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The Group CT(Z)

By r(m) we denote the residue class r + mZ.

Let r1(m1) and r>(mo) be disjoint residue
classes of Z. Recall that this means that

gcd(my,mo) 1 (r1 —72).

We always assume that O < r; < mj7 and that
0 < ro <mo.

Let the c/ass. transp.)osi-tion T (mq),ro(my) P€
the permutation which interchanges r1 +tm1
and ro 4+ tmo for every t € Z, and which fixes
everything else.

For convenience, we set

T I=Tg(2)1(2) o nt (—1)™.

Let CT(Z) be the group which is generated
by all class transpositions of Z.



Basic Properties of CT(Z)

The group CT(Z) is simple.

It is countable, but it has an uncountable
series of simple subgroups CTp(Z), which is
parametrized by the sets P of odd primes.

Further, the group CT(Z)

e iS not finitely generated,

e acts highly transitively on Ng, and

e its torsion elements are divisible.



Some Groups Which Embed into CT(Z)

e Every finite group embeds into CT(Z).

e Every free group of finite rank embeds
into CT(Z).

e Every free product of finitely many finite
groups embeds into CT(Z).

e The class of subgroups of CT(Z) is closed
under taking

— direct products,

— wreath products with finite groups,
and

— restricted wreath products with (Z, +).
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More on Subgroups of CT(Z)

The group CT(Z) has

e finitely generated subgroups which do not
have finite presentations, and

e finitely generated subgroups with unsolv-
able membership problem.

Since words in the generators of subgroups
of CT(Z) can always be evaluated and com-
pared, groups with unsolvable word problem
do not embed into CT(Z).



Examples of Subgroups of CT(Z)

We have for example

o Fo = ((7-70(2),1(4))% (7 T0(2) 3(4))°)
(the free group of rank 2),

o PSL(2,Z) £ (7,79(4).2(4) * T1(2).0(4))
(the modular group),

o CoUZ = (1 -70(2),1(4)> T3(8),7(8))
(the lamplighter group), and

o ZZ = (T Tp(2),1(4) T3(8),7(8) " T3(8),7(16) )
and

o G 1= (T0(4),3(4)) T0(6),3(6) T1(4),0(6))
is an infinite group, which has only finite

orbits on Z.



Products of Two Class Transpositions

Some examples:

ord(o)
T0(4),2(4) " 71(4),3(4) 2
70(3),1(3) " 70(3),2(3) 3
70(2),1(2) " 70(4),2(4) 4
T71(2),0(4) " T1(4),2(4) 6
T0(2),1(4) " ™2(3),1(6) 10
71(2),0(4) " 71(3),2(6) 12
T0(2),1(4) " 70(3),2(3) 15
T0(3),1(6) " 71(4),3(4) 20
T0(2),1(4) " 70(5),2(5) 30
71(3),0(6) " 71(5),2(5) 60
T0(4),1(6) * T1(4),2(6) oo, finite cycles
T0(2),1(4) " T1(2),2(4) | ©°. Infinite cycles

Already for class transpositions which inter-
change residue classes with moduli < 6, there
are 88 different subcases where the products
have different cycle structure.



Intersection Types

On this slide, circles denote residue classes.

- -« interchanged by 1% class transposition
-

-« interchanged by 2™ class transposition

Residue classes interchanged by the class
transpositions are connected by lines:

(0.3,3,0) O=0 (133.2) @:() (3:33.3)
(0.3.3,1) ©<© (133.3) O—@—Q (.33.4)

033.3) OO0 (133.4) @:@ (3.3.4.4)

033,49 ©<@ (1,43.2) @—@ (,4.43)
(L133) (1,433) C@—Q G.44)

(133.1) @:© (143.4) (% @4.44)



On the Series of Subgroups CTp(Z)

Let P be a set of odd primes.

The group CTp(Z) is the subgroup of CT(Z)
which is generated by all class transpositions
Ty (m1),ro(mso) TOF Which all odd prime factors
of m1 and mo lie in P.

The groups CTp(Z) are simple as well.

Question: Are the uncountably many groups
CTp(Z) pairwise nonisomorphic?

If not: Under which conditions on the sets P4
and P> of odd primes is CTp. (Z) = CTp,(Z)7



More on CTp(Z)

The group CTp(Z) is finitely generated if and
only if the set P is finite.

The intersection of all groups CTp(Z) is
CTy(Z). We have

CT@(Z) — <K;7 >\7 /’L7 V>7

where k = 7g(2) 1(2) A = T1(2),2(4):
B = Tg(2),1(4) ANd v = T1(4) 2(4)-

John McDermott (Galway) has pointed out
to me the following:

The group CTy(Z) is isomorphic to the
Higman-Thompson group (cf. Higman 1974),
the first finitely presented infinite simple
group which has been discovered.



More on CTy(Z)

To

check that the group CTy(Z) is isomor-

phic to the Higman-Thompson group, it suf-
fices to verify that its generators satisfy the
relations given by Higman:

K= =pu?2=1v2=1,

ARURAVREV URARL = KUAKUVRAVUVAVL = 1,
(Acepurdv)® = (urAcur)3 =1,
(Ap)?k(uv)?s = 1,

(Awur)® =1,
(AcveAV)3kve(prvepy)3kvey = 1,
((Akpr)?(urAv)?)® =1,
(MWAEpEpv IV pERE)Y = 1,
(prpurdeAvuv els)* = 1, and
(AprARuARVE)? = (UAKprApKYE)? = 1.
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Simple Supergroups of CT(%Z)

Let »(m) C Z be a residue class.

We define the class shift v,y by

n+m if ner(m),
e Sym(Z) :
Vr(m) € SYM(Z) {n otherwise.

We define the class reflection <,.(,,) by

—n—+2r if nerim),
c Sym(Z) :
or(m) ym(z) : nr— {n otherwise,
where we assume that 0 < r < m.

The groups

KT :=(CT(Z),vy3)- VQ—(13)>

and

K™ :=(CT(Z),v1(3) - ¥2(3),%0(2) - Y0(2))
are simple as well.
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Computational Aspects

So far, research in computational group
theory focussed mainly on finite permuta-
tion groups, matrix groups, finitely presented
groups, polycyclically presented groups and
automatic groups.

The subgroups of CT(Z) form another large
class of groups which are accessible to com-
putational methods. Algorithms to compute
with such groups are described in

Algorithms for a Class of Infinite Permutation
Groups. J. Symb. Comput. 43(2008), no. 8,
545-581.

They are implemented in the package RCWA
for the computer algebra system GAP.

Many of the results presented in this talk
have first been discovered during extensive
experiments with the RCWA package.
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A Little Example

In 1932, Lothar Collatz investigated the per-
mutation

(2n/3 if ne0(3),
(4n —1)/3 if ne 1(3),
((4n+1)/3 if ne?2(3)

of the integers. The cycle structure of « is
unknown so far.

o
3
l

We want to determine whether a« € CT(Z).

For this, we attempt to factor a into class
transpositions. Due to the particular form
of «, that is not particularly easy and we need
a notable number of factors.
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“Prime Switch” oy

The factorization method makes use of cer-
tain special products of class transpositions:

For an odd prime p, let

Tp -= T0(8),1(2p) " T4(8),2p—1(2p)
" T0(4),1(2p) " T2(4),2p—1(2p)
© T2(2p),1(4p) " TA(2p),2p+1(4p) € CT(Z).

We have
((pn +2p—2)/2 if ne2(4),
n/2 if n€0(4)\ (4(4p) UB(4p)),
n+2p—7 if n € 8(4p),
op: n—n—2p+5 if ne2p—1(2p),
n+1 if nel(2p),
n—3 if ne€4(4p),
(N if nel(2)\ (1(2p)uU?2p—1(2p)).
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ae CT(Z)

Now we have

Q& = T2(3),3(6) " T1(3),0(6) " T0(3),1(3) T * T0(36),1(36)
* T0(36),35(36) " 70(36),31(36) " 70(36),23(36) ' 70(36),18(36)
* T0(36),19(36) " 70(36),17(36) * 70(36),13(36) " 70(36),5(36)
* T2(36),10(36) " 72(36),11(36) " 72(36),15(36) ' 72(36),20(36)
© T2(36),28(36) " 72(36),26(36) " 72(36),25(36) " 72(36),21(36)
© T2(36),4(36) " 73(36),8(36) " 73(36),7(36) " 79(36),16(36)
© T9(36),14(36) " 79(36),12(36) " 722(36),34(36)
© T27(36),32(36) " 727(36),30(36) * 729(36),33(36)
© T10(18),35(36) " 75(18),35(36) * 710(18),17(36)
* T5(18),17(36) " 78(12),14(24) " 76(9),17(18) " 73(9),17(18)
© 70(9),17(18) " 76(9),16(18) " 73(9),16(18) " 70(9),16(18)
© 76(9),11(18) " 73(9),11(18) " 70(9),11(18) * 76(9),4(18)
© 73(9),4(18) “ 70(9),4(18) " 70(6),14(24) " T0(6),2(24)
© 78(12),17(18) " T7(12),17(18) " 78(12),11(18)
© T7(12),11(18) 051 " T7(12),17(18) * T2(6),17(18)
- To3).17(18) " 03 € CT(Z).
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The 3n+ 1 Conjecture

In the 1930s, Lothar Collatz made the fol-
lowing conjecture:

3n+1 Conjecture. Iterated application of
the mapping

n/2 if n is even,
(3n+1)/2 if nis odd

to any positive integer vields 1 after a finite
number of steps.

T:7 — 7, n|—>{

This conjecture — nowadays famous — is still
open today, although there are more than
200 related mathematical publications. - Cf.
Jeffrey C. Lagarias’ annotated bibliography
(http://arxiv.org/abs/math.NT /0309224,
http://arxiv.org/abs/math.NT /0608208).
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A Bijective Extension of T to Z2

The mapping 1 is not injective.

Dealing with permutations and permutation
groups is usually easier.

However, the mapping 1' can be extended in
natural ways to permutations of 72. —

For example:

o € Sym(Z?) :

(2m41,(3n+1)/2) if ne 1(2),
(m,n) — < (2m,n/2) if ne4(6),
((m,n/2) otherwise.

This turns the 3n 4+ 1 conjecture into the
question whether the line n = 4 is a set of
representatives for the cycles of o on the
half-plane n > 0.
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A Factorization of o

Furthermore, the mapping o can be written
as the product of two permutations whose
cycle structure can be described very easily:

We have o = a3, where

- ( ) (2m,n/2) if 2|n,
AT Y om 41, (n—1)/2)  if24n,
and
((m/2,n) if 2|lm and n & 2(3),
B:(m,n)— < (m,n) if 2|m and n € 2(3),
((m,3n+2) if 21m.

This motivates a move from Z to ZQ, and
generalizing further, to Z2 for d € N.

18



The Groups CT(Z%)

Let d € N, and let L1, Ly € Z%*4 be matrices
of full rank which are in Hermite normal form.

Further let r{+7Z%L1 and r>+Z%L> be disjoint
residue classes, and assume that r1 and ro are
reduced modulo Z%L{ and Z%L,, respectively.

Let the class transposition

d
Tr A ZALy 2Ly € SYM(ZT)
be the involution which interchanges r1 + kL

and ro+ kLo for every k € Z%, and which fixes
everything else.

Let CT(Z%) be the group which is generated
by the set of all class transpositions of Z<.

The groups CT(Z%), d € N are simple as well.

The development version of RCWA contains
already basic methods to compute in CT(Z2).
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Recent Paper

Many of the results presented in this talk are
included in the paper

A Simple Group Generated by Involutions
Interchanging Residue Classes of the In-
tegers. Mathematische Zeitschrift, DOI:
10.1007 /s00209-009-0497-8.

The GAP package RCWA is available at

http://www.gap-system.org/Packages/rcwa.htmi
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