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(b. Berlin, Germany, 27 July 1871; d. Freiburg im Breisgau, Germany, 21 May 1953) 

mathematics. 

The son of Ferdinand Rudolf Theodor Zermelo, a college professor, and Maria Augusta Elisabeth Zieger, Zermelo received his 
secondary education at the Luisenstädtisches Gymnasium in Berlin, where he passed his final examination in 1889. He 
subsequently studied mathematics, physics, and philosophy at Berlin, Halle, and Freiburg, taking courses taught by Frobenius, 
Lazarus Fuchs, Planck, Erhard Schmidt, H. A. Schwarz, and Edmund Husserl. In 1894 he received the doctorate at Berlin with 
the dissertation Untersuchungen zur Variationsrechnung. Zermelo went to Göttingen and in 1899 was appointed Privatdozent 
after having submitted the Habilitationsschrifi “Hydrodynamische Untersuchungen öber die Wirbelbewe-gungen in einer 
Kugelfläche.” In December 1905, shortly after his sensational proof of the well-ordering theorem (1904). Zermelo was named 
titular professor at Göttingen. In 1910 he accepted a professorship at Zurich, which poor health forced him to resign in 1916. A 
year after he had left Göttin-gen, 5000 marks from the interest of the Wolfskehl Fund was awarded him on the initiative of 
David Hilbert in recognition of his results in set theory (and to enable him to recover his health). After resigning his post at 
Zurich, Zermelo lived in the Black Forest until 1926, when he was appointed honorary professor at the University of Freiburg 
im Breisgau. He renounced connection with the university in 1935 because of his disapproval of the Hitler regime. After the 
war he requested reinstatement, which was granted him in 1946. 

Zermelo had a lively interest in physics and a keen sense for the application of mathematics to practical problems. He prepared 
German editions of Glazebrook’s Light and Gibbs’s Elementary Principles in Statistical Mechanics; and after having shown in 
“Ueber einen Satz der Dynamik” how application of Poincareé’s recurrence theorem leads to the nonexistence of irreversible 
processes in the kinetic theory of gases, he had a penetrating discussion with Boltzmann on the explanation of irreversible 
processes. 

In Zermelo’s dissertation, which dealt with the calculus of variations, he extended Weierstrass’ method for the extrema of 
integrals over a class of curves to the case of integrands depending on derivatives of arbitrarily high order, at the same time 
giving a careful definition of the notion of neighborhood in the space of curves. Throughout his life he was faithful to the 
calculus of variations, on which he often lectured and to which he contributed a report on its progress written with H. Hahh for 
the Encyklopädie der mathematischen Wissenschaften(1904) and the paper “Über die Navigation...” (1929). 

Further examples of his original contributions to practical questions are his method for estimating the strength of participants 
in tournaments (“Die Berechnung der Turnier-Ergebnisse,” 1929), which has been used in chess tournaments, and his 
investigation of the fracture of a cube of sugar (“Über die Bruchlinien zentrierter Ovale,” 1933). 

As an assistant at Göttingen, Zermelo lectured during the winter semester of 1900-1901 on set theory, to the development of 
which he was to theory, to the development of which he was to contribute decisively. He had studied Cantor’s work 
thoroughly, and his conversations with Er–hard Schmidt led to his ingenious proof of the well-ordering theorem, which states 
that every set can be well-ordered; that is, in every set a relation a≺b, to be read as “acomes before b,” can be introduced, such 
that (1) for any two elements a and b, either a = b or b≺a: (2) if for three elements a,b,c, we have a≺b and b≺c, then a≺c: (3) 
any nonvoid subset has a first element. In a commentary to his own proof, Zermelo pointed out the underlying hypothesis that 
for any infinite system of sets there always are relations under which every set corresponds to one of its elements. The proof 
stirred the mathematical world and produced a great deal of criticism-most of it unjustified-which Zermelo answered elegantly 
in “Neuer Beweis” (1908), where he also gave a second proof of the theorem. His answer to Poincaré’s accusation of 
impredicativity is of some historical interest because he points out certain consequences and peculiarities of the predicative 
position that have played a role in the development of predicative mathematics. 

Also in 1908 Zermelo set up an axiom system for Cantor’s set theory that has proved of tremendous importance for the 
development of mathematics. It consists of seven axioms and uses only two technical terms: set and ∊  , the symbol for the 
“element of” relation. Zermelo emphasized the descriptive nature of the axioms, starting with a domain B of objects and then 
specifying under what conditions (the axioms) an object is to be called a set. With the exception of the null set introduced in 
axiom 2, every set a is an object of B for which there is another object b of B such that a ∊ b. 

Axiom 1 (extensionality): m = n if and only if a ∊ m is equivalent to a ∊ n. 



Axiom 2 (elementary sets): There is a null set, having no element at all. Every object a of B determines a set {a} with a as its 
only element. Any two objects a, b of B determine a set {a, b} with precisely a and b as elements. 

Axiom 3 (separation): If a property ∊ is definite for the elements of a set m then there is a subset mE of m consisting of exactly 
those elements of m for which E holds. 

Axiom 4 (power set): To any set m there is a set P(m) that has the subsets of m for its elements. 

Axiom 5 (union): To any set m there is a set ∪ m the union of m, consisting of the elements of the elements of m. 

Axiom 6 (axiom of choice): If m is a set of disjoint nonvoid sets, then ∪ m contains a subset n that contains exactly one 
element from every set of m. 

Axiom 7 (infinity): There is a set z that has the null set as an element and has the property that if a is an element of z, then {a} 
is also an element of z. 

In order to avoid the paradoxes, particularly Russell’s paradox, which would render the system useless, Zermelo restricted set 
formation by the condition of definiteness of the defining property of a subset. A property Ε definite for set m is explained as 
one for which the basic relations of B permit one to decide whether or not E holds for any element of m. Although this 
condition seemed to preclude of m Although this condition seemed to preclude contradictions in the system, Zermelo explicitly 
left aside the difficult questions of independence and consistency. This was a wise decision, as one may realize after having 
seen the solutions of the questions of relative consistency and independence of axiom 6 by Kurt Gödel (1938) and P. J. Cohen 
(1963), respectively. 

Because of its generality the notion of definite property is very elegant. It is rather difficult to apply, however, because it does 
not yield a general method for proving a proposed property to be definite. 

Although nonaxiomatic Cantorian set theory was then flourishing, particularly the branch that developed into point–set 
topology, there was no progress in axiomatic set theory until 1921, when A. Fraenkel, in his attempts to prove the 
independence of the axiom of choice, pointed out some defects in Zermelo’s system. Fraenkel’s objections were threefold. 
First, the axiom of infinity is too weak; second, the system is by no means categorical; and third, the notion of definite property 
is too vague to handle in proofs of independence and consistency. These remarks led Fraenkel to add the powerful axiom of 
replacement, which adds to any set s its image under some function F, while the notion of function is introduced by definition. 
Another way of obtaining a similar result was achieved by T. Skolem, who specified a definite property as one expressible in 
first-order logic. 

After having realized the importance of Fraenkel’s and Skolem’s remarks, Zermelo set out in “Über den Begriff der 
Definitheirt in der Axiomatik” (1929) to axiomatize this notion by describing the set of definite properties as the smallest set 
containing the basic relations if the domain B and satisfying certain closure conditions. He admitted that the reason for doing 
so was methodological: to keep the “pure axiomatic” method, in avoidance of the genetic method and the use of the notion of 
finite number. Since there is no categoricity, an investigation of the structure of the possible domains b-models for axiomatic 
set theory-makes sense. In “Über Grenzzahlen und Mengenbereiche” (1930) Zermelo investigated the structure of models of 
an axiom system consisting of his earlier axioms 1, 4, 5, the last part of 2, the unrestricted form of 3, a liberal axiom of 
replacement and an axiom of well-foundedness (with respect to ∊) stating that every subdomain T of domain B contains at least 
one element t0 that has no element tin T. 

Zermelo’s fragmentary attempt, in “Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme” (1935), to 
abolish the limitations of proof theory has not been of great consequence because his conception of a proof as a system of 
theorems, well-founded with respect to the relation of consequence, seems too general to lead to results of sufficient interest. 
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