9 Their use 
was facilitated by the central role played by the method of moments:(1) the appropriate curve type is 
determined by the values of two dimensionless ratios of centroidal moments, 

defined in the basic memoir (1894); and (2) values of the parameters of the selected types of probability (or 
frequency) curve are determined by the conditions μ0 = 1 (or μ0 = N, the total number of observations), μ1 = 
0, and the observed or otherwise indicated values of μ2(=σ2), β1 and β2. The acceptance and use of curves of 
Pearson’s system for this purpose may also have been aided by the fact that all were derived from a single 
differential equation, to which Pearson had been led by considering the slopes of segments of frequency 
polygons determined by the ordinates of symmetric and asymmetric binomial and hypergeometric 
probability distributions. That derivation may well have provided some support to Pearson curves as 
probability or frequency curves, rather than as purely arbitrary graduation curves. Be that as it may, the 
fitting of Pearson curves to observational data was extensively practiced curves to observational data was 
extensively practiced by biologists and social scientists in the decades that followed. The results did much 
to dispel the almost religious acceptance of the normal distribution as the mathematical model of variation 
of biological, physical, and social phenomena. 

Meanwhile, Pearson’s system of frequency curves acquired a new and unanticipated importance in 
statistical theory and practice with the discovery that the sampling distributions of many statistical test 
functions appropriate to analyses of small samples from normal, binomial, and Poisson distributions such 
as χ2, S2, t, S12/S22, and r (when ρ=0)-are represented by particular families of Pearson curves, either directly 
or through simple transformation. This application of Pearson curves, and their use to approximate 
percentage points of statistical test functions whose sampling distributions are either untabulated or 
analytically or numerically intractable, but whose moments are readily evaluated, have now transcended 
their use as graduation curves; they have also done much to ensure the value of Pearson’s comprehensive 
system of frequency curves in statistical theory and practice. The use of Pearson curves for either purpose 
would, however, have been gravely handicapped had not Pearson and his co-workers prepared detailed and 
extensive tables of their ordinates, integrals, and other characteristics, which were published principally in 
Biometrika beginning in 1901, and reprinted, with additions, in his Tables for Statisticians and 
Biometricians (1914; Part II, 1931). 

As statistical concepts and techniques of correlation and regression originated with Galton, who devised 
rudimentary arithmetical and graphical procedures (utilizing certain medians and quartiles of the data in 
hand) to derive sample values for his “regression” coefficient, or “index of co-relation,” r. Galton was also 
the first, though he had assistance from J. D. Hamilton Dickson, to express the bivariate normal distribution 
in the “Galtonian form” of the frequency distribution of two correlated variables.10 Weldon and F. Y. 
Edgeworth devised alternative means of computation, which, however, were somewhat arbitrary and did 
not fully utilize all the data. It was Pearson who established, by what would now be termed the method of 
maximum likelihood, that the “best value of the correlation coefficient” (ρ) of a bivariate normal 
distribution is given by the sample product-moment coefficient of correlation, 



where x and y denote the deviations of the measured values of the x and y characteristics of an individual 
sample object from their respective arithmetic means (mx and my) in the sample, Σ denotes summation 
overall N individuals in the sample, and sx and sy are the sample standard deviations of the measured values 
of x and y, respectively.11 The expression “coefficient of correlation” apparently was originated by 
Edgeworth in 1892,12 but the value of r defined by the above equation is quite properly known as 
“Pearson’s coefficient of correlation/” Its derivation may be found in section 4b. of “Regression, Heredity, 
and Panmixia” (1896), his first fundamental paper on correlation theory and its application to problems of 
heredity. 

In the same memoir Pearson also showed how the “best value” of r could be evaluated conveniently from 
the sample standard deviations sx, sy and either Sx-y or Sx+y, thereby avoiding computation of the sample 
product moment (Σxy/N); gave a mistaken expression for the standard deviation of the sampling error13 of r 
as a measure of ρ in large samples-which he corrected in “Probable Errors of frequency Constants. . .” 
(1898); introduced the term “coefficient of variation” for the ratio of a standard deviation to the 
corresponding mean expressed as a percentage; expressed explicitly, in his discussion of the trivariate case, 
what are now called coefficients of “multiple” correlation and “partial” regression in terms of the three 
“zeroorder” coefficients of correlation (r12, r13, r23); gave the partial regression equation for predicting the 
(population) mean value of trait X1, say, corresponding to given values of traits X2 and X3, the coefficients 
of X2 and X3 being expressed explicitly in terms of r12, r13, r23 and the three sample standard deviations (S1, 
S2, S3); gave the formula for the large-sample standard error of the value of X1 predicted by this equation; 
restated Edgeworth’s formula (1892) for the trivariate normal distribution in improved determinantal 
notation; and carried through explicitly the extension to the general case of ρ-variate normal correlation 
surface, expressed in a form that brought the computations within the power of those lacking advanced 
mathematical training. 

In this first fundamental memoir on correlation, Pearson carried the development of the theory of 
multivariate normal correlation as a practical tool almost to completion. When the joint distribution of a 
number of traits X1, X2, . . ., Xv, (ρ≥2) over the individuals of a population is multivariate normal then the 
population coefficients of correlation, ρij, (i,j = 1, 2 . . ., ρ; i ≠ j), completely characterize the degress of 
association among these traits in the population-traits Xi and Xj are independent if and only if ρij = 0 and 
completely interdependent if and only if ρij equals ± 1—and the regression in the population of each one of 
the traits on any combination of the others is linear. It is clear from footnotes to section 5 of this memoir 
that Pearson was fully aware that linearity of regressions and this comprehensive feature of population 
(product-moment) coefficients of correlation do not carry over to multivariate skew frequency distributions, 
and he recognized “the need of [a] theory of skew correlation” which he proposed to treat “in a memoir on 
skew correlation.14 The promised memoir, On the General Theory of Skew Correlation and Non-Linear 
Regression, appeared in 1905. 

Pearson there dealt with the properties of the correlation ratio, η( = ηyx), a sample measure of correlation 
that he had inroduced in a paper of 1903 to replace the sample correlation coefficient, r, when the observed 
regression curve of y on x (obtained by plotting the means of the y values, ȳxi, corresponding to the 
respective x values, x1, x2, . . ., as a function of x) exhibits a curvilinear relationship and showed that · is the 
square root of the fraction of the variability of the N y values about their mean, ȳ, that is ascribable to the 
variability of the y means ȳxi about ȳ; that 1 – ·2 is the fraction of the total variability of the y valued about 
their mean ȳ contributed by the variability of the y values within in respective x arrays about their 
respective mean values, ȳxi, within these arrays; and that ·2 – r2 is the fraction acribable to the deviations of 
the points (ȳxi, xi) from the straight line of closest fit to these points, indicating the importance of the 
difference between · and r as an indicator of the departure of regression from linearity.15 He also gave an 
expression for the standard deviation of the sampling error of · in large samples that has subsequently been 
shown to be somewhat inaccurate; classified the different forms of regression curves and the different 
patters of within-array variability that may arise when the joint distribution of two traits can not be 
represented by the bivariate normal distribution, terming the system “homoscedastic” or “heteroscedastic” 
according to whether the within-array variability is or is not the same for all array,s respectively; gave 
explicit formulas for the coefficients of parabolic, cubic, and quartic regression curves, in terms of η2-r2 and 
other moments and product moments of the sample values of x and y; and listed the conditions in terms of ·2 



– r2 and the other sample moments and product moments that must be satisfied for linear, parabolic, cubic, 
and quartic regression equations to be adequate representations of the observed regression of y on x. 

In a footnote to the section “Cubical Regression,” Pearson noted that he had pointed out previously16 that 
when a polynomial of any degree, ρ(ρ ≥ n), is fit to all of n distinct observational points by the method of 
moments, the curve determined by “the method of moments becomes identical with that of least squares”; 
but, he continued, “the retention of the method of moments. . .enables us, without abrupt change of method, 
to introduce the need for ·, and to grasp at once the application of the proper SHEPPARD’S corrections [to 
the sample moments and product moments of x and y when the measurements of either or both are coarsely 
grouped].” 

Pearson clearly favored his method of moments; but the method of least squares has prevailed. However, 
use of the method of least squares to fit polynomial regression curves in a bivariate correlation situation 
involves an extension beyond the original formulation and development of the method of least squares by 
Legendre, Gauss, Laplace, and their followers in the nineteenth century. In this classical development of 
the method of least squares, one of the variables-x, for example—was a quantity that could be measured 
with negligible error, and the other, y, a quantity of interest functionally related to x, the observed values of 
which for particular values of x, Yx, were, however, subject to nonnegligible measurement errors. The 
problem was to determine “best” values for the parameters of the functional relation between y and x 
despite the measurement errors in the observed values of Yx. The method of least squares as developed by 
Gauss gave a demonstrably optimal solution when the functional dependence of y upon x was expressible 
with negligible error in a form in which the unknown parameters entered linearly—for instance, as a 
polynomial in x. In the Galton-Pearson correlation situation, in contrast, the traits X and Y may both be 
measurable with negligible error with respect to any single individual but in some population of individuals 
have a joint frequency or probability distribution. The regression of y on x is not an expression of a 
mathematical functional dependence of the trait Y on the trait X but, rather, an expression of the mean of 
values of Y corresponding to values of X = x as a function of x—for example, as a polynomial in x. In the 
classical least-squares situation, the aim was to obtain the best possible approximation to the correct 
functional relation between the variables despite variations introduced by unwanted errors of measurement. 
In the Galton-Pearson correlation situation, on the other hand, the aim of regression analysis is to describe 
two important characteristics of the joint variation of the traits concerned. Pearson’s development of the 
theory of skew correlation and nonlinear regression was, therefore, not merely an elaboration on the work 
of Gauss but a major step in a new direction. 

Pearson did not pursue the theory of multiple and partial correlation beyond the point to which he had 
carried it in his basic memoir on correlation (1896). The general theory of multiple and partial correlation 
and regression was developed by his mathematical assistant, G. Udny Yule, in two papers published in 
1897. Yule was the first to give mathematical expressions for what are now called partial correlation 
coefficients, whcih he termed “net correlation coefficients.” What Pearson had called coefficients of double 
regression, Yule renamed net regressions; they are now called partial regression coefficients. The 
expressions “multiple correlation” and “partial correlation” stem from the paper written Alice Lee and read 
to the Royal Society in June 1897.17 

In order to see whether the correlations found in studies of the heredity of continuously varying physical 
characteristics held also for the less tractable psychological and mental traits, Pearson made a number of 
efforts to extend correlation methods to bivariate data coarsely classified into two or more ordered 
categories with respect to each trait. Thus, in “On the Correlation of Characters Not Quantitatively 
Measurable” (1900), he introduced the “tetrachoric” coefficient of correlation, rt, derived on the 
supposition that the traits concerned were distributed continuously in accordance with a bivariate normal 
distribution in the population of individuals sampled, though not measured on continuous scales for the 
individuals in the sample but merely classified into the cells of a fourfold table in terms of more or less 
arbitrary but precise dichotomous divisions of the two trait scales. The derived value of rt was the value of 
the correlation coefficient (ρ) of the bivariate normal distribution with frequencies in four quadrants 
corresponding to a division of the x, y plane by lines parallel to the coordinate axes that agreed exactly with 
the four cell frequencies of the fourfold table. Hence the value of rt calculated from the data fo a particular 



fourfold table was considered to be theoretically the best measure of the intensity of the correlation 
between the traints concerned. Pearson gave a formula for the standard deviation of the sampling error of rt 
in large samples. He corrected two misprints in this formula and gave a simplified approximate formula in 
a paper of 1913.18 

To cope with the intermediate case, in which one characteristic of the sample individuals is measured on a 
continuous scale and the other is merely classified dichotomously, Pearson, in a Biometrika paper of 1909, 
introduced (but did not name) the “biserial” coefficient of correlation, say rb. 

The idea involved in the development of the “tetrachoric” correlation coefficient, rt, for data classified in a 
fourfold table was extended by Pearson in 1910 to cover cases in which “one variable is give by alternative 
and the other by multiple categories.” The sample measure of correlation introduced but not named in this 
paper became known as “biserial ·” because of its analogy with the biserial correlation coefficient, rb, and 
the fact that it is defined by a special adaptation of the formula for the correlation ration, ·, based on 
comparatively nonrestrictive assumptions with respect to the joint distribution of the two traits concerned in 
the population sampled. The numeerical evaluation of “biserial ·,” however, involves the further 
assumption that the joint variation of the traits is bivariate normal in the population; and its value for a 
particular sample, say r·, is taken to be an estimate of the correlation coefficient, ρ, of the assumed bivariate 
normal distribution of the traits in the population sampled. The sampling variation of r· as a measure of ρ 
was unknown until Pearson published an expression for its standard error in large samples from a bivariate 
normal population in 1917.19 It is not known how large the sample size N must be for this asymptotic 
expression to yield a satisfactory approximation. 

Meanwhile, Charles Spearman had introduced (1904) his coefficient of rank-order correlation, say rt, 
which, although first defined in terms of the rank differences of the individuals in the sample with respect 
to the two traits concerned, is equivalent to the product-moment correlation coefficient between the paired 
ranks themselves. Three years later Pearson, in “On Further Methods of Determining Correlation,” gave the 
now familiar formula, ρ=2 sin(πr′/6), for obtaining an estimate, ρ, of the coefficient of correlation (ρ) of a 
bivariate normal population from an observed value of the coefficient of rank-order correlation (r′) derived 
from the rankings of the individuals in a sample therefrom with respect to the two traits concerned; he also 
presented a formula for the standard error of ρ in large samples. 

The “tetrachoric” and “biserial” coefficients of correlation and “biserial ·” played important parts in the 
biometric, eugenic, and medical investigations of Pearson and the biometric school during the first two 
decades of the twentieth century. Pearson was fully aware of the crucial dependence of their interpretation 
upon the validity of the assumed bivariate normality and was circumspect in their application; his 
discusions of numerical results are full of caution. (a sample product-moment coefficient of correlation, r, 
always provides a usable determination of the productmoment coefficient of correlation, ρ, in the 
population sampled, bivariate normal or otherwise. On the other hand, when the joint distribution of the 
two traits concerned is continuous but not bivariate normal in the population sampled, exactly what 
interpretations are to be accorded to observed values of rt, rb, and r· is not at all clear; and if assumed 
continuity with respect to both variables is not valid, their interpretation is even less clear-they may be 
virtually meaningless.) The crucial dependence of the interpretation of these measures on the uncheckable 
assumption of bivariate normality of the joint distribution of the traits concerned in the population sampled, 
together with their uncritical application and incautious interpretation by some scholars, brought severe 
criticism; and doubt was cast on the meaning and value of “coefficients of correlation” thus obtained. In 
particular, Pearson and one of his assistants, David Heron, ultimately became embroiled in a long an dbitter 
argument on the matter with Yule, whose paper embodying a theory and a measure of association of 
attributes free of any assumption of an underlying continuous distribution Pearson had communicated to 
the Royal Society in 1899. Despite this skepticism, rt, rb, and r· have survived and are used today as 
standard statistical tools, mainly by psychologists, in situations where the traits concerned can be logically 
assumed to have a joint continuous distribution in the population sampled and the at least approximate 
normality of this distribution is not seriously questioned. 



Pearson did not attempt to investigate sampling distributions of r or · in small samples from bivariate 
normal or other population distributions because he saw no need to do so. He and his co-workers in the 
1890’s and early 1900’s saw their mission to be the advancement of knowledge and understanding of 
“variation, inheritance, and selection in Animals and Plants” through studies “based upon the examination 
of statistically large numbers of specimens,” and the development of statistical theory, tables of 
mathematical functions, and graphical methods needed in the pursuit of such studies.20 They were not 
concerned with the analysis of data from small-scale laboratory experiments or with comparisons of yield 
from small numbers of plots of land in agricultural field trials. It was the need to interpret values of r 
obtained from small-scale industrial experiments in the brewing in 1908 that r is symmetrically distributed 
about 0 in accordance with a Pearson Type II curve in random samples of any size from a bivariate normal 
distribution when ρ = 0; and, when ρ ≠ 0, its distribution is skew, with the longer tail toward 0, and cannot 
be represented by any of Pearson’s curves.21 

In another paper published earlier in 1908 (“The Probable Error of a Mean”), “Student” had discovered that 
the sampling distribution of s2 (the square of a sample standard deviation), in random samples from a 
normal distribution, can be represented by a Pearson Type III curve. Although these discoveries stemmed 
from knowledge and experience that “Student” had gained at Pearson’s biometric laboratory in London and 
were published in the journal that Pearson edited, they seem to have awakened no interest in Pearson or his 
co-workers in developing statistical theory and techniques appropriate to the analysis of results from small-
scale experiments. This indifference may have stemmed from preoccupation with other matters, from 
recognition that establishment of the small trends or differences for which they were looking required large 
samples, or from a desire “to discourage the biologist or the medical man from believing that he had been 
supplied with an easy method of drawing conclusions from scantly data.”22 

In September 1914 Pearson received the manuscript of the paper in which R. A. Fisher derived the general 
sampling distribution of r in random samples of any size n ≥ 2 from a bivariate normal population with any 
degree of correlation, –1 ≤ ρ ≤ + 1, and pointed out the extremen skewness of the distribution for large 
positive or negative values of ρ even for large sample sizes23 Pearson responded with enthusiasm, 
congratulated Fisher “very heartily on getting out the actual distribution form of r,” and stated that “if the 
analysis is correct which seems highly probable, [he] should be delighted to publish the paper in 
Biometrika.”24 A week later he wrote to Fisher: “I have now read your paper fully and think it marks a 
distinct advance. . .I shall be very glad to publish it. [it] shall appear in the next issue [May 1915]. . . I wish 
you had had the leisure to extend the last pages a little. . . I should like to see some attempt to determine at 
what value of n and for what values of ρ we may suppose the distribution of r practically normal.”25 

In the “last pages” of the paper, Fisher introduced two transformations of r, and thanh-1r, his aim being to 
find a function of r whose sampling distribution would have greater stability of form as ρ varied from –1 to 
+1, would be more nearly symmetric, or would have an approcimately constant standard deviation, for all 
values of ρ. The first of these two transformatiuons he considered in detail. Denoting the transformed 
variable by t, and the corresponding transformation of ρ by τ, he showed that the mean value of t was 
proportional to τ, the constant of proportionality increasing toward unity with increasing sample size. He 
also gave exact formulas for σ2(t), β1(t,) β2(t), and tables of their numerical values for selected values of τ2 
from .01 to 100 (that is, ρ from .0995 to .995) and sample sizes n from 8 to 53. Although the distribution of 
t was, by design, much less asymmetric and of more stable form than the distribution of r-this became 
unmistakably clear when the corresponding values of β1(r) and β2(r) became known in the “Cooperative 
Study” (see below)—the transformation was not an unqualified success: its distribution was not close to 
normal except in the vicinity of ρ = 0, and σ2(t) was not approximately constant but nearly proportional to 
1/(1 – ρ2). In the final paragraph Fisher dismissed the second transformation for the time being with the 
comment (with respect to the aims mentioned above): “It is not a little attractive, but so far as I have 
examined it, it does not tend to simplify the analysis. . .” (He later found it very much to his liking.) 

Reasoning about a function of sample values, such as r, in terms of a transform of it, instead of in terms of 
the function itself, seems to have been foreign to Pearson’s way of thinking. He wrote to Fisher: 



I have rather difficulties over this r and t business—not that I have anything to say about it from the 
theoretical standpoint—but there appear to me difficulties from the everyday applications with which we as 
statisticians are most familiar. Let me indicate what I mean. 

A man finds a correlation coefficient r from a small sample n of a population; often the material is urgent 
and an answer on the significance has to be given at once. What he wants to know, say, is whether the true 
value of r(ρ) is likely to exceed or fall short of his observed value by, say 10. It may be for instance the 
correlation between height of firing a gun and the rate of consumption of a time fuse, or between a 
particular form of treatment of wound and time of recovery. . .. For exmple, suppose that ρ =.30, and I want 
to find what is the chance that in 40 observations the resulting r will lie between.20 and.40. Now what we 
need practically are the β1 and β2 for ρ =.30 and n = 40, and if they are not sufficiently Gaussian for us to 
use the probability integral, we need the frequency curve of r for ρ =.30 and n = 40 to help us out. . .. Had I 
the graph of t I could deduce the graph of r, and mechanically integrate to determine the answer to my 
problem, but you have not got the ordinates of the t-curve and the practical problem remains it seems to me 
unsolved. It still seems to me essential (i) to determine β1 and β2 accurately for r . . . and (ii) determine a 
table of frequencies or areas (integral curve) of the r distribution curve for values of ρ and n which do not 
provide approximately Gaussian results. Of curse you may be able to dispose of my practical difficulties, 
which do not touch your beautiful theory.26 

Pearson then proposed a specific program of tabulation of the ordinates of the frequency curves for r for 
selected values of ρ and n to be executed by his trained calculators “unless you really want to do them 
yourself.” The letter in which Fisher is said to have “welcomed the suggestion” that the computations of 
these ordinates be carried out at the Galton laboratory “seems to have been lost through the distrubance of 
papers during the 1939–45 war,”27 On the other hand, Fisher seems to have agreed (in this missing, or some 
other, letter) to undertake the evaluation of the integral of the distribution of r for a selection of values of ρ 
and n. In a May 1916 letter to Pearson he comments, “I have been very slow about my paper on the 
probability integral.” 

When not engaged in war work, Pearson and several members of his staff took on the onerous task of 
developing reliable formulas for the moments of the distribution of r and calculating tables of its ordinated 
for ρ from 0.0 to 0.9 and selected values of n. In May 1916, Pearson wrote to Fisher: “. . . the whole of the 
correlation business has come out quite excellently. . . By [n = ] 25 my curves [curves of the Pearson 
system] give the frequency very satisfactorily, but even when n = 400, for high values of ρ the normal 
curve is really not good enough. . ..”28 It is quite clear form this correspondence between Pearson and 
Fisher during 1914–1916 that the relationship was entirely friendly, and the implication in some accounts 
of Fisher’s life and work29 that this venture was carried out without his knowledge is far from correct. 

The results of this joint effort of Pearson and his staff were published as “. . .A Cooperative Study” in the 
May 1917 issue of Biometrika. Included were tables of ordinates of the distribution of r for ρ = 0.0(0.1)0.9 
and n = 3(1)25, 50, 100, 400; values of β1(r) and β2(r) for the same ρ when n = 3, 4, 25, 50, 100, 400; and 
of the normal approximation to the ordinates for n = 100, ρ = 0.9, and n = 400, ρ = 0.7(0.1)0.9. There were 
also photographs of seven cardboard models showing, for example, the changes in the distribution of r 
from U-shaped through J-shaped to skew “cocked hat” forms with increasing sample size for n = 2(1)25 for 
ρ = 0.6, 0.8, and illustrating the rate of deviation from normality and increasing skewness with increase of 
ρ from 0.0 to 0.9 in samples of 25 and 50. This publication represented a truly monumental undertaking. 
Unfortunately, it ahd little long-range impact on practical correlation analysis, and it contained material in 
the section “On the Determination of the ‘Most Likely’ Value of the Correlation in Sampled Population” 
that contributed to the widening of the rift that was beginning to develop between Pearson and Fisher. 

In his 1915 paper Fisher derived (pp.520–521), from his general expression for the sampling distribution of 
r in samples of size n from a bivariate normal population, a two-term approximation, 

to the “relation between an observed correlation of the sample and the most probable value of the 
correlation of the whole population” [emphasis added]. He referred to his 1912 paper “On an Absolute 



Criterion for Fitting Frequency Curves” for justification of this procedure.30 Inasmuch as Pearson had 
shown in his 1896 memoir that an observed sample from a bivariate normal population is “the most 
probable” when ρ = r (μx = mx, σx, = Sx, μy = my, and ρy = Sy), Fisher’s proposed adjustment must have been 
puzzling to him. The result Fisher obtained is the same as what would be obtained, via the sampling 
distribution of r, by the method of inverse probability, using Bayes’s theorem and an assumed uniform a 
priori distribution of ρ from –1 to +1. This, and Fisher’s use of the expression “most probable value,” 
evidently led Pearson, who presumably drafted the text of the “Cooperative Study,”31 to state mistakely (pp. 
352,353) that Fisher had assumed such a uniform a priori distribution in deriving his result. Pearson may 
have been misled also by a “draft of a Note”32 that he had received from Fisher in mid-1916, commenting 
on a paper by Kirstine Smith that had appeared in the May 1916 issue of Biometrika, in which Fisher had 
writter: “There is nothing at all ‘arbitrary’ in the use of the method of moments for the normal curve; as I 
have shown elsewhere it flows directly from th4e absolute criterion (Σlogf a maximum) derived from the 
Principle of Inverse Probability.” 

Not realizing that Fisher had not only not assumed a uniform a priori distribution of ρ but had also 
considered his procedure (which he later termed the method of “maximum likelihood”) to be completely 
distinct from “inverse probability” via Bayes’s theorem with an assumed a priori distribution, Pearson 
proceeded to devote over a page of the “Study” to pointing out the absurdity of such an “equal distribution 
of ignorance” assumption when estimating ρ from an observed r. Several additional pages contain a 
detailed consideration of alternative forms for the a priori distribution of ρ, showing that with large samples 
the assumed distribution had little effect on the end result but in small samples could dominate the sampel 
evidence, from which he concluded that “in problems like the present indiscriminate use of Bayes’ 
Theorem is to be deprecated” (p. 359). All of this amounted to flogging a dead horse, soi to speak, because 
Fisher was as fully opposed as Pearson to using Bayes’s theorem in such problems. Unfortunately, Fisher 
probably was totally unaware of this offending section before proofs became available in 1917. Papers such 
as the “Study” were not readily typed in those days, so that there would have been only a single manuscript 
of the text and tables prior to typesetting. Has Fisher, who was then teaching mathematics and physics in 
English public schools, been in closer touch with Pearson, these misunder standings might have been 
resolved before publication of the offending passages. 

In August 1920 Fisher sent Pearson a copy of his manuscript “On the ‘Probable Error’ of a Coefficient of 
Correlation Deduced From a Small Sample,” in which he reexamined in detail the tanh-1r transformation 
and, denoting the transformed variable by z and the corresponding transformation of ρ by ζ showed that z 
can be taken to be approximatley normally distributed about a mean of with a standard deviation equal to ζ 
the normal approximation being extraordinarily good even in very small samples—of the order of n = 10 
This transformation thus made it possible to answer questions of the types that Pearson had raised without 
recourse to tables of the integral of the distribution of r, and obviated the immediate need for the 
preparation of such tables. (It was not until 1931 that Pearson suggested to Florence N. David the 
computation of tables of the integral. Values of the integral obtained by quadrature of the ordinates given in 
the “Cooperative Study” were completed in 1934. Additional ordinates and values of the integral were 
calculated to facilitate interpolations. These improved tables, together with four charts for obtaining 
confidence limits for ρ given r, were published in 1938.33) 

In his discussion of applications, Fisher took pains to point out that the formula he had given in his 1915 
paper for what he then “termed the ‘most likely value,’ which [he] now, for greater precision, term[ed] the 
‘optimum’ value of ρ, for a given observed r” involved in its derivation “no assumption whatsoever as to 
the probable distribution of ρ,” being merely that value of ρ for which the observed r occurs with greatest 
frequency.” He also noted that one is led to exactly the same expression for the optimum value of ρ in 
terms of an observed r if one seeks the optimum through the z distribution rather than the r distribution and 
he commented that the derivation of this optimum cannot, therefore, be inferred to depend upon an 
assumed uniform prior distribution of ζ and upon an assumed uniform prior distribution of ρ, since these 
two assumptions are mutually inconsistent. Then, “though. . .reluctant to criticize the distinguished 
statisticians who put their names to the Cooperative study,” Fisher went on to criticize with a tone of 
ridicule some of the illustrative examples of the application of Bayes’s theorem considered on pp. 357–358 
of the “Study,” without noting the authors’ conclusions from these, and other examples considered, that 



such “use of Bayes’ Theorem is to be deprecated” (p. 359) and when applied to “val;ues observed in a 
small sample may lead to results very wide from the truth” (p. 360). Fisher concluded his paper with a 
“Note on the Confusion Between Bayes’ Rule and My Method of the Evaluation of the Optimum.” 

Pearson returned the manuscript to Fisher with the following comment: 

. . . I fear if I could give full attention to your paper, which I cannot at the present time, I shoule be unlikely 
to publish it in its present form, or without a reply to your criticisms which would involve also a criticism 
of your work of 1912–1 would prefer you publish elsewhere. Under present printing and financial 
conditions, I am regretfully compelled to exclude all that I think erroneous on my own judgment, because I 
cannot afford controversy.34 

Fisher therefore submitted his paper to Metron, a new journal, which published the work in its first 
volume.35 

The cross criticism, at cross purposes, conducted by Pearson and Fisher over the use of Bayes’s theorem in 
estimating ρ from r was multiply unfortunate: it was unnecessary and ill-timed; it might have been avoided; 
and it fostered ill will and fueled the innately contentious temperament of both parties at an early stage of 
their argument over the relative merits of the method of moments and method of maximum likelihood. This 
argument was started by Fisher’s “Draft of a Note,” which Pearson took to be a criticism not only of the 
minimum chi-square technique that Kirstine Smith had propounded but also of his method of moments, and 
refused to publish it in both original (1916) and revised (1918) forms on the grounds of its being 
controversial and liable to provoke a quarrel among contributors.36 The argument, which grew into a raging 
controversy, was fed by later developments on various fronts and continued to the end of Pearson’s life-and 
beyond.37 

In 1922 Fisher found the sampling distribution of ·2 in random samples of any size from a bivariate normal 
population in which the correlation is zero (ρ = 0), and later (1928) derived the distribution of n2 in samples 
of any size when the x values are fixed and the y values are normally distributed with a common standard 
deviation σ about array means μy\x which may be different for different values of x, thereby giving rise to a 
nonzero value of the “population” correlation ratio. In particular, it was found that for any value of the 
population correlation ratio different from zero, the sampling distribution of · tends in sufficiently large 
samples to be approximately normal about the population value with standard error given by Pearson’s 
formula; but when the correlation ratio in the population is exactly zero—that is, when sampling from 
uncorrelated material—the sampling distribution of · does not tend to normality with increasing sample size 
for any finite number of arrays. This led to formulation of new procedures, since become standard, value of 
η and of η2 – r2 as a test for departure from linearity. 

In 1926 Pearson showed that the distribution of sample regression coefficients, that is, of the slopes of the 
sample regression of y on x and of x on y, respectively, is his Type VII distribution symmetrical about the 
corresponding population regression coefficient. It tends to normality much more rapidly than the 
distribution of r with increasing sample size, so that the use Pearson’s expression for the standard error of 
regression coefficents is therefore valid for lower values of n than in the case of r. It is, however, not of 
much use in small samples, since it depends upon the unknown values of the population standard deviations 
and correlation, σy, σx, and ρx y. Four years earlier, however, in response to repeated queries from “Student” 
in correspondence, Fisher had succeeded in showing that in random samples of any size from a general 
bivariate normal population, the sampling distribution of the ratio(b – β)/Sb–β, where β is the population 
regression coefficinet corresponding to the sample coefficient b, and Sb–β is a particular sample estimate of 
the standard error of their difference, does not depend upon any of the population parameters other than β 
and is given by a special form of Pearson’s Type VII curve now known as “Student’s” t-distribution for n – 
2 degrees of freedom. Consequently, it is this latter distribution, free of “nuisance parameters,” that is 
customarily employed today in making inferences about a population regression coefficient from an 
observed value of the corresponding sample coefficient. 



Although the final steps of correlation and regression analyses today differ from those originally advanced 
by Pearson and his co-workers, there can be no question that today’s procedures were built upon those 
earlier ones; and correlation and regression analysis is still very much indebted to those highly original and 
very much indebted to those highly original and very difficult steps into the unknown taken by Pearson at 
the turn of the century. 

Derivation of formulas for standard errors in large samples of functions of sample values used to estimate 
parameters of the population sampled did not, of course, originate with Pearson. It dates from Gauss’s 
derivation (1816) of the standard errors in large samples of the respective functions of successive sample 
absolute moments that might be used as estimators of the population standard deviation. Another early 
contribution was Gauss’s derivation (1823) of a formula comparable with that derived by Pearson in 1903 
for the standard error in large samples of the sample standard deviation as estimator of the standard 
deviation of an arbitrary population having finite centroidal moments of fourth order or higher. Subsequent 
writers treated these matters somewhat more fully and made a number of minor extensions, but the first 
general approach to the problem of standard errors and intercorrelations in large samples of sample 
functions used to estimate values of population parameters is that given in “On the Probable Errors of 
Frequency Constants. . .,” written by Pearson and his young French mathematical demonstrator, L. N. G. 
Filon, and read to the Royal Society in November 1897. In section II there is the first derivation of the now 
familiar expressions for the asymptotic variances and covariances of sample estimators of a group of 
population parameters in terms of mathematical expectations of second derivatives of the logarithm of what 
is now called the “likelihood function,” but without recognition of their applicability only to maximum 
likelihood estimators, a limitation first pointed out by Edgeworth (1908).38 Today these formulas are 
usually associated with Fisher’s paper “On the Mathematical foundations of Theoretical Statistics” 
(1922)—and perhaps rightly so, because, although the expressions derived by Pearson and Filon, and by 
Fisher, are of identical mathematical form, what they meant to Pearson and Filon in 1897 and continued to 
mean to Pearson may have been quite different from what they meant to Fisher.39 (This may have been a 
major obstacle to their conciliation.) 

Specific formulas derived by Pearson and Filon include expressions for the standard error of a coefficient 
of correlation r; the correlation between the sample means mx and my of two correlated traitsl the correlation 
between the sample standard deviations, Sx and Sy; the correlation between a sample coefficient of 
correlation r and a sample standard deviation sx or sy; the standard errors of regression coefficients,a nd of 
partial regression coefficients, for the two-and threevariable cases, respectively; and the correlations 
between pairs of sample correlation coefficients (r12, r13), (r12, r34)—all in the case of large samples from a 
correlated noraml distribution. In the process it was noted that in the case of large samples from a 
correlated normal distribution, the errors of sample means are uncorrelated with the errors of sample 
standard deviations and sample correlation coefficients; and that through failure to recognize the existence 
of correlation between the errors of sample standard deviations and a sample correlation coefficient, the 
formula given previously for the large sample standard error of the sample correlation coefficient r was in 
error, because it was appropriate to the case in which the population standard deviations, and are known 
exactly, Large sample formulas were found also for the standard errors and correlations between the errors 
of sample estimates of the parameters of Pearson Type, I, III, and IV distributions, making this the first 
comprehensive study of such matters in the case of skew distributions. 

Pearson returned to this subject in a series of three editorials in Biometrika, “On the Probable Errors of 
Frequency Constants,” prepared in response to a need expressed by queries from readers. The first (1903) 
deals with the standard errors of, and correlations between, (i) cell frequencies in a histogram and (ii) 
sample centroidal moments, in terms of the centroidal moments of a univariate distribution of general form. 
Some of the results given are exact and some are limiting values for large samples. In some instances a 
“probable error” ( = 0.6745 x standard error) is given, but the practice is deprecated: “The adoption of the 
‘probable error”. . .as a measure of. . .exactness must not, however, be taken as equivalent to asserting the 
validity of the normal law of errors or deviations, but merely as a purely conventional reduction of the 
standard deviation. It would be equally valid provided it were customary to omit this reduction or indeed to 
multiply the standard deviation by any other conventional factor” (p. 273). 



The extension to samples from a general bivariate distribution was made in “Part II” (1913), reproduced 
from Pearson’s lecture notes. Formulas were given for the correlation of errors in sample means; the 
correlation of errors in sample standard deviations; the standard error of the correlation coefficient r (in 
terms of the population coefficient of correlation ρ and the β2 s of the two marginal distributions); the 
correlation between the random sampling deviations of a sample mean and a sample standard deviation for 
the same variate; correlation between the random sampling deviations of sample mean of one variate and 
the standard deviation of a correlated variate; the correlation between a mean and a sample coefficient of 
correlation; the correlation between the sampling deviations of a sample standard deviation and sample 
coefficient of correlation; and the standard errors of coefficients of linear regression lines and of the means 
of arrays. In this paper it is also shown that in the case of all symmetric distributions, there is no correlation 
between the sample mean and sample standard deviation. “Part III” (1920) deals with the standard errors 
of, and the correlations between, the sampling variations of the sample median, quartiles, deciles, and other 
quantiles in random samples from a general univariate distribution. The relative efficiency of estimating the 
standard deviation of a normal population from the difference between two symmetrical quantiles of a large 
sample therefrom is discussed, and the “optimum” is found to be the difference between the seventh and 
ninety-third percentiles. 

The results given in these three editorials are derived by a procedure considerably more elementary than 
that employed in the Pearson-Filon paper. Some of the results given are exact; others are limiting values for 
large samples; and many have become more or less standard in statistical circles. 

The July 1900 issue of Philosophical Magazine contained Pearson’s paper in which he introduced the 
criterion 

as a measure of the agreement between observation and hypothesis overall to be used as a basis for 
determining the probability with which the differences fi –Fi (i = 1, 2, . . ., k), collectively might be due 
solely to the unavoidable fluctuations of random sampling, where fi denotes the observed frequency (the 
observed number of observations falling) in the ith of k mutually exclusive categories, and Fi is the 
corresponding theoretical frequency (the number exected in the ith category in accordance with some 
particular true or hypothetical frequency distribution), with Σfi = ΣFi = N, the total number of independent 
observations involved. To this end he derived the sampling distribution of x2 in large samples as a function 
of k, finding it to be a specialized form of the Pearson Type III distribution now known as the “X2 
distribution for k – 1 degrees of freedom,” the k – 1 being explained by the remark (in our notation) “only k 
– 1 of the k errors are variables; the kth is determined when the first k – 1 are known”; he also gave a small 
table of the integral of the distribution for X2 from 1 to 70 and k from 3 to 20. Of Pearson’s many 
contributions to statistical theory and practice, many contributions to statistical theory and practice, this X2 
text for goodness of fit is certainly one of his greatest; and in its original and extended forms it has 
remained one of the most useful of all statistical tests. 

Four years later, in On the Theory of Contingency and Its Relation to Association and Normal Correlation, 
Pearson extended the application of his X2 criterion to the analysis of the cell frequencies in a “contingency 
table” of r rows and c columns resulting from the partitioning of a sample of N observations into r distinct 
classes in terms of some particular characteristic, and into c distinct classes with respect to another 
characteristic; showed how the X2 criterion could be used to test the independence of the two 
classifications; termed ø2 = X2/N the “mean square contingency” and 

the coefficient of mean square contingency; showed that, if a large sample from a bivariate normal 
distribution with correlation coefficient ρ is partitioned into the cells of a contingency table, then C2 will 
tend to approximate ρ2 as the number of categories in the table increases, the correct sign of ρ then being 
determined from the order of the two classifications and the pattern of the order of the two classifications 
and the pattern of the cell frequencies within the r × c table; and that, when r = c = 2, ø2 is equal to the 
square of the product-moment coefficient of correlation computed from the observed frequencies in the 
fourfold table with purely arbitrary values (for instance, 0, 1) assigned to the two row categories and to the 
two column categories. 



Pearson made much of the fact that the value of X2 and of C is unaffected by reordering either or both of the 
marginal categories, so that X2 provides a means of testing the independence of the two characteristics 
(such as eye color and occupation) in terms of which the marginal classes are defined without, and 
independently of, any additional assumptions as to the nature of the association, if any. In view of the 
above mentioned relation of C to ρ under the indicated circumstances, C would seem to be a generally 
useful measure of the degree or intensity of the association when a large value of X2 leads to rejection of the 
hypothesis of independence; and Pearson proposed its use for this purpose. It is, however, not a very 
satisfactory measure of association-for example, the values of C obtained from r × c classification and an r′ 
× c′ classification of the same data will usually be different. also, some fundamental objections have been 
raised to the use of C, or any other function of X2 as a measure of association. Nonetheless, c played an 
important role in its day in the analysis of data classified into r × c tables when the categories for both 
characteristics can be arranged in meaningful orders if the ctegories for either characteristic cannot be put 
into a meaningful order, then there can be no satisfactory measure of the intensity of the association; and a 
large value of X2 may simply be an indication of some fault in the sampling procedure. 

In a 1911 Biometrika paper, Pearson showed how his X2 criterion could be extended to provide a test of the 
hypothesis that “two independent distributions of frequency [arrayed in a 2 × c table] are really samples 
from the same population.” The theoretical proportions in the respective cells implied by the presumed 
common population being unknown, they are estimated from the corresponding proportions of the two 
samples combined. Illustrative examples show that to find P, the probability of a larger value of X2, the 
“Tables for Testing Goodness Fit” are to be entered with n′ = c, signifying that there are c – 1 “independent 
variables” (“degrees of freedom”) involved, which agrees with present practive. In a Biometrika paper, “On 
the General Theory of Multiple Contingency. . .” (1916), Pearson gave a new derivation of the X2 
distribution, as the limiting distribution of the class frequencies of a multinomial distribution as the sample 
sizeN → ∞ pointed out (pp. 153–155) that if q linear restraints are imposed on the n′ cell frequencies in 
addition to the usual Σfi = N, then to find P one must enter the table with n′ – q; and extended the X2 
techique to testing whether the frequencies arrayed in two (2 × c) contingency tables can be considered 
random samples from the same bivariate population. In this application of “partial X2,” Pearson considers 
the c column totals of each table to be fixed, thereby imposing 2c linear restraints on the 4c cell frequencies 
involved. The theoretical proportion, p1 in the presumed common population, corresponding to the cell in 
the top row and jth column of either table being unknown, it is taken as equal to the corresponding 
proportion in this cell of the two tables combined, (j = 1, 2, . . ., c), thereby imposing c additional linear 
restraints (ρ2f is, of course, simply 1—ρ2j [j = 1, 2, . . . c]). Hence there remain only 4c – 2c – c = c 
“independent variables”; and Pearson notes that the X2 tables are to be entered with n′ = c + 1. These two 
papers clearly contain the basic elements of a large part of present-day X2 technique. 

In section 5 of his 1900 paper on X2 Pearson pointe dout that one must distinguish between a value of X2 
calculated from theoretical frequencies Fi derived from a theoretical probability distribution completely 
specified a priori and values of say, calculted from theoretical frequencies F ̃i derived from a theoretical 
probability distribution of specified form but with the values of one or more of its parameters left 
unspecified so that “best values” for these had to be determined from the data in hand. It was clear that 
could never exceed the “true” X2 From a brief, cursory analysis Pearson concluded that the differenceX2— 
was likely to be negligible. Evidently he did not realize that the difference might depend on the number of 
constants the values of which were determined from the sample and that, if k constants were fit, might be 
zero. 

Ultimately Fisher showed in a series of three papers (1922, 1923,1924) that when the unknown parameters 
of the population sampled are efficiently estimated from the data in such a manner as to impose c additional 
linear restraints on t cell frequencies, then, when the total number of observations N is large, will be 
distributed in accordance with a X2 distribution for (t – 1 – c) degrees of freedom. Pearson had recognized 
this in the cases of the particular problems discussed in his 1911 and 1916 papers considered above; but he 
never accepted Fisher’s modification of the value of n′ with whcih the “Tables of Goodness of Fit” were to 
be entered in the original 1900 problem of testing the agreement of an observed and a theoretical frequency 
distribution when some parameters of the latter wer estimated from the observed data, or in the 1904 
problem of testing the independence of the two classification of an r × c contingency table. 



During Pearson’s highly innovative decade and a half, 1891–1906, in addition to laying the foundations of 
the major contributions to statistical theory and practive recviewed above, he also initiated a number of 
other topics that later blossomed into important areas of statistics and other disciplines. Brief mention was 
made above of “On the Mathematical Theory of Errors of Judgment.” (1902). This investigation was 
founded on two series of experiments in which three observers each individually (a) estimated the 
midpoints of segments of stragight lines; and (b), estimated the position on a scale of a bright line moving 
slowly downward at the moment when a bell sounded. The study revealed that the errors of different 
observers estimating or measuring the same series of quantities are in general correlated; that the frequency 
distributions of such errors of estimation or measurement certainly are not always normal; and that the 
variation over a period of time of the “personal equation” (the pattern of the systematic error or bias of an 
individual observer) is not explainable soley by the fluctuations of random sampling. The investigation 
stemmed from Pearson’s observation that when three observers individually estimate or measure a series of 
physical quantities, the actual magnitudes of which may or may not be known or determinable, then, on the 
assumption of independence of the judgments of the respective observers, it is possible to determine the 
standard deviations of the distributions of measurement errors of each of the three observers from the 
observed standard deviations of the differences between their respective measurements of the same 
quantities. The investigation reported in this memoir is thus the forerunner of the work carried out by Frank 
E. Grubbs during the 1940’s on methods for determining the individual precisions of two, three, four, or 
more measuring instruments in the presence of product variability. 

A second example is provided by Pearson’s “Note on Francis Galton’s Problem” (August 1902), in which 
he derived the general expression for the mean value of the difference between the rth and the (r + 1)th 
individuals ranked in order of size n from any continuous distribution. This is one of the earliest general 
results in the sampling theory of order statistics, a very active subfield of statistics since the 1930’s. 
Pearson later gave general expressions for the variances of, and correlations between, such intervals in 
random samples from any continuous distribution in a joint paper with his second wife, “On the Mean. . 
.and Variance of a Ranked Individual, and. . .of the Intervals Between Ranked Individuals, Part I . . 
.”(1931). 

A third example is the theory of “random walk,” a term Pearson coined in a brief letter, “The Problem of 
the Random Walk,” published in the 17 July 1905 issue of Nature, in which he asked for information on the 
probability distribution of the walker’s distance from the origin after n steps . Lord Rayleigh replied in the 
issue of 3 August, pointing out that the problem is formally the same as that of “the composition of n 
isoperiodic vibrations of unit amplitude and of phases distributed at random” (p. 318), which he had 
considered as early as 1880, and indicated the asymptotic solution as n → ∞. The general solution for finite 
n was published by J. C. Kluyver in Dutch later the same year and, among other applications, provides the 
basis for a test of whether a set of orientation or directional data is “random” or tends to exhibit a 
“preferred direction.” With John Blakeman, Pearson published A Mathematical Theory of Random 
Migration (1906), in which various theoretical forms of distribution were derived that would result from 
random migration from a point of origin under certain ideal conditions and solutions to a number of 
subsidiary problems were given, results that have found various other applications. Today “random walks” 
of various kinds, with and without reflecting or absorbing barriers, play important roles not only in the 
theory of Brownian motion but also in the treatment of random phenomena in astronomy, biology, physics, 
and communications engineering; in statistics, they are used in the theory of sequential estimation and of 
sequential tests of statistical hypotheses. 

Pearson’s involvement in heredity and evolution dates from his first fundamental paper on correlation and 
regression (1896), in which, to illustrate the value of these new mathematical tools in attacking problems of 
heredity and evolution, he included evaluations of partial regressions of offspring on each parent for sets of 
data from Galton’s Record of Family Faculties (London, 1884) and considerably extended Galton’s 
collateral studies of heredity by considering types of selection, assortative mating, and “panmixia” 
(suspension of selection and subsequent free interbreeding). Galton’s formulation, in Natural Inheritance 
(1889), of his law of ancestral heredity was somewhat ambiguous and imprecise because of his failure to 
take into account the additional mathematical complexity involved in the joint consideration of more than 
two mutually correlated characteristics. Pearson supposed him to mean (p. 303) that the coefficients of 



correlation between offspring and parent, grandparent, and great-grandparent,. . .were to be taken as r, r2r3, 
. . .. This led him to the paradoxical conclusion that “a knowledge of the ancestry beyond the parents in no 
way alters our judgment as to the size of organ or degree of characteristic probable in the offspring, nor its 
variability” (p. 306), a conclusion that he said in a footnote “seems especially noteworthy” inasmuch as it is 
quite contrary to what “it would seem natural to suppose.” 

In “On the Reconstruction of the Stature of Prehistoric Races” (1898), Pearson used multiple regression 
techniques to predict (“reconstruct”) average measurements of extinct races from the sizes of existing 
bones and known correlations among bone lengths in an extant race, as a means of testing the accuracy of 
predictions in evolutionary problems in the light of certain evolutionary theories. 

Meanwhile, Galton had formulated (1897) his “law” more precisely. After some correspondence Pearson, 
in “On the Law of Ancestral Heredity” (1898), subtitled “A New Year’s Greeting to Francis Galton, 
January 1, 1898,” expressed what he christened “Galton’s Law of Ancestral Heredity” in the form of a 
multiple regression equation of offspring on midparental ancestry 

where x0 is the predicted deviation of an individual offspring from the mean of the offspring generation, x1 
is the deviation of the offspring generation, x2 the deviation of the offspring’s “midgrandparent” from the 
mean of the grandparental generation, and so on, and σ0 σ1 . . . are the standard deviations of the 
distributions of individuals in the respective generations. In order that this formulation of Galton’s law be 
unambiguous, it was necessary to have a precise definition of “sth midparent.” The definition that Pearson 
adopted “with reservations” was “[If] a father is a first parent, a grandfather a second parent, a great-
grandfather a third parent, and so on, [then] the mid sth parent or the sth mid-parent is derived from [is the 
mean of] all 28 individual sth parents” (footnote, p. 387). 

From this formulation Pearson deduced theoretical values for regression and correlation coefficients 
between various kin, tested Galton’s stature data against these expectations, and suggested generalizing 
Galton’s law by substituting γβ, γβ2, γβ3, . . . for Galton’s geometric series coefficients 1/2, 1/4, 1/8,. . . to 
allow “greater scope for variety of inheritance in different species” (p. 403). In the concluding section 
Pearson claims: “If either [Galton’s Law], or its suggested modification be substantially correct, they 
embrace the whole theory of heredity. They bring into one simple statement an immense range of facts, 
thus fulfilling the fundamental purpose of a great law of nature” (p. 411). After noting some difficulties that 
would have to be met and stating, “We must wait at present for further determinations of hereditary 
influence, before the actual degree of approximation between law and nature can be appreciated,” he 
concluded with the sweeping statement: “At present I would merely state my opinion that, with all due 
reservations it seems to me that . . . it is highly probable that [the law of ancestral heredity] is the simple 
descriptive statement which brings into a single focus all the complex lines of hereditary influence. If 
Darwinian evolution be natural selection combined with heredity, then the single statement which embraces 
the whole field of heredity must prove almost as epoch-making to the biologist as the law of gravitation to 
the astronomer” (p. 412). 

These claims were obviously too sweeping. Neither the less nor the more general form of the law was 
founded on any clear conception of the mechanism of heredity. Also, most unfortunately, some of the 
wording employed-for instance, “I shall now proceed to determine. . . the correlation between an individual 
and any sth parent from a knowledge of the regression between the individual and his mid-sth parent” (p. 
391)—tended to give the erroneous idea that the law expressed a relation between a particular individual 
and his sth parents, and thus to mislead biologists of the period, who had not become fully conscious that 
regression equations merely expressed relationships that held on the average between the generic types of 
“individuals” involved, and not between particular individuals of those types. 

During the summer vacations of 1899 and 1900 Pearson, with the aid of many willing friends and 
colleagues, collected material to test a novel theory of “homotyposis, which if correct would imply that the 
correlation between offspring of the same parents should on the average be equal to the correlation between 
undifferentiated like organs of an individual.” The volume of data collected and reduced was far greater 



than Pearson had previously attempted. The result was a joint memoir by Pearson and several members of 
his staff, “On the Principle of Homotyposis and Its Relation to Heredity . . . Part I. Homotyposis in the 
Vegetable Kingdom,” which was “received” by the Royal Society on 6 October 1900. William Bateson, 
biologist and pioneer in genetics, who had just become a convert to Mendel’s theory, was one of those 
chosen to referee the memoir, which was “read”-persumably only the five-page abstract40 and certainly in 
highly abridged form-at the meeting of 15 November 1900. In the discussion that followed the presentation, 
Bateson sharply criticized the paper, its thesis being, in his view, mistaken; and other fellows present added 
criticism of both its length and its content. 

The next day (16 November 1900) Weldon wrote to Pearson: “The contention ‘that numbers mean nothing 
and do not exist in Nature’ is a very serious thing, which will have to be fought. Most other people have got 
beyond it, but most biologists have not. Do you think it would be too hopelessly expensive to start a journal 
of some kind?. . .”41 Pearson was enthusiastically in favor of the idea-on 13 December 1900 he wrote to 
Galton that Bateson’s adverse criticism “did not apply to this memoir only but to all my work,. . . if the r. 
S. people send my papers to Bateson, one cannot hope to get them printed. It is a practical notice to quit. 
This notice applies not only to my work, but to most work on similar statistical lines.”42 On 29 November 
Weldon wrote to him: “Get a better title for this would-be journal than I can think of!”43 Pearson replied 
with the suggestion that “the science in future should be called Biometry and its official organ be 
Biometrika44 

A circular was sent out during December 1900 to solicit financial support and resulted in a fund sufficient 
to support the journal for a number of years. Weldon, Pearson, and C. B. Davenport were to be the editors; 
and Galton agreed to be “consulting editor.” The first issue appeared in October 1901, and the editorial 
“The Scope of Biometrika” stated: 

Biometrika will include (a) memoirs on variation, inheritance, and selection in Animals and Plants, based 
upon the examination of statistically large numbers of specimens (this will of course include statistical 
investigations in anthropometry); (b) those developments of statistical theory which are applicable to 
biological problems; (c) numerical tables and graphical solutions tending to reduce the labour] of statistical 
arithmetic; (d) abstracts of memoirs, dealing with these subjects, which are published elsewhere; and (e) 
notes on current biometric work and unsolved problems. 

In the years that followed, Biometrika became a major medium for the publication of mathematical tables 
and other aids to statistical analysis and detailed tables of biological data. 

The memoir on homotyposis was not published in the Philosophical Transactions until 12 November 1901, 
and only after a direct appeal by Pearson to the president of the Royal Society on grounds of general 
principle rather than individual unfairness. Meanwhile, Bateson had prepared detailed adverse criticisms. 
Under pressure from Bateson, the secretary of the Royal Society put aside protocol and permitted the 
printing of Bateson’s comments and their issuance to the fellows at the meeting of 14 February 1901—
before the full memoir by Pearson and his colleagues was in their hands, and even before its authors had 
been notified whether it had been accepted for publication. Then, with the approval of the Zoological 
Committee, Bateson’s full critique was published in the Proceedings of the Royal Society before the 
memoir criticized had appeared.45 One can thus appreciate the basis for the acerbity of Pearson’s rejoinder, 
which he chose to publish in Biometrika46 because he had been “officially informed that [he had] a right to 
a rejoinder, but only to such a one as will not confer on [his] opponent a right to a further reply!” (footnote, 
p. 321) 

This fracas over the homotyposis memoir was but one manifestation of the division that had developed in 
the 1890’s between the biometric “school” of Galton, Weldon, and Pearson and certain biologists—notably 
Bateson—over the nature of evolution. The biometricians held that evolution of new species was the result 
of gradual accumulation of the effects of small continuous variations. In 1894 Bateson published a book in 
which he noted that deviations from normal parental characteristics frequently take the form of 
discontinous “jumps” of definite measurable magnitude, and held that discontinuous variation of this 



kind—evidenced by what we today call sports or mutations—is necessary for the evolution of new 
species.47 He was deeply hurt when Weldon took issue with this thesis in an otherwise very favorable 
review published in Nature (10 May 1894). 

When Gregor Mendel’s long-overlooked paper of 1866 was resurrected in 1900 by three Continental 
botanists, the particulate nature of Mendel’s theory of “dominance” and “segregation” was clearly in 
keeping with Bateson’s views; and he became a totally committed Mendelist, taking it upon himself to 
convert all English biologists into disciples of Mendel. Meanwhile, Weldon and Pearson had become 
deeply committed adherents to Galton’s law of ancestral heredity, to which Bateson was antiplatheitc. 
There followed a heated controversy between the “ancestrians,” led by Pearson and Weldon, and the 
“Mendelians,” led by Bateson. Pearson and Weldon were not, as some supposed, unreceptive to Mendelian 
ideas but were concerned with the too ready acceptance of Mendlism as a complete gospel without regard 
to certain incompatibilities they had found between Mendel’s laws of “dominance” and “segregation” and 
other work. Weldon, the naturalist, regarded Mendelism as an unimportant but inconvenient exception to 
the ancestral law. Pearson, the applied mathematician and philosopher of science, saw that Mendelism was 
not incompatible with the ancestral law but in some circumstances could lead directly to it; and he sought 
to bring all heredity into a single system embodying both Mendelian and ancestrian principles, with the 
latter dominant. To Bateson, Mendel’s laws were the truth and all else was heresy. The controversy raged 
on with much mutual incomprehension, and with great bitterness on both sides, until Weldon’s death in 
April 1906 removed the most committed ancestrian and Bateson’s main target.48 Without the help of 
Weldon’s biologically trained mind, Pearson had no inclination, nor the necessary training, to keep in close 
touch with the growing complexity of the Mendelian hypothesis, which was coming to depend increasingly 
on purely biological discoveries for its development; he therefore turned his attention to unfinished 
business in other areas and to eugenics. 

During the succeeding decades Mendelian theory became firmly established—but only after much testing 
on diverse material, clarification of ideas, explanation of “exceptions,” and tying in with cytological 
discoveries. Mendel’s laws have been shown to apply to many kinds of characters in almost all organisms, 
but this has not entirely eliminated” biometrical” methods. Quite the contrary: multiple regression 
techniques are still needed to cope with the inheritance of quantitative characters that presumably depend 
upon so many genes that Mendelian theory cannot be brought to bear in practice. For example, coat color 
of dairy cows depends upon only a few genes and its Mendelian inheritance is readily verified; but the 
quantitative trait of milk production capacity is so complex geneticaloy that multiple regression methods 
are used to predict th average milk-production character of offspring of particular matings, given the 
relevant ancestral information. 

In fact, geneticists today ascribe the reconciliation of the “ancestral” and “Mendelian” positions and 
“Mendelian” positions, and definitive synthesis of the two theories, to Fisher’s first genetical paper, “The 
Correlations to be Expected Between Relatives on the Supposition of Mendelian Inheritance” (1918), in 
which, in response to new data, he improved upon the kinds of models that Pearson, Weldon, and Yule had 
been considering 10–20 years before, and showed clearly that the correlations observed between human 
relatives not only could be interpreted on the supposition of Mendelian inheritance, but also that Mendelian 
inheritance must lead to precisely the kind of correlations observed. 

Weldon’s death was not only a tremendous blow to Pearson but also removed a close colleague of high 
caliber, without whom it was not possible to continue work in biometry along some of the lines that they 
had developed during the preceding fifteen years. Yet Pearson’s productivity hardly faltered. During his 
remaining thirty years his articles, editorials, memoirs, and books on or related to biometry and statistics 
numbered over 300; he also produced one in astronomy and four in mechanics and about seventy published 
letters, reviews, and prefatory and other notes in scientific publications, the last of which was a letter 
(1935) on the aims of the founders of Biometrika and the conditions under which the journal had been 
published. 

Following Weldon’s death, Pearson gave increasing attention to eugenics. In 1904 Galton had provided 
funds for the establishment of a eugenics record office, to be concerned with collecting data for the 



scientific study of eugenics. Galton kept the office under his control until late in 1906, when, at the age of 
eighty four, he turned it over to Pearson. With a change of name to eugenics laboratory, it became a 
companion to Pearson’s biometric laboratory. It was transferred in 1907 to University College and with a 
small staff carried out studies of the relative importance of heredity and environment in alcoholism, 
tuberculosis, insanity, and infant mortality.49 The findings were published as Studies in National 
Deterioration, nos. 1–11 (1906–1924) and in Eugenics Laboratory Memoirs, nos. 1–29 (1907–1935). 
Thirteen issues of the latter were devoted to “The Treasury of Human Inheritance” (1909–1933), a vast 
collection of pedigrees forming the basic material for the discussion of the inheritance of abnormalities, 
disorders, and other traits. 

Pearson’s major effort during the period 1906–1914, however, was devoted to developing a postgraduate 
center in order” to make statistics branch of applied mathematics with a technique and nomenclature of its 
own, to train statistics as men of science . . . and in general to convert statistics and in this country from 
being the playing field of dilettanti and controversialists into a serious branch of science, which no man 
could attempt to use effectively without adequate training, any more than he could attempt to use the 
differential calculus, being ignorant of mathematics.”50 At the beginning of of this period Pearson was not 
only head of the department of applied mathematics, but also in charge of the drawing office for 
engineering students, giving evening classes in astronomy, directing the biometric and eugenics 
laboratories, and editing their various publications, and Biometrika, a tremendous task for one man. In the 
summer of 1911, however, he was able to cut back somewhat on these diverse activities by relinquishing 
the Goldmid chair of applied mathematics to become the first Galton professor of eugenics and head of a 
new department of applied statistics in which were incorporated the biometric and eugenics laboratories. 
But he also assumed a new task about the same time: soon after Galton’s death in 1911, his relatives had 
asked Pearson to write his biography. The first volume of The Life, Letters and Labors of Francis Galton 
was published in 1914, the second volume in 1925, and the third volume (in two parts) in 1930. It is an 
incomparable source of information on Galton, on Pearson himself, and on the early years of biometry. 
Although the volume of Pearson’s output of purely statistical work was somewhat reduced during these 
years by the task of writing this biography, it was still immense by ordinary standards. 

Pearson was the principal editor of Biometrika from its founding to his death (vols. 1–28, 1901–1936), and 
for many years he was the sole editor. Under his guidance it became the world’s leading medium of 
publication of papers on, and mathematical tables relating to, statistical theory and practice. Soon after 
World War I, during which Pearson’s group was deeply involved in war work, he initiated the series Tracts 
for Computers, nos. 1·20 (1919·1935), many of which became indispensable to computers of the period. In 
1925 he founded Annals of Eugenics and serves as editor of the first five volumes (1925–1933). Some of 
the tables in Tables for Statisticians and Biometricians (pt. I, 1914; pt. II, 1931) appear to be timeless in 
value; others are no longer used. The Tables of the Incomplete Beta-Function (1934), a compilation 
prepared under his direction over a period of several decades, remains a monument to him and his co-
workers. 

In July 1932 Pearson advised the college and university that he would resign from the Galton professorship 
the following summer. The college decided to divide the department of applied statistics into two 
independent units, a department of eugenics with which the Galton professorship would be associated, and 
a new department of statistics. In October 1933 Pearson was established in a room placed at his disposal by 
the zoology department; his son, Egon, was head of the new department of statistics; and R. A. Fisher was 
named the second Galton professor of eugenics. Pearson continued to edit Biometrika and had almost seen 
the final proofs of the first half of volume 28 through the press when he died on 27 April 1936. 

NOTES 
1. Quoted by E. S. Pearson in Karl Pearson in Karl Pearson: An Apprecation. . .,p. 4 (Biometrika, 28 , 
196). 



2. Galton discovered the statistical phenomenon of regression around 1875 in the course of experiments 
with sweet-pea seeds to determine the law of inheritance of inheritance of size. Using 100 parental seeds of 
earch of 7 different selected sizes, he constructed a two-way plot of he diameters of parental and offspring 
seeds from each parental class. Galton then noticed that the median diameters of the offspring seeds for the 
respective parental classes fell nearly on astraight line. Furthermore, the median diameters of offspring 
from the larger-size parental classes were less than those of the parents; and for the smaller-size parental 
classes, they were greater than those of the parents, indicating a tendency of he “mean” offspring size to 
“revert” toward what might be described as the average ancestral type. Not realizing that this phenomenon 
is a characteristic of any two-way plot, he first termed it “reversion” and, later, “regression.” 

Examining these same data further, Galton noticed that the variation of offspring size within the respective 
parental arrays (as measured by their respective semi-interquartile ranges) was approximately constant and 
less than the similarly measured variation of the overall offspring population. From this empirical evidence 
he then inferred the correct relation, variability of offspring family × variability of overall offspring 
population, which he announced in symbolic form in an 1877 lecture, calling r the “reversion” coefficient. 

A few years later Galton made a two-way plot of the statures of some human parents of unselected statures 
and their adult children, noting that the respective marginal distributions were approximately Gaussian or 
“normall,” as Adolphe Quetelet had noticed earlier from examination distributions along lines in the plot 
paralllel to either of the variate axes were “apparently” Gaussian distributions of equal variation, which was 
less than, and in a constant ratio to, that of the corresponding marginal distributions. To obtain a numerical 
value for r, Galton expressed the deviations of the individual values of both variates from their respective 
medians in terms of their respective semi-interquartile ranges as a unit, so that r became the slope of his 
regression line. 

In 1888 Galton made one more great and far-reaching discovery. Applying the techniques that he had 
evolved for the measurement of the influence of heredity to the problem of measuring the degree of 
association between the sizes of two different organs of the same individual, he reached the conception of 
an “index of co-relation” as a measure of the degree of relationship between two such characteristics and 
recongnized r, his measure of “reversion” or “regression,” to be such a coefficient of correlation or 
correlation, suitable for application to all living forms. 

Galton, however, failed to recognize and appreciate the additional mathematical complexity necessarily 
involved in the joint consideration of more than two mutually correlated characteristics, with the result that 
his efforts to formulate and implement what became known as his law of ancestral heredity were somewhat 
confused and imprecise. It remained for Pearson to provide the necessary generalization and precision of 
formulation in the form of a multiple regression formula. 

For fuller details, see Pearson’s “Notes on the History of Correlation” (1920). 

3.Speeches. . .at a Dinner. . .in [His] Honour, pp. 22–23; also quoted by E. S. Pearson, op. cit., p. 19 
(Biometrika, 28 , 211). 

4. An examination of Letters From W. S. Gosset to R. A. Fisher 1915–1936, 4 vols. (Dublin, 1962), issued 
for private circulation only, reveals that Gosset (pen name “Student”), played a similar role with respect to 
R. A. Fisher. When and how they first came into contact is revealed by the two letters of Sept. 1912 from 
Gosset to Pearson that are reproduced in E. S. Pearson’s “Some Early Correspondence. . .”(1968). 

5. E. S. Pearson, op. cit., apps. II and III. 

6. Pearson was not the first to use this terminology: “Galton used it, as did also Lexis, and the writer has 
not found any reference which seems to be its first use” (Helen M. Walker, Studies. . ., p. 185). But 
Pearson’s consistent and exclusive use of this term in his epoch-making publications led to its adoption 
throughout the statistical community. 



7. E. S. Pearson, op. cit., p 26 (Biometrika, 28 , 218). 

8. The title “Contributions to the Mathematical Theory of Evolution” or “Mathematical Contributions. . .” 
was used as the general title of 17 memoirs, numbered II through XIX, published in the Philosophical 
Transactions or as Drapers’ Company Research Memoirs, and of 8 unnumbered papers published in the 
Proceedings of he Royal Society “Mathematical” became and remained the inital word from III(1896)on. 
No.XVII was announced before 1912 as a forthcoming Drapers’. . . Memoir but has not been published to 
date. 

9. From Pearson, “Statistical Tests,” in Nature, 136 (1935), 296–297, see 296. 

10. Pearson, “Notes on the History of Correlation,” p. 37 (Pearson and Kendall, p. 197). 

11. Pearson did not use different symbols for population parameters (such as μ, σ, ρ) and sample measures 
of them (m, s, r) as has been done in this article, following the example set by “Student” in his first paper 
on small-sample theory, “The probale Error of a Mean” (1908). Use of indentical symbols for population 
parameters and sample measures of them makes Pearson’s, and other papers of this period, difficult to 
follow and, in some instances, led to error. 

12. Pearson, “Notes on the History of Correlation.” p.42 (Pearson and kendall, p. 202). 

13. In the rest of the article, the term” standard error” will be used instead of “standard deviation of the 
sampling error.” Pearson consistently gave formulas for, and spoke of the corresponding “probable error” 
(or “p.e.”) defined by, probable error = 0.674489. . . × standard error, the numerical factor being the factor 
appropriate to the normal distribution, and reserved the term” standard deviation” (and the symbol σ) for 
description of the variation o9f individuals in a population or sample. 

14. Footnote, p, 247 (Early. . .papers, p. 134) 

15. There are always two sample n’s, nyx, and corresponding to the regression of y on x and the regression 
of x on y, respectively, in the sample. When these regressions are both exactly liner, nyx= nxy= r otherwise 
nyx and nxy are different. 

In this memoir Pearson defines and discusses the correlation ratio, nyx, and its relation to r entirely in terms 
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London Mathematical Society, 20 (1888), 38–63, respectively. These early papers on the motions of a rigid 
or pulsating atom in an infinite incompressible fluid did much to increase Pearson’s stature in applied 
mathematics at the time. 

William Kingdon Clifford, The Common Sense of the Exact Sciences (London, 1885; reiss. 1888), which 
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asymptotic variances and covariances of sample estimators of a group of population parameters in terms of 
derivatives of the likelihood function (without recognition of their applicability only to maximum 
likelihood estimators), and a number of particular results deduced therefrom. 
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and that the errors of different observers looking at the same phenomena are in general correlated. 

“Note on Francis Galton’s Problem,” in Biometrika1 , no. 4 (Aug. 1902), 390–399, in which Pearson found 
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showed for the first time the fundamental importance of the expressions and and of the difference between 
η and r as measures of departure from linearity, as well as those conditions that must be satisfied for linear, 
parabolic, cubic, and other regression equations to be adequate. 
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asymptotic solution as n→ ∞ in the issue of 3 Aug., p. 318; and the general solution for finite n a was 
published by J. C. Kluyver in Dutch later the same year. 

Mathematical. . .XV. A Mathematical Theory of Random Migration Drapers’ Company Research Memoirs, 
Biometric Series, no. 3 (London, 1906), written with John Blakeman. Various theoretical forms of 
distribution were derived that would result from random migration from an origin under certain ideal 



conditions, and solutions to a number of subsidiary problems were given—results that, while not 
outstandingly successful in studies of migration, have found various other applications. 

**“Walter Frank Raphael Weldon, 1860–1906,” in Biometrika5 nos 1–2 (Oct. 1906), 1–52 (repr. as paper 
no. 21 in Pearson and Kendall), a tribute to the man who posed the questions that impelled Pearson to some 
of his most important contributions, with additional details on the early years (1890–1905) of the biometric 
school and the founding of Biometrika. 

Mathematical. . .XVI. On Further Methods of Determining Correlation, Drapers’ Company Research 
Memoirs, Biometric Series, no. 4 (London 1907), dealt with calculation of the coefficient of correlation, r, 
from the individual differences (x—y) in a sample and with estimation of the coefficient of correlation, ρ of 
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to each of the two traits concerned. 

An Experimental Study of the Stresses in Masonry Dams, Drapers’ Company Research Memories, 
Technical Series, no. 5 (London, 1907), written with A. F. C. Pollard, C. W. Wheen, and L. F. Richardson, 
which lent experimental support to the 1904 theoretical findings. 
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National Deterioration, no. 2 (London, 1907), and A Second Study. . .. Marital Infection,. . . Technical 
Series, no. 3 (London, 1908), written with E. G. Pope, the first two of seven publications by Pearson and 
his co-workers during 1907–1913 on the then-important and controversial subjects of the inheritance and 
transmission of pulmonary tuberculosis. 
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which Only the Percentage of Cases Wherein B Exceeds (or Falls Short of) a Given Intensity Is Recorded 
for Each Grade of A,” in Biometrika6 nos. 1 and 2 (July–Oct. 1909), 96–105, in which the formula for the 
biserial coefficient of correlation, “biserial r”, is derived but not named, and its application exemplified. 

“On a New Method of Determining Correlation When One Variable Is Given by Alternative and the Other 
by Multiple Categories,” Ibid7 , no. 3 (Apr. 1910), 248–257, in which the formula for “biserial η” is 
Derives but not named, and its application exemplified. 

A First Study of the Influence of Parental Alcoholism on the Physique and Ability of the Offspring, 
Eugenics Laboratory Memoirs, no. 10 (London, 1910), written with Ethel M. Elderton, gave correlations 
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offspring, and examined the effect of parental alcoholism on the infant death rate. 

A Second Study. . . Being a Reply to Certain Medical Critics of the First Memoir and an Examination of the 
Rebutting Evidence Cited by Them, Eugenics Laboratory Memoirs, no. 13 (London, 1910), written with E. 
M. Elderton. 

A Preliminary Study of Extreme Alcoholism in Adults, Eugenics Laboratory Memoirs, no. 14 (London, 
1910), written with Amy Barrington and David Heron. The relations of alcoholism to number of 
convictions, education, religion, prostitution, mental and physical conditions, and death rates were 
examined, with comparisons between the extreme alcoholic and the general population. 

“On the Probability That Two Independent Distributions of Frequency Are Really Samples From the Same 
Population,” in Biometrika, 8 , nos. 1–2 (July 1911), 250–254, in which his X2 goodness-of-fit criterion is 
extended to provide a test of the hypothesis that two independent samples arrayed in a 2 × c tables are 
random samples from the sample population. 



Social Problems: Their Treatment, Past, Present and Future. . ., Questions of the Day and of the Fray, no. 
5(London, 1912), contains a perceptive, eloquent plea for replacement of literary exposition and folklore by 
measurement, and presents some results of statistical analyses that illustrate the complexity of social 
problems. 

The Life, Letters and Labours of Francis Galton, 3 vols. in 4 pts. (Cambridge, 1914–1930). 

Tables for Statisticians and Biometricians (London, 1914; 2nd ed., issued as “Part I,” 1924; 3rd ed., 
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“On the General Theory of Multiple Contingency With Special Reference to Partial Contingency,” in 
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**“Notes on the History of Correlation. Being a Paper Read to the Society of Biometricians and 
Mathematical Statisticians, June 14, 1920,” in Briometrika, 13 no. 1 (Oct. 1920), 25–45 (paper no. 14 in 
Pearson and Kendall), deals with Gauss’s and Bravais’s treatment of the bivariate normal distribution, 
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Tables of the Incomplete Γ-Function Computed by the Staff of the Department of Applied Statistics, 
University of London, University College (London, 1922; reiss. 1934), tables prepared under the direction 
of Pearson, who, as editor, contributed an intro. on their use. 

Francis Galton, 1822–1922. A Centenary Appreciation, Questions of the Day and of the Fray, no. 11 
(London, 1922). 

Charles Darwin, 1809–1922. An Appreciation. . . ., Questions of the Day and of the Fray, no. 12 (London, 
1923). 

Historical Note on the Origin of the Normal Curve of Errors,” in Biometrika, 16 no. 3 (Dec. 1924), 402–
404, announces the discovery of two copies of a long-overlooked pamphlet of De Moivre (1733) which 
gives to De Moivre priority in utilizing the integral of essentially the normal curve to approximate sums of 
successive terms of a binomial series, in formulating and using the theorem known as “Stirling’s formula,” 



and in enunciating “Bernoulli’s theorem” that imprecision of a sample fraction as an estimate of the 
corresponding population proportion depends on the inverse square root of sample size. 

“On the Skull and Portraits of George Buchanan,” ibid., 18 nos. 3–4 (Nov. 1926), 233–256, in which it is 
shown that the protraits fall into two groups corresponding to distinctly different types of face, and only the 
type exemplified by the portraits in the possession of the Royal Society conforms to the skull. 

“On the Skull and Portraits of Henry Stewart, Lord Darnley, and Their Bearing on the Tragedy of Mary, 
Queen of Scots,” ibid., 20B , no. 1 (July 1928), 1–104, in which the circumstances of Lord Darnley’s death 
and the history of his remains are discussed, anthropometric characteristics of his skull and femur are 
described and shown to compare reasonably well with the portraits, and the pitting of the skull is inferred to 
be of syphilitic origin. 

“Laplace, Being Extracts From Lectures Delivered by Karl Pearson,” ibid., 21 nos. 1–4 (Dec. 1929), 202–
216, an account of Laplace’s ancestry, education, and later life that affords necessary corrections to a 
number of earlier biographies. 

Tables for Statisticians and Biometricians, Part II (London, 1931), tables nearly all repr. from Biometrika, 
with pref. and intro. on use of the tables by Pearson, as editor. 

“On the Mean Character and Variance of a Ranked Individual, and on the Mean and Variance of the 
Intervals Between Ranked Individuals. Part I. Symmetrical Distributions (Normal and Rectangular),” in 
Biometrika, 23 nos. 3–4 (Dec. 1931), 364–397, and “. . .Part II. Case of Certain Skew Curves,” ibid24 nos. 
1–2 (May 1932), 203–279, both written with Margaret V. Pearson, in which certain general formulas 
relating to means, standard deviations, and correlations of ranked individuals in samples of size n from a 
continuous distribution are developed and applied (in pt. I) to samples from the rectangular and normal 
distributions, and (in pt. II) to special skew curves (Pearson Types VIII, IX, X, and XI) that admit exact 
solutions. 

Tables of the Incomplete Beta-Function (London, 1934), tables prepared under the direction of and edited 
by Pearson, with an intro. by Pearson on the methods of computation employed and on the uses of the 
tables. 

“The Wilkinson Head of Oliver Cromwell and Its Relationship to Busts, Masks, and Painted Portraits,” in 
Biometrika, 26 nos. 3–4 (Dec. 1934), 269–378, written with G. M. Morant, an extensive analysis involving 
107 plates from which it is concluded “that it is a ‘moral certainty’ drawn from circumstantial evidence that 
the Wilkinson Head is the genuine head of Oliver Cromwell.” 

“Old Tripos Days at Cambridge, as Seen From Another Viewpoint,” in Mathematical Gazette, 20 (1936), 
27–36. 

Pearson edited two scientific journals, to which he also contributed substantially: Biometrika, of which he 
was one of the three founders, always the principal editor (vols. 1–28 , 1901–1936), and for many years the 
sole editor; and Annals of Eugenics, of which he was the founder and the editor of the first 5 vols. (1925–
1933). He also edited three series of Drapers’ Company Research Memoirs: Biometric Series, nos. 1–4, 6–
12 (London, 1904–1922) (no. 5 was never issued), of which he was sole author of 4 and senior author of 
the remainder; Studies in National Deterioration, nos. 1–11 (London, 1906–1924), 2 by Pearson alone and 
as joint author of 3 more; and Technical Series, nos. 1–7 (London, 1904–1918), 1 by Pearson alone, the 
others with coauthors. To these must be added the Eugenics Laboratory Memoirs, nos. 1–29 (London, 
1907–1935), of which Pearson was a coauthor of 4. To many others, including the 13 issues (1909–1933) 
comprising “The Treasury of Human Inheritance,” vols. I and II, he contributed prefatory material; the 
Eugenics Laboratory Lecture Series, nos. 1–14 (London, 1909–1914), 12 by Pearson alone and 1 joint 
contribution; Questions of the Day and of the Fray, nos. 1–12 (London, 1910–1923), 9 by Pearson alone 



and 1 joint contribution; and Tracts for Computers, nos. 1–20 (London, 1919–1935), 2 by Pearson himself, 
plus a foreword, intro., or prefatory note to 5 others. 

Pearson has given a brief account of the persons and early experiences that most strongly influenced his 
development as a scholar and scientist in his contribution to the volume of Speeches… (1934) cited below; 
fuller accounts of his Cambridge undergraduate days, his teachers, his reading, and his departures from the 
norm of a budding mathematician are in “Old Tripos Days” above. His “Notes on the History of 
Correlation” (1920) contains a brief account of how he became involved in the development of correlation 
theory; and he gives many details on the great formative period (1890–1906) in the development of 
biometry and statistics in his memoir on Weldon (1906) and in vol. IIIA of his Life. . . of Francis Galton. 

A very large number of letters from all stages of Pearson’s life, beginning with his childhood, and many of 
his MSS, lectures, lecture notes and syllabuses, notebooks, biometric specimens, and data collections have 
been preserved. A large part of his scientific library was merged, after his death, with the joint library of the 
departments of eugenics and statistics at University College, London; a smaller portion, with the library of 
the department of applied mathematics. 

Some of Pearson’s letters to Galton were published by Pearson, with Galton’s replies, in vol. III of his Life. 
. . of Francis Galton. A few letters of special interest from and to Pearson were published, in whole or in 
part, by his son, E. S. Pearson, in his “Some Incidents in the Early History of Biometry and Statistics” and 
in “Some Early Correspondence Between W. S. Gosset, R. A. Fisher, and Karl Pearson,” cited below; and a 
selection of others, from and to Pearson, together with syllabuses of some of Pearson’s lectures and lecture 
courses, are in E. S. Pearson, Karl Pearson: An Appreciation. . ., cited below. 

For the most part Pearson’s archival materials are not yet generally available for study or examination. 
Work in progress for many years on sorting, arranging, annotating, cross-referencing, and indexing these 
materials, and on typing many of his handwritten items, is nearing completion, however. A first typed copy 
of the handwritten texts of Pearson’s lectures on the history of statistics was completed in 1972; and many 
dates, quotations, and references have to be checked and some ambiguities resolved before the whole of 
ready for public view. Hence we may expect the great majority to be available to qualified scholars before 
very long in the Karl Pearson Archives at University College, London. 

II. Secondary Literature. The best biography of Pearson is still Karl Pearson: An Appreciation of Some 
Aspects of His Life and Work (Cambridge, 1938), by his son, Egon Sharpe Pearson, who stresses in his 
preface that “this book is in no sense a Life of Karl Pearson.” It is a reissue in book form of two articles, 
bearing the same title, published in Biometrika, 28 (1936), 193–257, and 29 (1937), 161–248, with two 
additional apps. (II and III in the book), making six in all. Included in the text are numerous instructive 
excerpts from Pearson’s publications, helpful selections from his correspondence, and an outline of his 
lectures on the history of statistics in the seventeenth and eighteenth centuries. App. I gives the syllabuses 
of the 7 public lectures Pearson gave at Gresham College, London, in 1891, “The Scope and Concepts of 
Modern Science,” from which The Grammar of Science (1892) developed; app. II, the syllabuses of 30 
lectures on “The Geometry of Statistics,” “The Laws of Chance,” and ‘The Grometry of Chance” that 
Pearson delivered to general audiences at Gresham College, 1891–1894; app, III, by G. Udny Yule, repr, 
from Biometrika, 30 (1938), 198–203, summarizes the subjects dealt with by Pearson in his lecture courses 
on “The Theory of Statistics” at University College, London, during the 1894–1895 and 1895–1896 
sessions; app. VI provides analogous summaries of his 2 lecture courses on “The Theory of Statistics” for 
first-and second-year students of statistics at University College during the 1921–1922 session, derived 
from E. S. Pearson’s lecture notes; and apps. IV and V give, respectively, the text of Pearson’s report of 
Nov. 1904 to the Worshipful Company of Drapers on “the great value that the Drapers’ Grant [had] been to 
[his] Department” and an extract from his report to them of Feb. 1918, “War Work of the Biometric 
Laboratory.” 

The following publications by E. S. Pearson are useful supps. to this work: “Some Incidents in the Early 
History of Biometry and Statistics, 1890–94,” in Biometrika, 52 pts. 1–2 (June 1965), 3–18 (paper 22 in 



Pearson and Kendall); “Some Reflexions on Continuity in the Development of Mathematical Statistics, 
1885–1920,” ibid54 pts. 3–4 (Dec. 1967), 341–355 (paper 23 in Pearson and Kendall); “Some Early 
Correspondence Between W. S. Gosset, R. A. Fisher, and Karl Pearson, With Notes and Comments,” ibid., 
55 no. 3 (Nov. 1968), 445–457 (paper 25 on Pearson and Kendall); Some Historical Reflections Traced 
Through the Development of the Use of Frequency Curves, Southern Methodist University Dept. of 
Statistics THEMIS Contract Technical Report no. 38 (Dallas, 1969); and “The Department of Statistics, 
1971. A Year of Anniversaries. . .” (mimeo., University College, London, 1972). 

Of the biographies of Karl Pearson in standard reference works, the most instructive are those by M. 
Greenwood, in the Dictionary of National Biography, 1931–1940 (London, 1949), 681–684; and Helen M. 
Walker, in International Encyclopedia of the Social Sciences, XI (New York, 1968), 496–503. 

Apart from the above writings of E.S. Pearson, the most complete coverage of Karl Pearson’s career from 
the viewpoint of his contributions to statistics and biometry is provided by the obituaries by G. Udny Yule, 
in Obituary Notices of Fellows of the Royal Society of London, 2 no. 5 (Dec. 1936), 73–104; and P. C. 
Mahalanobis, in Sankhȳ2 pt. 4 (1936), 363–378, and its sequel, “A Note on the Statistical and Biometric 
Writings of Karl Pearson,” ibid., 411–422. 

Additional perspective on Pearson’s contributions to biometry and statistics, together with personal 
recollections of Pearson as a man, scientist, teacher, and friend, and other revealing information are in 
Burton H. Camp, “Karl Pearson and Mathematical Statistics,” in Journal of the American Statistical 
Association, 28 no. 184 (Dec. 1933), 395–401; in the obituaries by Raymond Pearl, ibid., 31 no. 196 (Dec. 
1936), 653–664; and G. M. Morant, in Man, 36 , no. 118 (June 1936), 89–92; in Samuel A. Stouffer,“Karl 
Pearson—An Appreciation on the 100th Anniversary of His Birth,” in Journal of the American Statistical 
Association53 no. 281 (Mar. 1958), 23–27. S. S. Wilks, “Karl Pearson: Founder of the Science of 
Statistics,” in Scientfic Monthly, 53 no. 2 (Sept. 1941), 249–253; and Helen M. Walker, “The Contributions 
of Karl Pearson,” in Journal of the American Statistical Association, 53 , no. 281 (Mar. 1958), 11-22, are 
also informative and useful as somewhat more distant appraisals. L. N. G. Filon, “Karl Pearson as an 
Applied Mathematician,” in Obituary Notices of Fellows of the Royal Society of London, 2 , no. 5 (Dec. 
1936), 104–110, seems to provide the only review and estimate of Pearson’s and astronomy. Pearson’s 
impact on sociology is discussed by S. A. Stouffer in his centenary “Appreciation” cited above; and 
Pearson’s “rather special variety of Social-Darwinism” is treated in some detail by Bernard Semmel in 
“Karl Pearson: Socialist and Darwinist,” in British Journal of Sociology, 9 , no. 2 (June 1958), 111–125. M. 
F. Ashley Montagu, in “Karl Pearson and the Historical Method in Ethnology,” in Isis, 34 , pt. 3 (Winter 
1943), 211–214, suggests that the development of ethnology might have taken a different course had 
Pearson’s suggestions been put into practice. 

The great clash at the turn of the century between the “Mendelians,” led by Bateson, and the “ancestrians,” 
led by Pearson and Weldon, is described with commendable detachment, and its after-effects assessed, by 
P. Froggatt and N. C. Nevin in “The ’Law of Ancestral Heredity’ and the Mendelian-Ancestrian 
Controversy in England, 1889–1906,” in Journal of Medical Genetics, 8 no. 1 (Mar. 1971), 1–36; and 
“Galton’s Law of Ancestral Heredity’: Its Influence on the Early Development of Human Genetics,” in 
History of Science, 10 (1971), 1–27. 

Notable personal tributes to Pearson as a teacher, author, and friend, by three of his most distinguished 
pupils, L. N. G. Filon, M. Greenwood, and G. Udny Yule, and a noted historian of statistics, Harald 
Westergaard, have been preserved in Speeches Delivered at a Dinner Held in University College, London, 
in Honour of Professor Karl Pearson, 23 April 1934 (London, 1934), together with Pearson’s reply in the 
form of a five-page autobiographical sketch. The centenary lecture by J. B. S. Haldane, “Karl Pearson, 
1857–1957,” published initially in Biometrika, 44 pts. 3–4 (Dec. 1957), 303–313, is also in Karl Pearson, 
1857–1957. The Centenary Celebration at University College, London, 13 May 1957 (London, 1958), 
along with the introductory remarks of David Heron, Bradford Hill’s toast, and E. S. Pearson’s reply. 



Other publications cited in the text are Allan Ferguson, “Trends in Modern Physics,” in British Association 
for the Advancement of Science, Report of the Annual Meeting, 1936, 27–42; Francis Galton, Natural 
Inheritance (London New York, 1889; reissued, New York, 1972); R. A. Fisher, “The Correlation Between 
Relatives on the Supposition of Mendelian Inheritance,” in Transactions of the RoyalSociety of Edinburgh, 
52 (1918), 399–433; H. L. Seal, “The Historical Development of the Gauss Linear Model,” in 
Biometrika54 pts. 1–2 (June 1967), 1–24 (paper no. 15 in Pearson and Kendall); and Helen M. Walker, 
Studies in the History of Statisical Method (Baltimore, 1931). 

Churchill Eisenhart 

[Contribution of the National Bureau of Standards, not subject to copyright.] 

	


