On the Regular Semisimple Elements and Primary Classes of GL(n, q)

Jamshid Moori^a, Ayoub Basheer^{a,b}

- ^a School of Mathematical Sciences, University of KwaZulu Natal, P Bag X01, Scottsville 3209, Pietermaritzburg, South Africa.
- ^b Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Khartoum, P. O. Box 321, Khartoum, Sudan.

3 Aug 2009

Ayoub Basheer, University of Khartoum Groups St Andrews, University of Bath, England

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Abstract

In this talk we count the numbers of regular semisimple elements and primary classes of GL(n, q). The approach used here depends essentially on partitions of positive integers $\leq n$. We give the numbers of regular semisimple elements and primary classes of GL(n, q) for $n \in \{1, 2, \dots, 6\}$ and see that the number of regular semisimple elements is an integral polynomial in q, while the number of primary classes is a rational polynomial in q.

・ロット (母) ・ ヨ) ・ コ)

The Group GL(n, q)

- The *General Linear Group GL*(*V*) is the automorphism group of a vector space *V*.
- If V is a finite n-dimensional space defined over a filed 𝔽, then GL(V) is identified with GL(n,𝔼).
- We restrict ourselves to the case F = Fq, the Galois Field of q elements, and we denote GL(n, Fq) by GL(n, q).

•
$$|GL(n,q)| = \prod_{k=0}^{n-1} (q^n - q^k).$$

Conjugacy Classes of GL(n, q)

• Let
$$f(t) = \sum_{i=0}^{d} a_i t^i \in \mathbb{F}_q[t], a_d = 1$$
. The $d \times d$ companion matrix $U(f) = U_1(f)$ of $f(t)$ is

$$U_{1}(f) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 1 \\ -a_{0} & -a_{1} & -a_{2} & \cdots & -a_{d-1} \end{pmatrix},$$

Ayoub Basheer, University of Khartoum Groups St Andrews, University of Bath, England

<ロ> <同> <同> < 同> < 同> < 同> 、

æ

Conjugacy Classes of GL(n, q)

• For any $m \in \mathbb{N}$, let $U_m(f)$ be the $md \times md$ matrix of blocks

$$U_m(f) = \begin{pmatrix} U_1(f) & I_d & \underline{0} & \cdots & \underline{0} \\ \underline{0} & U_1(f) & I_d & \cdots & \underline{0} \\ \cdots & \cdots & \cdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & I_d \\ \underline{0} & \underline{0} & \underline{0} & \cdots & U_1(f) \end{pmatrix}$$

If λ = (λ₁, λ₂, ··· , λ_k) ⊢ n is a partition of n, then U_λ(f) is defined to be U_λ(f) = ⊕ U_{λi}(f).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Conjugacy Classes of GL(n, q)

Theorem 1 (The Jordan Canonical Form)

Let $A \in GL(n, q)$ with characteristic polynomial $f_A = f_1^{z_1} f_2^{z_2} \cdots f_k^{z_k}$, where f_i , $1 \le i \le k$ are distinct irreducible polynomials over $\mathbb{F}_q[t]$ and z_i is the multiplicity of f_i . Then A is conjugate to a matrix of the form $\bigoplus_{i=1}^k U_{\nu_i}(f_i)$, where $\nu_i \vdash z_i$.

 Thus any conjugacy class of *GL*(*n*, *q*) is parameterized by the data of sequences ({*f_i*}, {*d_i*}, {*z_i*}, {*ν_i*}), where for 1 ≤ *i* ≤ *k*, ∑_{i=1}^k z_id_i = n, ν_i ⊢ z_i, *f_i* ∈ ℝ_q[*t*] is irreducible with ∂*f_i* = deg(*f_i*) = *d_i*.

(日) (圖) (E) (E) (E)

Conjugacy Classes of GL(n, q)

- The integer *k* is called the *length* of the data.
- Two data $(\{f_i\}, \{d_i\}, \{z_i\}, \{\nu_i\})$ and $(\{g_i\}, \{e_i\}, \{w_i\}, \{\mu_i\})$ with lengths k and k' respectively parameterize the same conjugacy class if k = k' and $\exists \sigma \in S_k$ such that

$$w_i = z_{\sigma(i)}, \ e_i = d_{\sigma(i)}, \ \mu_i = \nu_{\sigma(i)}$$
 and $g_i = f_{\sigma(i)}, \ \forall i.$

Two classes of *GL*(*n*, *q*) parameterized by the above data are said to be of the same *type* if *k* = *k*['] and ∃ σ ∈ S_k such that

$$w_i = z_{\sigma(i)}, \ e_i = d_{\sigma(i)}$$
 and $\mu_i = \nu_{\sigma(i)}$
(g_i and f_i are allowed to differ).

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Conjugacy Classes of GL(n, q)

Definition 2

Let *c* be a conjugacy class given by $(\{f_i\}, \{d_i\}, \{z_i\}, \{\nu_i\})$ with length *k*, then

- c is called *primary class* if and only if k = 1.
- 2 *c* is called *regular class* if and only if $I(\nu_i) \le 1$, $\forall \ 1 \le i \le k$.
- c is called *semisimple class* if and only if $I(\nu_i') \le 1$, $\forall \ 1 \le i \le k$.
- *c* is called *regular semisimple class* if it is both regular and semisimple. Alternatively, a class is regular semisimple if and only if *ν_i* = 1, ∀ 1 ≤ *i* ≤ *k*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Size of Conjugacy Classes of GL(n, q)

• Let
$$\phi_r(t) = \prod_{i=1}^r (1 - t^r)$$
. For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$, where each λ_i
appears m_{λ_i} times, set $\phi_{\lambda}(t) := \prod_{i=1}^k \phi_{m_{\lambda_i}}(t)$.

• Also if λ' is the *conjugate partition* of λ , let $n(\lambda) = \sum_{i=1}^{n(\lambda)} \frac{\lambda'_i(\lambda'_i - 1)}{2}$.

• Now if $A \in c = (\{z_i\}, \{d_i\}, \{\nu_i\}, \{f_i\})$, then by Green [2], we have

Ayoub Basheer, University of Khartoum Groups St Andrews, University of Bath, England

Size of Conjugacy Classes of GL(n, q)

$$|C_{GL(n,q)}(A)| = \prod_{i=1}^{k} q^{d_i(z_i + 2n(\nu_i))} \phi_{\nu_i}(q^{-d_i}).$$
(1)

It follows that

$$|C_{\mathcal{A}}| = (\prod_{s=0}^{n-1} (q^n - q^s)) / \prod_{i=1}^k q^{d_i(z_i + 2n(\nu_i))} \phi_{\nu_i}(q^{-d_i}).$$
(2)

・ロト ・回 ト ・ヨ ト ・

э

Ayoub Basheer, University of Khartoum Groups St Andrews, University of Bath, England

Number of Regular Semisimple Elements of GL(n, q)

Counting the number of the regular semisimple elements of GL(n, q) relies on

- calculating the number of regular semisimple types,
- calculating the number of classes contained in each of the regular semisimple types,
- calculating the number of elements contained in each of the regular semisimple classes.

Number of Regular Semisimple Types

Proposition 3

There is a 1 - 1 correspondence between the types of classes of regular semisimple elements of GL(n, q) and partitions of n.

PROOF. A regular semisimple class of GL(n, q) must have the form $c = (\{f_i\}, \{d_i\}, \{1\}_{k \text{ times}}, \{1\}_{k \text{ times}})$. Thus all regular semisimple classes of the same type define the partition $(d_1, d_2, \dots, d_k) \vdash n$. Conversely, it is easy to show that any partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \vdash n$ defines a type of regular semisimple classes, where a typical class c will have the form $c = (\{f_i\}, \{\lambda_i\}, \{1\}_{k \text{ times}}, \{1\}_{k \text{ times}}), 1 \leq i \leq k$. Hence the result.

(日) (圖) (E) (E) (E)

Number of Regular Semisimple Classes of GL(n, q)

- It turns out that we may denote any type of regular semisimple classes of *GL*(*n*, *q*) by *T^λ* and a typical class by *c^λ* without any ambiguity.
- Consider the other representation of any partition $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_k) \vdash n$ namely $\lambda = (1^{r_1} 2^{r_2} \cdots n^{r_n}) \vdash n$, where $r_i \in \mathbb{N} \cup \{0\}$.
- Recall that by a result of Gauss (see Lidl and Niederreiter [3]), the number of irreducible polynomials of degree *i* over \mathbb{F}_q is given by $I_i(q) = \frac{1}{i} \sum_{d|i} \mu(d) q^{\frac{i}{d}}$, where μ is the *Möbuis function*.

Number of Regular Semisimple Classes of GL(n, q)

Proposition 4

The number of regular semisimple classes of type λ , which we denote by $F(\lambda)$, is given by

$$F(\lambda) = \left(\prod_{i=1}^n \prod_{s=0}^{r_i-1} (l_i(q) - s)\right) / \left(\prod_{i=1}^n r_i!\right),$$

where if $r_i - 1 < 0$, then the term $\prod_{s=0}^{r_i-1} (I_i(q) - s)$ is neglected.

PROOF. See Proposition 5 Moori and Basheer [4].

(日)

Number of Regular Semisimple Elements of GL(n, q)

Proposition 5

Let c^{λ} be a regular semisimple class, where $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_k) \vdash n$. Then

$$|c^{\lambda}| = \left(\prod_{s=0}^{n-1}(q^n-q^s)\right) \left/ \left(\prod_{i=1}^k(q^{\lambda_i}-1)\right).$$

PROOF. Let $g \in c^{\lambda} = (\{f_i\}, \{\lambda_i\}, \{1\}_{k \text{ times}}, \{1\}_{k \text{ times}})$. Since $\nu_i = 1, \forall 1 \leq i \leq k$, we obtain by substituting in equation (1) that

$$|\mathcal{C}_{GL(n,q)}(g)| = \prod_{i=1}^k q^{\lambda_i} \phi_1(q^{-\lambda_i}) = \prod_{i=1}^k q^{\lambda_i} \left(\frac{q^{\lambda_i}-1}{q^{\lambda_i}}\right) = \prod_{i=1}^k (q^{\lambda_i}-1).$$

The result follows by equation (2).

Ayoub Basheer, University of Khartoum

Groups St Andrews, University of Bath, England

・ ロ ト ・ 日 ト ・ 回 ト ・

Some Corollaries (Moori and Basheer [4])

• For any positive integer *n*, two partitions namely,

$$\lambda = \underbrace{(1, 1, \dots, 1)}_{n \text{ times}} \vdash n \text{ and } \sigma = (n) \vdash n \text{ are of particular interest.}$$

• With
$$q > n$$
, we have $F(\lambda) = \frac{(q-1)(q-2)\cdots(q-n)}{n!}$ and
 $F(\sigma) = \frac{1}{n} \sum_{d|n} \mu(d) q^{\frac{n}{d}}$.
• We have $|c^{\lambda}| = q^{\frac{n(n-1)}{2}} \prod_{i=1}^{n-1} \sum_{j=0}^{i} q^{j}$ and $|c^{\sigma}| = q^{\frac{n(n-1)}{2}} \prod_{i=1}^{n-1} (q^{i} - 1)$.

Ayoub Basheer, University of Khartoum Groups St Andrews, University of Bath, England

i=1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

The Main Theorem: Number of Regular Semisimple Elements of GL(n, q)

Theorem 6

With $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \equiv 1^{r_1} 2^{r_2} \dots n^{r_n}$ for $r_i \in \mathbb{N} \cup \{0\}$, the number of regular semisimple elements of GL(n, q) is given by

$$\sum_{\lambda \vdash n} \frac{\prod_{s=0}^{n-1} (q^n - q^s) \prod_{i=1}^n \prod_{s=0}^{r_i - 1} (I_i(q) - s)}{\prod_{i=1}^k (q^{\lambda_i} - 1) \prod_{i=1}^n r_i!}.$$

PROOF. Follows from Propositions 3, 4 and 5.

Ayoub Basheer, University of Khartoum Groups St Andrews, University of Bath, England

Example

• Consider GL(4, q). Corresponds to $(2, 2) = 2^2 \vdash 4$, we have

$$F(2^{2}) = \left(\prod_{i=1}^{4} \prod_{s=0}^{r_{i}-1} (l_{i}(q) - s)\right) / \left(\prod_{i=1}^{n} r_{i}!\right) = \frac{q(q^{2} - 1)(q - 2)}{8}$$
$$|c^{(2,2)}| = \frac{\prod_{s=0}^{3} (q^{4} - q^{s})}{\prod_{i=1}^{2} (q^{\lambda_{i}} - 1)} = q^{6}(q - 1)(q^{2} + 1)(q^{3} - 1).$$

• Hence there are $\frac{q^7(q^4-1)(q^3-1)(q-1)(q-2)}{8}$ regular semisimple elements of type (2, 2).

Groups St Andrews, University of Bath, England

ヘロト ヘヨト ヘヨト

Example

• Repeating the previous work to the other four partitions of 4, we get a total number of regular semisimple elements of *GL*(4, *q*) given by

$$q^{16} - 2q^{15} + q^{13} + q^{12} - 2q^{10} - q^9 - q^8 + 2q^7 + q^6$$

- For example the group *GL*(4, 5), which is of order 116,064,000,000 has 9,299,587,000 regular semisimple elements.
- In Table 2 of Moori and Basheer [4] we list the number of types, conjugacy classes, elements in each conjugacy class of regular semisimple elements of GL(n, q) for n = 1, 2, 3, 4, 5, 6.
- The number of regular semisimple elements of GL(n, q) for n = 1, 2, 3, 4, 5, 6 is an integral polynomial in q.

Number of Primary Classes of GL(n, q)

• Recall that a class $c = (\{f_i\}, \{d_i\}, \{z_i\}, \{\nu_i\})$ of GL(n, q) with length k is primary if and only if k = 1. That is $c = (f, d, \frac{n}{d}, \nu)$ for some $f \in \mathcal{F}_{\leq n}$ with degree d, d|n, and $\nu \vdash \frac{n}{d}$.

Theorem 7

The number of primary classes pc(n,q) of GL(n,q) is given by $pc(n,q) = \sum_{d|n} |\mathcal{P}(\frac{n}{d})| \cdot I_d(q)$, where $\mathcal{P}(j)$ is the set partitions of *j*.

PROOF. For fixed *d* and any $\nu \vdash \frac{n}{d}$ we have $I_d(q)$ irreducible polynomials *f* of degree *d*, that defines a primary class. Hence there are $|\mathcal{P}(\frac{n}{d})| \cdot I_d(q)$ classes defined by the fixed integer *d* and partitions of $\frac{n}{d}$. The result follows by letting *d* runs over all divisors of *n*.

$$pc(n,q)$$
 for $n = 1, 2, \cdots, 6$ and any q

Table: Number of primary classes of GL(n, q), n = 1, 2, 3, 4, 5, 6.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some Corollaries (Moori and Basheer [4])

There are exactly *l_n(q)* = ¹/_n ∑_{d|n} μ(d)q^{n/d} primary regular semisimple classes of *GL*(*n*, *q*).
If *n* = *p*[′] is a prime integer (whether *p*[′] = *p*, the characteristic of F_q or not), then there are *l_p*′(*q*) = ^{q^p - q}/_p′ primary regular semisimple classes of *GL*(*p*′, *q*).

• We have
$$\left[q^{\frac{p^{'^2}-p^{'}+2}{2}}(q^{p^{'}}-1)^2\prod_{i=1}^{p^{'}-2}(q^{i}-1)\right]/p^{'}$$
 primary regular semisimple elements of $GL(p^{'},q)$.

• The group GL(p',q) has exactly $(q^{p'} + (p'|\mathcal{P}(p')| - 1)q - p'|\mathcal{P}(p')|)/p'$ primary conjugacy classes.

The Bibliography

- A. B. M. Basheer, *Character Tables of the General Linear Group and Some of its Subroups*, MSc Dissertation, University of KwaZulu Natal, Pietermaritzburg, 2009.
- J. A. Green, *The characters of the finite general linear groups*, American Mathematical Society, **80** (1956), 402 - 447.
- R. Lidl and H. Niederreiter, *Finite fields*, Encyclopedia of mathematics and its application, Cambridge University Press, 1997.
- J. Moori and A. B. M. Basheer, On the regular semisimple elements and primary classes of GL(n, q), In preparation 2009.
- J. J. Rotman, *An Introduction to the Theory of Groups*, 4th edition, Springer-Verlag New York, Graduate Texts in Mathematics, **148**, 1995.

Acknowledgement

My special thanks and regards addressed to

- my supervisor Professor Jamshid Moori.
- National Research Foundation (NRF) (Prof. Moori's research grant) and to the African Institute for Mathematical Sciences (AIMS) for the grant holder bursaries.
- Administration of the University of Khartoum (UofK), in particular the Faculty of Mathematical Sciences and to the Principal of UofK, Dr Mohsin H. A. Hashim, Khartoum, Sudan.
- The University of KwaZulu Natal.