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Engel elements

G a group, x , y ∈ G , n a non-negative integer.
The commutator [x , ny ] is defined, by induction, by the rules:

[x , 0y ] = x , [x , n+1y ] = [[x , ny ], y ].

x ∈ G is a right Engel element of G (a left Engel element of G ) if for
each g ∈ G there is an integer n = n(x , g) ≥ 0 such that

[x , ng ] = 1 ([g , nx ] = 1).

If n can be chosen independently on g we say that x is a right n-Engel
element (a left n-Engel element).
If every element of a group G is a right Engel element (equivalently every
element of G is a left Engel element), then G is called an Engel group.
G is called an n-Engel group if

[x , ny ] = 1,∀x , y ∈ G

.
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Remark
G a nilpotent group of class c =⇒ G a c-Engel group.

There exists an infinite 3-Engel group with trivial center, thus
k-Engel groups need not to be nilpotent.

Remark

G a finite k-Engel group =⇒ G nilpotent [M. Zorn, 1937]

G a soluble k-Engel group =⇒ G locally nilpotent [K. Gruenberg,
1959]

G a residually finite k-Engel group =⇒ G locally nilpotent [J. S.
Wilson, 1991]

G a locally graded k-Engel group =⇒ G locally nilpotent [Y.K. Kim
and A. H. Rhemtulla, 1995]

Question
Is every k-Engel group locally nilpotent?
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Orderable Engel groups

G a group, ≤ a partial order on the set G
(G ,≤) is a partially ordered group if, for any x , y , a, b ∈ G ,

x ≤ y =⇒ axb ≤ ayb.

If (G ,≤) is a partially ordered group and the order ≤ is a total order in G ,
we say that (G ,≤) is a totally ordered group or simply an ordered group.
G is an orderable group (an O-group) if there exists a total order ≤ such
that (G ,≤) is an ordered group.

Example

Any nilpotent torsion-free group is an orderable group.
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Theorem (A)

[Y. K. Kim, A. H. Rhemtulla, 1995] An orderable k-Engel group is
nilpotent of class ≤ f (k).

It is very easy to see that an orderable group is always torsion-free and,
as noticed before, every nilpotent torsion-free group is an orderable
group, thus we could ask:

Question (A. I. Kokorin, problem 2.24 of The Kourovka Notebook)

Is every torsion-free k-Engel group an orderable group?

Question
Is every torsion-free k-Engel group nilpotent?
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Lemma (1)

Let G be a k-Engel group, then the subgroup < x ><y> can be
generated by k elements, for any x , y ∈ G.

Lemma (2)

Let G be a finitely generated k-Engel group. If H is normal in G and
G/H is cyclic then H is finitely generated.
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A subgroup C of an ordered group is convex if x ∈ C , whenever
1 ≤ x ≤ c with c ∈ C .

A relatively convex subgroup of an O-group G is a subgroup convex
under some order on G .

The quotient G/N of an O-group G is an O-group if and only if N is
relatively convex.

If C ,D are convex subgroups of an ordered group G , C < D and there is
not a convex subgroup H of G such hat C < H < D, we say that C 7→ D
is a convex jump in G .
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Lemma (3)

A convex subgroup of an ordered k-Engel group (G ,≤) is normal in G.

Proof.

Let C be a convex subgroup of G , g ∈ G .

The subgroup g−1Cg is also convex. For:
1 ≤ a ≤ g−1bg , b ∈ C =⇒ 1 ≤ gag−1 ≤ b ∈ C =⇒ gag−1 ∈ C =⇒
a ∈ g−1Cg .

Either g−1Cg ⊆ C or C ⊆ g−1Cg .
Assume w.l.o.g. C ⊆ g−1Cg . Then C ⊆ g−iCg i , for any i > 0 and
g−iCg i ⊆ C , for any i < 0.

Assume C ⊂ g−1Cg and let c ∈ C such that g−1cg /∈ C .

By Lemma 1, < c ><g>⊆ g−sCg s , for some s > 0.

Therefore g−(s+1)cg s+1 ∈ g−sCg s , from which g−1cg ∈ C , a
contradiction.
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Proof of Theorem A

(G ,≤) an ordered k-Engel group. Then G is torsion-free.

May assume G finitely generated, by a result of Zel’manov.

Let K :=
⋂
{C E G | C convex, G/C nilpotent}.

G/K is residually-(torsion-free nilpotent), thus it is nilpotent of class
bounded by a function of k , by Zel’manov’s result.

If K = {1}, we have the result. Assume K 6= {1}.
K is finitely generated, by Lemma 2. Then there exists a maximal
convex subgroup D ⊂ K .

Then D E G , by Lemma 3. Moreover D 7→ K is a jump, therefore
K/D is abelian and torsion-free.

Then G/D is soluble and k-Engel, hence it is nilpotent, and
torsion-free, thus K ⊆ D, a contradiction.
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A partially ordered group (G ,≤) is called a lattice ordered group if the
ordered set (G ,≤) is a lattice. A group is called a lattice orderable group
(an l -group) if there exists an ordered ≤ in G such that (G ,≤) is a
lattice ordered group.
Obviously an orderable group is an l -group. In 1988 N. Ya Medvedev
proved the following

Theorem
Every k-Engel l -group is residually orderable.

From that it follows easily

Theorem
Every k-Engel lattice orderable group is nilpotent of class bounded by a
function of k.
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If ≤ is a partial order in G , then (G ,≤) is called a partially right-ordered
group if,

x ≤ y =⇒ xb ≤ yb,∀x , y , b ∈ G .

If (G ,≤) is a partially right-ordered group and the order ≤ is a total

order in G , we say that (G ,≤) is a right-ordered group.
G is called a right-orderable group (an RO-group) if there exists a total
order ≤ such that (G ,≤) is a right-ordered group.
Obviously an O-group is an RO-group and it is possible to prove that any
lattice-orderable group is a subgroup of a right-orderable group. So is
natural to ask:

Question
Is every RO k-Engel group nilpotent?

If G is an RO k-Engel group, in order to show that G is nilpotent it would
be sufficient to prove that G is locally indicable, i.e. every non trivial
finitely generated subgroup of G has an infinite cyclic factor group.

Question
Is every RO k-Engel group locally indicable?
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A right partial order on the group G is said to be archimedean if, for any
a, b ∈ G , a > 1, b > 1, there exists a positive integer n such that b < an.
By a result of Hölder an order on G is archimedean if and only if G is
order-isomorphic to a subgroup of the additive group of the real numbers
under the natural order.
A right order on a group G is a Conrad order if C E D and D/C is
archimedean for every convex jump C 7→ D.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem
Every Conrad right-ordered k-Engel group is nilpotent of class bounded
by a function of k.



A right partial order on the group G is said to be archimedean if, for any
a, b ∈ G , a > 1, b > 1, there exists a positive integer n such that b < an.
By a result of Hölder an order on G is archimedean if and only if G is
order-isomorphic to a subgroup of the additive group of the real numbers
under the natural order.
A right order on a group G is a Conrad order if C E D and D/C is
archimedean for every convex jump C 7→ D.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem
Every Conrad right-ordered k-Engel group is nilpotent of class bounded
by a function of k.



A right partial order on the group G is said to be archimedean if, for any
a, b ∈ G , a > 1, b > 1, there exists a positive integer n such that b < an.
By a result of Hölder an order on G is archimedean if and only if G is
order-isomorphic to a subgroup of the additive group of the real numbers
under the natural order.
A right order on a group G is a Conrad order if C E D and D/C is
archimedean for every convex jump C 7→ D.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem
Every Conrad right-ordered k-Engel group is nilpotent of class bounded
by a function of k.



A right partial order on the group G is said to be archimedean if, for any
a, b ∈ G , a > 1, b > 1, there exists a positive integer n such that b < an.
By a result of Hölder an order on G is archimedean if and only if G is
order-isomorphic to a subgroup of the additive group of the real numbers
under the natural order.
A right order on a group G is a Conrad order if C E D and D/C is
archimedean for every convex jump C 7→ D.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem
Every Conrad right-ordered k-Engel group is nilpotent of class bounded
by a function of k.



A right partial order on the group G is said to be archimedean if, for any
a, b ∈ G , a > 1, b > 1, there exists a positive integer n such that b < an.
By a result of Hölder an order on G is archimedean if and only if G is
order-isomorphic to a subgroup of the additive group of the real numbers
under the natural order.
A right order on a group G is a Conrad order if C E D and D/C is
archimedean for every convex jump C 7→ D.

Theorem (Conrad)

A group is locally indicable if and only if it has a right Conrad order.

Theorem
Every Conrad right-ordered k-Engel group is nilpotent of class bounded
by a function of k.



The following result has been proved in 1995:

Theorem (P.L, M. Maj, A. H. Rhemtulla)

If an RO-group (G ,≤) has no non-abelian free subsemigroups, then ≤ is
a Conrad order.

Therefore we get the following

Question
Is it true that every RO k-Engel has no free non-abelian subsemigroups?

This is an old question for general k-Engel groups (see The Kourovka
Notebook, Problem 2.82)
P. L. and M. Maj proved in 1997 that a right orderable 4-Engel group
satisfies a non-trivial semigroup identity, hence it is nilpotent of bounded
class. More generally G. Traustason proved in 1999 that any 4-Engel
group satisfies a non-trivial semigroup identity and in 2005 G. Havas and
M. Vaughan-Lee proved that 4- Engel groups are locally nilpotent. They
are also Fitting groups by a result of G. Traustason.
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Notice that if we only assume that the ordered group G is an Engel
group it is not true that G is necessarily nilpotent, as the following
example shows.

Example

Let A be an associative algebra over a field K . An element a ∈ A is
called nilpotent if an = 0 for some positive integer depending on a. If all
elements of A are nilpotent the A is called a nil − algebra. The algebra A
is called nilpotent if there exists a positive integer n such that
a1a2 · · · an = 0, for any a1, · · · , an ∈ A. Obviously every nilpotent algebra
is a nil-algebra, the converse is not true. Let A be an associative algebra
with a unit element 1 and B a nil-subalgebra of A. The elements of the
form 1 + u, u ∈ B, with the product of A form a group G (B). It is easy
to prove that this group is nilpotent if B is nilpotent.
E. S. Golod constructed in 1966, for any field K and any integer d ≥ 3, a
non-nilpotent d -generated associative algebra F such that every
(d − 1)-generated subalgebra is nilpotent. The group G (F ) is a
non-nilpotent Engel group. V. V. Bludov, A.M.W. Glass and A. H.
Rhemtulla noticed in 2005 that if K is of characteristic 0, then the group
G (F ) is residually-(torsion-free nilpotent), thus it is also orderable.
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It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in
2005 the following interesting results

Theorem
If an orderable group is generated by left Engel elements, then every
convex jump is central.

Theorem
If an orderable group G is an Engel group, then every two-generated
subgroup of G has all convex jumps central.



It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in
2005 the following interesting results

Theorem
If an orderable group is generated by left Engel elements, then every
convex jump is central.

Theorem
If an orderable group G is an Engel group, then every two-generated
subgroup of G has all convex jumps central.



It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in
2005 the following interesting results

Theorem
If an orderable group is generated by left Engel elements, then every
convex jump is central.

Theorem
If an orderable group G is an Engel group, then every two-generated
subgroup of G has all convex jumps central.



It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in
2005 the following interesting results

Theorem
If an orderable group is generated by left Engel elements, then every
convex jump is central.

Theorem
If an orderable group G is an Engel group, then every two-generated
subgroup of G has all convex jumps central.



It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in
2005 the following interesting results

Theorem
If an orderable group is generated by left Engel elements, then every
convex jump is central.

Theorem
If an orderable group G is an Engel group, then every two-generated
subgroup of G has all convex jumps central.



It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in
2005 the following interesting results

Theorem
If an orderable group is generated by left Engel elements, then every
convex jump is central.

Theorem
If an orderable group G is an Engel group, then every two-generated
subgroup of G has all convex jumps central.



It is still open the following

Question (V. V. Bludov, problem 16.15 in The Kourovka Notebook)

Does the set of left Engel elements of an ordered group form a subgroup?

It is also also open the following

Question (A. I. Kokorin, problem 2.24 in The Kourovka Notebook)

Is every lattice ordered Engel group residually orderable?

Recently V. V. Bludov, A.M.W. Glass and A. H. Rhemtulla proved in
2005 the following interesting results

Theorem
If an orderable group is generated by left Engel elements, then every
convex jump is central.

Theorem
If an orderable group G is an Engel group, then every two-generated
subgroup of G has all convex jumps central.



Bibliography

V. V. Bludov, A. M. W. Glass, V. M. Kopytov, N. Ya. Medvedev
Unsolved Problems in Ordered and Orderable Groups,
arXiv:0906.2621v1 [math.GR], (2009).

V. V. Bludov, A. M. W. Glass, A. H. Rhemtulla On centrally
orderable groups, J. Algebra 291 (2005), 129-143.

R. Botto Mura, A.H. Rhemtulla, Orderable groups, Marcel Dekker,
New York-Basel (1977).

A. M. W. Glass, Partially ordered groups, World Scientific - Series in
Algebra 7 (1999).

K. Gruenberg The Engel elements of a soluble group, Illinois J.
Math. 3 (1959), 151-168

P. Longobardi, M. Maj, A. H. Rhemtulla Groups with no free
subsemigroups, Trans. Amer. Math. Soc. 347 (1995), 1419-1427.



P. Longobardi, M. Maj, Semigroup identities and Engel groups,
Groups St Andrews 1997 in Bath, London Math. Soc. Lecture Note
Ser., 261, Cambridge Univ. Press, Cambridge II (1999), 527-531.

P. Longobardi, M. Maj, On some classes of orderable groups, Rend.
Sem. Mat. Fis. Milano 68, (2001), 203-216.

Y. Kim, A. H. Rhemtulla Weak maximality condition and polycyclic
groups, Proc. Amer. Math. Soc. 123, (1995), 711-714.

Y. Kim, A. H. Rhemtulla, Groups with Ordered Structures, Proc. of
"Group Korea ’94", de Gruyter, Berlin, (1995), 199-210.

J. S. Wilson, Two-generator conditions in residually finite groups,
Bull. London Math. Soc. 23 (1991), 239-248.

M. Zorn, On a theorem of Engel, Bull. Amer. Math. Soc. 43 (1937),
401-404.



Engel conditions in combinatorial problems

Let X be a class of groups. Given a group G , let ΓX◦(G ) be the simple
graph whose vertices are the elements of G , and different vertices x and
y are connected by an edge if the subgroup 〈x , y〉 belongs to the class X .
The group G is said to be an X ◦ − group if the graph ΓX◦(G ) has no
infinite totally disconnected subgraphs, i.e. in any infinite subset of G
there exist different elements x , y such that 〈x , y〉 ∈ X .
If the set S(X ) is a subgroup of G of finite index, where S(X ) consists of
all elements a ∈ G such that, for any g ∈ G , 〈a, g〉 ∈ X , then it is easy
to show that G is a X ◦-group.
For example this is true if X = A, where A denotes the class of all
abelian groups: here S(A) = Z (G ); conversely B. H. Neumann,
answering to a question posed by P. Erdös, proved he following result

Theorem (B. H. Neumann, 1976)

G is an A◦-group if and only if G/Z (G ) is finite.

The proof uses Ramsey’s theorem.
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J.C. Lennox and J. Wiegold studied N◦-groups, where N denotes the
class of all nilpotent groups, and proved the following

Theorem (J.C. Lennox and J. Wiegold, 1981)

Let G be a finitely generated soluble group. Then G is an N◦-group if
and only if it is finite-by-nilpotent.

For any prime p ≥ 5, M.R. Vaughan-Lee and J. Wiegold constructed in
1981 a countable locally finite group of exponent p which is perfect, and
such that each of its 2-generator subgroups is nilpotent of bounded class.
Hence the result of the previous theorem does not hold in general, even if
we assume there is a bound for the nilpotence class of all 2-generated
subgroups.
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For the class N◦k , where Nk is the class of nilpotent groups of class at
most k , generalizing previous results by A. Abdollahi and B. Taeri and by
C. Delizia, C. Delizia, A. H. Rhemtulla and H. Smith proved the following

Theorem (C. Delizia, A. H. Rhemtulla and H. Smith, 2000)

Let G be a finitely generated locally graded N◦k -group. Then there is a
positive integer c depending only on k such that G/Zc(G ) is finite.

The proof uses deep results by Lubotzky and Mann and the positive
answer, due to Zel’manov, to the Restricted Burnside problem.
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If X is the class Ek of all k-Engel groups we get, using the previous
theorem, the following result:

Theorem (P. L., 2001)

Let G be a finitely generated locally graded E◦k -group. Then G is
finite-by-(k-Engel) (in particular it is a finite extension of a k-Engel
group).

Proof.

First we show that if G is a torsion-free nilpotent group such that in
every infinite subset X of G there exist two elements x , y s.t.
[x , ky ] = 1 = [y , kx ], then G is a k-Engel group.

We use Delizia, Rhemtulla, Smith result to show that if G is a
finitely generated residually finite group in E◦k , then G is finite-by-Ek .
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Suppose now that X is a variety defined by the two-variables law
w(s, t) = 1.
Given a group G , let ΓX?(G ) be the simple graph whose vertices are all
elements of G , and different vertices x and y are connected by an edge if
w(x , y) = 1.
The group G is said to be an X ? − group if the graph ΓX?(G ) has no
infinite totally disconnected subgraphs.

Of course, every X ◦-group is an X ?-group.
If A is the variety of abelian groups defined by the law [x , y ] = 1, then
obviously A◦ = A?.
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It is much more difficult to deal with the class E?
k , where Ek is the variety

of all k-Engel groups defined by the two-variables law [x , ky ] = 1.

It is possible to show the following result:

Theorem (A. Abdollahi, 2000)

Let G be a finitely generated soluble E?
k -group.

Then there is a positive integer c depending only on k such that
G/Zc(G ) is finite.

There is still no answer to the following

Question
Is every E?

k -group also a E◦k -group ?
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If G is locally graded and k = 2 recently C. Delizia and C. Nicotera
proved the following

Theorem (C. Delizia, C. Nicotera, 2007)

Let G be a finitely generated locally graded E?
2 -group. Then G/Z2(G ) is

finite.

Proof.
First we show that < x ><y> is finitely generated, for any x , y ∈ G .
In fact, obvioulsly we may assume that y has infinite order. Thus
the set

{xy i : i > 1}

is infinite.
There exist different integers i , j > 1 such that [xy i , xy j , xy j ] = 1.
It easily follows that xy j

xy i−j
x−1x−y i

= 1.
If j > i , we get xy j

= xy i
xx−y i−j

; if i > j , we obtain
xy i

= xy j
xy i−j

x−1.
In both cases we conclude that

〈xyn
: n ≥ 0〉 ≤ 〈xyn

: |n| < max {i , j}〉.
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Now starting from the infinite set {xy i : i < 1} and repeating the previous
argument, we can prove that 〈xyn

: n ≤ 0〉 ≤ 〈xyn
: |n| < max {h, k}〉

for suitable integers h, k > 1. Therefore

〈x〉〈y〉 = 〈xyn
: |n| < m〉

for some positive integer m.

By Lemma 2 the derived subgroup G ′ is finitely generated and, by
induction, γi (G ) is finitely generated, for all i > 0.

Let R be the finite residual of G . Since G/γi (G ) is nilpotent and
finitely generated, then it is residually finite and R ⊆ γi (G ), for any
i ≥ 1.
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By a result of Delizia and Nicotera (2001), if H is a finitely
generated residually finite group in E?

2 , then H/Z2(H) is finite, thus
γ3(H) is finite.

Since G/R is residually finite, we obtain γ3(G )/R finite and R is
finitely generated.

If R = {1}, we have done.
Otherwise there exists a normal subgroup S of R, S < R and of
finite index in R.
We can assume S normal in G . Then G/S is residually finite and
R ⊆ S , a contradition.

More generally, of course, we can formulate the following:

Question
If V is a variety defined by the law w = 1, is it true that V ? ⊆ V ◦ ?
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Let V be a variety of groups defined by the law w(y1, . . . , yn) = 1.
Let V ] denote the class of all groups G in which, for any infinite subsets
X1, . . . ,Xn of G , there exist x1 ∈ X1, . . . , xn ∈ Xn such that
w(x1, . . . , xn) = 1.
Obviously V ∪ F ⊆ V ], where F is the class of all finite groups.
It is known that for many varieties V and for many words w the equality
V ∪ F = V ] holds.

Theorem (P. L., M. Maj and A.H. Rhemtulla, 1995)

Let V is the variety of all nilpotent groups of class at most k defined by
the law [y1, . . . , yk+1] = 1. Then every V ]-group is either finite or
nilpotent of class at most k.
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It is still open the following

Question (Problem 15.1 in The Kourovka notebook)

Does the equality V ∪F = V ] hold for any variety V and for any word w?

It is known that there exist classes of groups for which the previous
equality holds.

Theorem (G. Endimioni, 1995)

Let V be a variety of groups defined by the law w = 1. Then an infinite
V ]-group G is a V -group in the following cases:

G is locally nilpotent;

G is finitely generated and soluble, and every finitely generated
soluble V -group is polycyclic;

G is locally soluble or locally finite, and every finitely generated
soluble V -group is nilpotent.
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