Keynes: Probability Introduction Ch I

Keynes worked on the theory of probability and submitted a dissertation on that topic for a fellowship at King's College, Cambridge in March 1908. William Ernest Johnson and Alfred North Whitehead were appointed to assess the dissertation. He was not successful but he revised the work taking the assessors' comments into account and also comment by Bertrand Russell. He resubmitted it and was awarded a fellowship in March 1909. Although he intended to publish his dissertation, he could not do so during World War I while working for the Treasury. After the end of the war Keynes prepared his dissertation for publication and it was published in 1921. We present a version of the introductory first chapter of the book on The meaning of probability.

See Keynes Intro Ch I for the Preface to the book.
See Keynes Intro Ch II for the second introductory chapter where Keynes looks at Probability in relation to the theory of knowledge.



J'ai dit plus d'une fois qu'il faudrait une nouvelle espèce de logique, qui traiterait des degrés de Probabilité. - LEIBNIZ.
  1. Part of our knowledge we obtain direct; and part by argument. The Theory of Probability is concerned with that part which we obtain by argument, and it treats of the different degrees in which the results so obtained are conclusive or inconclusive.

    In most branches of academic logic, such as the theory of the syllogism or the geometry of ideal space, all the arguments aim at demonstrative certainty. They claim to be conclusive. But many other arguments are rational and claim some weight without pretending to be certain. In Metaphysics, in Science, and in Conduct, most of the arguments, upon which we habitually base our rational beliefs, are admitted to be inconclusive in a greater or less degree. Thus for a philosophical treatment of these branches of knowledge, the study of probability is required.

    The course which the history of thought has led Logic to follow has encouraged the view that doubtful arguments are not within its scope. But in the actual exercise of reason we do not wait on certainty, or deem it irrational to depend on a. doubtful argument. If logic investigates the general principles of valid thought, the study of arguments, to which it is rational to attach some weight, is as much a part of it as the study of those which are demonstrative.

  2. The terms certain and probable describe the various degrees of rational belief about a proposition which different amounts of knowledge authorise us to entertain. All propositions are true or false, but the knowledge we have of them depends on our circumstances; and while it is often convenient to speak of propositions as certain or probable, this expresses strictly a relationship in which they stand to a corpus of knowledge, actual or hypothetical, and not a characteristic of the propositions in themselves. A proposition is capable at the same time of varying degrees of this relationship, depending upon the knowledge to which it is related, so that it is without significance to call a proposition probable unless we specify the knowledge to which we are relating it.

    To this extent, therefore, probability may be called subjective. But in the sense important to logic, probability is not subjective. It is not, that is to say, subject to human caprice. A proposition is not probable because we think it so. When once the facts are given which determine our knowledge, what is probable or improbable in these circumstances has been fixed objectively, and is independent of our opinion. The Theory of Probability is logical, therefore, because it is concerned with the degree of belief which it is rational to entertain in given conditions, and not merely with the actual beliefs of particular individuals, which may or may not be rational.

    Given the body of direct knowledge which constitutes our ultimate premisses, this theory tells us what further rational beliefs, certain or probable, can be derived by valid argument from our direct knowledge. This involves purely logical relations between the propositions which embody our direct knowledge and the propositions about which we seek indirect knowledge. What particular propositions we select as the premisses of our argument naturally depends on subjective factors peculiar to ourselves; but the relations, in which other propositions stand to these, and which entitle us to probable beliefs, are objective and logical.

  3. Let our premisses consist of any set of propositions hh, and our conclusion consist of any set of propositions aa, then, if a knowledge of hh justifies a rational belief in aa of degree a, we say that there is a probability-relation of degree a between aa and hh. [This will be written a/ka/k = a.]

    In ordinary speech we often describe the conclusion as being doubtful, uncertain, or only probable. But, strictly, these terms ought to be applied, either to the degree of our rational belief in the conclusion, or to the relation or argument between two sets of propositions, knowledge of which would afford grounds for a corresponding degree of rational belief.

  4. With the term "event," which has taken hitherto so important a place in the phraseology of the subject, I shall dispense altogether [except in those chapters where I am dealing chiefly with the work of others]. Writers on Probability have generally dealt with what they term the "happening " of "events." In the problems which they first studied this did not involve much departure from common usage. But these expressions are now used in a way which is vague and ambiguous; and it will be more than a verbal improvement to discuss the truth and the probability of propositions instead of the occurrence and the probability of events [The first writer I know of to notice this was Ancillon in Doutes sur les bases du calcul des probabilités (1794): "Dire qu'un fait passé, présent ou à venir est probable, c'est dire qu'une proposition est probable." The point was emphasised by Boole, Laws of Thought, pp. 7 and 167].

  5. These general ideas are not likely to provoke much criticism. In the ordinary course of thought and argument, we are constantly assuming that knowledge of one statement, while not proving the truth of a second, yields nevertheless some ground for believing it. We assert that we ought on the evidence to prefer such and such a belief. We claim rational grounds for assertions which are not conclusively demonstrated. We allow, in fact, that statements may be unproved, without, for that reason, being unfounded. And it does not seem on reflection that the information we convey by these expressions is wholly subjective. Men we argue that Darwin gives valid grounds for our accepting his theory of natural selection, we do not simply mean that we are psychologically inclined to agree with him; it is certain that we also intend to convey our belief that we are acting rationally in regarding his theory as probable. We believe that there is some real objective relation between Darwin's evidence and his conclusions, which is independent of the mere fact of our belief, and which is just as real and objective, though of a different degree, as that which would exist if the argument were as demonstrative as a syllogism. We are claiming, in fact, to cognise correctly a logical connection between one set of propositions which we call our evidence and which we suppose ourselves to know, and another set which we call our conclusions, and to which we attach more or less weight according to the grounds supplied by the first. It is this type of objective relation between sets of propositions - the type which we claim to be correctly perceiving when we make such assertions as these - to which the reader's attention must be directed.

  6. It is not straining the use of words to speak of this as the relation of probability. It is true that mathematicians have employed the term in a narrower sense; for they have often confined it to the limited class of instances in which the relation is adapted to an algebraical treatment. But in common usage the word has never received this limitation.

    Students of probability in the sense which is meant by the authors of typical treatises on Wahrscheinlichkeitsrechnung or Calcul des probabilités, will find that I do eventually reach topics with which they are familiar. But in making a serious attempt to deal with the fundamental difficulties with which all students of mathematical probabilities have met and which are notoriously unsolved, we must begin at the beginning (or almost at the beginning) and treat our subject widely. As soon as mathematical probability ceases to be the merest algebra or pretends to guide our decisions, it immediately meets with problems against which its own weapons are quite powerless. And even if we wish later on to use probability in a narrow sense, it will be well to know first what it means in the widest.

  7. Between two sets of propositions, therefore, there exists a relation, in, virtue of which, if we know the first, we can attach to the latter some degree of rational belief. This relation is the subject-matter of the logic of probability.

    A great deal of confusion and error has arisen out of a failure to take due account of this relational aspect of probability. From the premisses "a implies b" and "a is true," we can conclude something about b - namely that b is true - which does not involve a. But, if a is so related to b, that a knowledge of it renders a probable belief in b rational, we cannot conclude anything whatever about b which has not reference to a; and it is not true that every set of self-consistent premisses which includes a has this same relation to b. It is as useless, therefore, to say "b is probable" as it would be to say "b is equal," or "b is greater than," and as unwarranted to conclude that, because a makes b probable, therefore a and c together make b probable, as to argue that because a is less than b, therefore a and c together are less than b.

    Thus, when in ordinary speech we name some opinion as probable without further qualification, the phrase is generally elliptical. We mean that it is probable when certain considerations, implicitly or explicitly present to our minds at the moment, are taken into account. We use the word for the sake of shortness, just as we speak of a place as being three miles distant, when we mean three miles distant from where we are then situated, or from some starting-point to which we tacitly refer. No proposition is in itself either probable or improbable, just as no place can be intrinsically distant; and the probability of the same statement varies with the evidence presented, which is, as it were, its origin of reference. We may fix our attention on our own knowledge and, treating this as our origin, consider the probabilities of all other suppositions, - according to the usual practice which leads to the elliptical form of common speech; or we may, equally well, fix it on a proposed conclusion and consider what degree of probability this would derive from various sets of assumptions, which might constitute the corpus of knowledge of ourselves or others, or which are merely hypotheses.

    Reflection will show that this account harmonises with familiar experience. There is nothing novel in the supposition that the probability of a theory turns upon the evidence by which it is supported; and it is common to assert that an opinion was probable on the evidence at first to hand, but on further information was untenable. As our knowledge or our hypothesis changes, our conclusions have new probabilities, not in themselves, but relatively to these new premisses. New logical relations have now become important, namely those between the conclusions which we are investigating and our new assumptions; but the old relations between the conclusions and the former assumptions still exist and are just as real as these new ones. It would be as absurd to deny that an opinion was probable, when at a later stage certain objections have come to light, as to deny, when we have reached our destination, that it was ever three miles distant; and the opinion still is probable in relation to the old hypotheses, just as the destination is still three miles distant from our starting-point.

  8. A definition of probability is not possible, unless it contents us to define degrees of the probability-relation by reference to degrees of rational belief. We cannot analyse the probability-relation in terms of simpler ideas. As soon as we have passed from the logic of implication and the categories of truth and falsehood to the logic of probability and the categories of knowledge, ignorance, and rational belief, we are paying attention to a new logical relation in which, although it is logical, we were not previously interested, and which cannot be explained or defined in terms of our previous notions.

    This opinion is, from the nature of the case, incapable of positive proof. The presumption in its favour must arise partly out of our failure to find a definition, and partly because the notion presents itself to the mind as something new and independent. If the statement that an opinion was probable on the evidence at first to hand, but became untenable on further information, is not, solely concerned with psychological belief, I do not know how the element of logical doubt is to be defined, or how its substance is to be stated, in terms of the other indefinables of formal logic. The attempts at definition, which have been made hitherto, will be criticised in later chapters. I do not believe that any of them accurately represent that particular logical relation which we have in our minds when we speak of the probability of an argument.

    In the great majority of cases the term "probable" seems to be used consistently by different persons to describe the same concept. Differences of opinion have not been due, I think, to a radical ambiguity of language. In any case a desire to reduce the indefinables of logic can easily be carried too far. Even if a definition is discoverable in the end, there is no harm in postponing it until our enquiry into the object of definition is far advanced. In the case of "probability" the object before the mind is so familiar that the danger of misdescribing its qualities through lack of a definition is less than if it were a highly abstract entity far removed from the normal channels of thought.

  9. This chapter has served briefly to indicate, though not to define, the subject matter of the book. Its object has been to emphasise the existence of a logical relation between two sets of propositions in cases where it is not possible to argue demonstratively from one to the other. This is a contention of a most fundamental character. It is not entirely novel, but has seldom received due emphasis, is often overlooked, and sometimes denied. The view, that probability arises out of the existence of a specific relation between premiss and conclusion, depends for its acceptance upon a reflective judgment on the true character of the concept. It will be our object to discuss, under the title of Probability, the principal properties of this relation. First, however, we must digress in order to consider briefly what we mean by knowledge, rational belief, and argument.

Last Updated August 2007