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The Basic Idea

A group G may contain a generating set T ⊂ G that is symmetric

i.e.
NG (T ) acts transitively on the elements of T giving a T a symmetric
combinatorial structure.

Can turn this idea on its head i.e. prescribe a symmetric
combinatorial structure for T and ask “What does G look like?”

Can be useful for representing elements of G succinctly as a word in
the elements of T .
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Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2. We write ti for the involution generating the i th copy of C2.
Fix a transitive permutation group N ≤ Sym(n). We can define an action
of N on 2?n thusly - for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2.

We write ti for the involution generating the i th copy of C2.
Fix a transitive permutation group N ≤ Sym(n). We can define an action
of N on 2?n thusly - for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2. We write ti for the involution generating the i th copy of C2.

Fix a transitive permutation group N ≤ Sym(n). We can define an action
of N on 2?n thusly - for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2. We write ti for the involution generating the i th copy of C2.
Fix a transitive permutation group N ≤ Sym(n).

We can define an action
of N on 2?n thusly - for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2. We write ti for the involution generating the i th copy of C2.
Fix a transitive permutation group N ≤ Sym(n). We can define an action
of N on 2?n thusly -

for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2. We write ti for the involution generating the i th copy of C2.
Fix a transitive permutation group N ≤ Sym(n). We can define an action
of N on 2?n thusly - for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2. We write ti for the involution generating the i th copy of C2.
Fix a transitive permutation group N ≤ Sym(n). We can define an action
of N on 2?n thusly - for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

We write 2?n for a free product of n copies of C2, the cyclic group of order
2. We write ti for the involution generating the i th copy of C2.
Fix a transitive permutation group N ≤ Sym(n). We can define an action
of N on 2?n thusly - for π ∈ N set

tπ
i := tπ(i).

Using the above action we can define the semi-direct product

P := 2?n : N.

We can P a progenitor.

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 4 / 16



Symmetric Generation - ya wha’?

Any element of P = 2?n : N may be expressed as πw where π ∈ N and
w ∈ 2?n, a word in the ti s.

Given an element πw ∈ P we may factor P by the subgroup 〈πw〉P . We
express this as

2?n : N

πw
:= G .

We call this a symmetric presentation of G .
We call N the control group of G .
We call the ti s the symmetric generators of G .
(Modulo notational abuse.)
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Good Things Come in Small Packages

To establish if G is finite we enumerate the double cosets NgN ⊂ G .

Since
g = πw for some π ∈ N and w ∈ 2?n we have

NgN = NπwN = NwN.

An adaptation of the celebrated Todd-Coxeter algorithm can be used to
enumerate these and John Bray’s coset enumeration program is extremely
good at at running this procedure.

JN Bray and RT Curtis “Double coset enumeration of
symmetrically generated groups” J. Group Theory 7 (2004)
167-185
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2× 2 =?

If G is finite then there is a maximum length for w .

We say g ∈ G is
symmetrically represented if it is expressed as g = πw with π ∈ N and
w ∈ 2?n has minimal length.
If g := π1w1 and h := π2w2 then g , h ∈ G .

What is gh?
What is g−1?

Do we have g = h?

Use knowledge from the coset enumeration to answer these questions!
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Example: the Janko group J1

|J1|=175 560

2?11 : L2(11)

(πt1)5
∼= J1

So every element can be symmetrically represented as πw with
π ∈ L2(11) ≤ Sym(11) and l(w) ≤ 4. Compare this with the more
‘traditional’ representations:

266 > 72 = 49 > 11 + 4 = 15(> 10 + 3 = 13).

RT Curtis and Z Hasan “Symmetric Representation of the
Elements of the Janko Group J1” J. Symbolic Computation 22
(1996), 201-214
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Example: the Janko group J3:2

|J3 : 2|=100 465 920

2?120 : (L2(16) : 4)

(πt1)5
∼= J3 : 2

So every element can be symmetrically represented as πw with
π ∈ L2(16) : 4 and l(w) ≤ 3. Compare this with the more ‘traditional’
representations:

6156 > 92 = 81 > (22 + 1) + 3 = 8(> (22 + 1) + 2 = 7).

JD Bradley “Symmetric presentations of two sporadic simple
groups” PhD thesis, University of Birmingham (2005)
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groups” PhD thesis, University of Birmingham (2005)
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Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

JN Bray and RT Curtis “The Leech lattice Λ and the Conway
group ·0 revisited” accepted by the transactions of the AMS

2?(24
4 ) : M24

(πt)3
∼= ·0

Problem: | · 0 : M24| is a bit big!
Too big in fact for us to enumerate the double cosets M24wM24.

!
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Big is Beautiful

2?759 : M24

εOεUεO∆U = 1
∼= 212 : M24

If we set H := 212 : M24 then we can try and enumerate the double cosets
HwM24 inside ·0 since | · 0 : H| is much smaller than | · 0 : M24|.
John Bray’s program can do this revealing that there are 19 double cosets
of the form HwM24 inside ·0.
Indeed every element of ·0 may written in the form πεCw where π ∈ M24,
εC ∈ 212 and l(w) ≤ 4.
Problem: can no longer multiply symmetrically represented elements
together.
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Some Crosses to Bear

The group ·0 is the group of automorphisms of the celebrated Leech
lattice Λ that fix the origin.

Can we use the geometry of this lattice to
help us?
The subgroup 212 : M24 ≤ ·0 is the stabilizer of a certain configuration of
vectors in Λ called a cross - the ‘standard cross’ being the set of vectors
{±8ei}, the other crosses being the images of this cross under the action
of our symmetric generators.
Each double coset HwM24 corresponds to an orbit of crosses under the
action of M24 thus:

{±8ei}
H−→ {±8ei}

w−→ ‡ π−→ ‡′
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Turning the Crank

We have identified what each of the 19 orbits of crosses under the action
of M24 and found shortest possible words in the symmetric generators
sending the standard cross to each of them. This suggests an algorithm for
expressing the product of two elements π1εC1w1 and π2εC2w2 in the form
π3εC3w3 with l(w) ≤ 4.

1 Find the image of the standard cross {±8ei} under the action of
π1εC1w1. Call this ‡.

2 Find the image of ‡under the action of π2εC2w2. Call this ‡′.

3 Find which M24 orbit ‡′ belongs to (by inspection).

4 Look-up short word of symmetric generators w−1
3 that sends ‡′ back

to {±8ei}.
5 Find the Golay codeword εC3 by computing the image of (224) ∈ Λ

under the action of (π1εC1w1)(π2εC2w2)w
−1
3

6 Find the M24 element π3 by finding the images of enough vectors of
the form 8ei under the action of (π1εC1w1)(π2εC2w2)w

−1
3 εc3 .
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Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

2?(24
4 ) : M24

(πt)3
∼= ·0

So every element can be symmetrically represented as πεCw with
π ∈ M24, εC ∈ 212 and l(w) ≤ 4. Compare this with the more ‘traditional’
representations:

196560 > 242 = 576 > 24 + 24 + 4× 4 = 64(> 23 + 12 + 3× 4 = 47).

RT Curtis and BT Fairbairn “Symmetric Representation of the
Elements of the Conway Group ·0” J. Symbolic Computation 44
(2009), 1044-1067

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 14 / 16



Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

2?(24
4 ) : M24

(πt)3
∼= ·0

So every element can be symmetrically represented as πεCw with
π ∈ M24, εC ∈ 212 and l(w) ≤ 4. Compare this with the more ‘traditional’
representations:

196560 > 242 = 576 > 24 + 24 + 4× 4 = 64(> 23 + 12 + 3× 4 = 47).

RT Curtis and BT Fairbairn “Symmetric Representation of the
Elements of the Conway Group ·0” J. Symbolic Computation 44
(2009), 1044-1067

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 14 / 16



Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

2?(24
4 ) : M24

(πt)3
∼= ·0

So every element can be symmetrically represented as πεCw with
π ∈ M24, εC ∈ 212 and l(w) ≤ 4.

Compare this with the more ‘traditional’
representations:

196560 > 242 = 576 > 24 + 24 + 4× 4 = 64(> 23 + 12 + 3× 4 = 47).

RT Curtis and BT Fairbairn “Symmetric Representation of the
Elements of the Conway Group ·0” J. Symbolic Computation 44
(2009), 1044-1067

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 14 / 16



Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

2?(24
4 ) : M24

(πt)3
∼= ·0

So every element can be symmetrically represented as πεCw with
π ∈ M24, εC ∈ 212 and l(w) ≤ 4. Compare this with the more ‘traditional’
representations:

196560 > 242 = 576 > 24 + 24 + 4× 4 = 64(> 23 + 12 + 3× 4 = 47).

RT Curtis and BT Fairbairn “Symmetric Representation of the
Elements of the Conway Group ·0” J. Symbolic Computation 44
(2009), 1044-1067

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 14 / 16



Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

2?(24
4 ) : M24

(πt)3
∼= ·0

So every element can be symmetrically represented as πεCw with
π ∈ M24, εC ∈ 212 and l(w) ≤ 4. Compare this with the more ‘traditional’
representations:

196560

> 242 = 576 > 24 + 24 + 4× 4 = 64(> 23 + 12 + 3× 4 = 47).

RT Curtis and BT Fairbairn “Symmetric Representation of the
Elements of the Conway Group ·0” J. Symbolic Computation 44
(2009), 1044-1067

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 14 / 16



Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

2?(24
4 ) : M24

(πt)3
∼= ·0

So every element can be symmetrically represented as πεCw with
π ∈ M24, εC ∈ 212 and l(w) ≤ 4. Compare this with the more ‘traditional’
representations:

196560 > 242 = 576

> 24 + 24 + 4× 4 = 64(> 23 + 12 + 3× 4 = 47).

RT Curtis and BT Fairbairn “Symmetric Representation of the
Elements of the Conway Group ·0” J. Symbolic Computation 44
(2009), 1044-1067

Ben Fairbairn (University of Birmingham) Computing with Symmetric Generation August 2nd 2009 14 / 16



Example: the Conway group ·0 ∼= 2˙Co1

| · 0|=8 315 553 613 086 720 000

2?(24
4 ) : M24

(πt)3
∼= ·0

So every element can be symmetrically represented as πεCw with
π ∈ M24, εC ∈ 212 and l(w) ≤ 4. Compare this with the more ‘traditional’
representations:

196560 > 242 = 576 > 24 + 24 + 4× 4 = 64

(> 23 + 12 + 3× 4 = 47).

RT Curtis and BT Fairbairn “Symmetric Representation of the
Elements of the Conway Group ·0” J. Symbolic Computation 44
(2009), 1044-1067
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If you liked this...

fairbaib@maths.bham.ac.uk

Slides are available at:
http://bham.academia.edu/BenFairbairn/Talks

PLEASE GIVE ME A JOB!
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Thank you for listening
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