
What is Engel’s law?

Engel’s law is an observation in
economics stating that, with a
given set of tastes, as income
rises, the proportion of income
spent on food falls.

Wikipedia
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Notation



Ap – the variety of all abelian groups of exponent p,

Nc – the variety of all nilpotent groups of nilpotency class c ,

Sd – the variety of all soluble groups of solubility length d ,

Be – the restricted Burnside variety of exponent e
(the variety generated by all finite groups of exponent e).

By Zelmanov’s positive solution of the Restricted Burnside
Problem all groups in Be are locally finite of exponent dividing e.F=〈x , y〉, [x , y ] = x−1y−1xy , xy i

=y−ix y i .

[x , i+1y ] = [[x , iy ], y ], [x , 0y ] = x .

En =〈 [x , iy ], 0≤ i≤n〉, E =〈 [x , iy ], 0≤ i〉.
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The Engel laws



Friedrich Engel (1861-1941, Germany) studied under Felix Klein at Leipzig,

worked in Lie algebras.

The law [x , ny ] ≡ 1 is called the n-Engel law.

1936: M. Zorn: every finite Engel group is nilpotent.

The n-Engel law does not imply nilpotency when n > 2.

1971: S. Bachmuth and H.Y.Mochizuki: ∃ a non-soluble locally
finite 3-Engel group of exponent 5 (c ≤ 2n − 1).

1997: M. Vaughan-Lee: 4-Engel groups of exponent 5 are locally
nilpotent.

All known n-Engel groups are locally nilpotent.
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Question:

Is every n-Engel group locally nilpotent?
(Is every finitely generated n-Engel group nilpotent?)

There are two approaches:
1. n-Engel groups are locally nilpotent if:

1942: n = 2 – F. W. Levi,

1961: n = 3 – H. Heineken,

2005: n = 4 – G.Havas and M.R. Vaughan-Lee,

2005: n = 4 – G.Traustason.
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2. n-Engel groups are locally nilpotent if additionally they are:

1953: soluble groups – K. W. Gruenberg,

1957: groups with the maximal condition – R. Baer,

1991: residually finite groups – J. S.Wilson,

1992: profinite groups – J. S.Wilson and E. I. Zelmanov,

1994: locally graded groups – Y. Kim and A.H. Rhemtulla.

2003: compact groups – Yu.Medvedev.
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equivalent to:

Does there exist a f. g. infinite simple n-Engel group?
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Positive laws



Positive law = semigroup identity

A law u(x1, ..., xn)≡v(x1, ..., xn) is called positive

if u, v are written without inverses of variables.

We say that G is a p.l .-group if G satisfies a positive law.

If G satisfies a law xk ≡ 1 we call it a group of finite exponent.

Each positive law implies a binary positive law u(x , y) ≡ v(x , y) if
substitute xi → xy i .

The law xy2x ≡ yx2y is cancelled, balanced and of degree 4.

Note that p.l.- groups do not contain free subsemigroups.
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Groupland

We illustrate the relations of properties of groups on the map of
Groupland, which is a flat planet where all groups live.
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Theorem (J.&T. Lewins 1969 )

If G is a p.l .-group, then var G has a basis of positive laws.

There are 3 disjoint classes of groups.
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In 1953 A. I. Mal’tsev and

in 1963 B.H.Neumann and T. Taylor:

Nilpotency can be defined by a positive law.

Let P1 ≡ Q1 be the abelian law xy ≡ yx .

Put P2 = P1z1Q1, Q2 = Q1z1P1 and inductively

Pk+1 = PkzkQk , Qk+1 = QkzkPk .

The law Pn ≡ Qn defines n-nilpotent groups:

Assume that the law P ≡ Q defines n−1-nilpotent groups

and consider the law PzQ ≡ QzP.
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The law PzQ ≡ QzP implies:

Q−1Pz ≡ zPQ−1, PQ ≡ QP.

Then PQ−1z ≡ zPQ−1, [PQ−1, z ] ≡ 1. So PQ−1 is in Z (G ),

G/Z (G ) satisfies P ≡ Q, hence is nilpotent of class n−1.

Then G is nilpotent of class n.

If G/N satisfies xk ≡ 1 and N satisfies a p.l . u(x , y) ≡ v(x , y)

then G satisfies the p.l .

u(xk , yk)≡v(xk , yk).

Corollary

Nilpotent-by-(finite exponent) groups satisfy positive laws.
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Let G be a finitely generated residually finite group.

1991: If G satisfies an Engel law then G is nilpotent
– J. S.Wilson,

1993: If G satisfies a positive law then G is nilpotent-by-finite
– Semple and Shalev.

It follows that a f.g. residually finite group

satisfying an Engel law or a positive law is nilpotent-by-finite.
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1970, S. N. Černikov:
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G is locally graded if every nontrivial finitely generated subgroup
of G has a proper subgroup of finite index.

The class of locally graded groups avoids groups such as infinite
Burnside groups or Ol’shanskii-Tarski monsters.

A NON-(locally graded) group must contain a f.g. infinite simple
section.
A group which has no f.g. infinite simple sections is locally graded.
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If G is f.g. satisfying a positive law then G is
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It follows that a locally graded group
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Locally graded groups with Engel or positive laws are locally (soluble-by-finite) (*)

SB-group – is a group in a finite product of varieties Sd and Be .

In 1997: R. Burns, Yu. Medvedev and O.M. considered so called
Class C consisting of locally-(residually-SB), groups.
It was shown:

If G ∈ C satisfies a positive law of degree n then G ∈ NcBe ,
where c , e depend on n only.

1998: If G ∈ C satisfies n-Engel law then G ∈ NcBe , where c , e
depend on n only. So by (*) we get

Corollary

If G is a locally graded group satisfying an n-Engel law or a

positive law of degree n then G ∈ NcBe , where c , e depend on n
only.
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forces finitely generated locally graded groups satisfying them to
be nilpotent-by-finite?
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Engel Construction of laws



Definition

Let u be a word and S be a subset in F .

We say that a binary law w ≡ 1 has construction u ∈̃S

if it is equivalent to a law u ≡ s for some word s∈S .

For example,

The laws [x , y ] ≡ xp have construction [x , y ] ∈̃ {xp, p ∈ P}.
They define varieties Ap.

The laws with construction [x , y ] ∈̃F ′′ define varieties of
groups with perfect commutator subgroups (i.e. G ′ = G ′′).
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Construction of the laws: u ∈̃ S

We speak of the Engel Construction

if u is of the form

xk0 [x , y ]k1 [x , 2y ]k2... [x , ny ]kn , ki ∈ Z.

and S is a subset of E ′, where E =〈 [x , iy ], 0≤ i〉.

We can show that every law has the General Engel Construction:

xk0 [x , y ]k1 [x , 2y ]k2... [x , ny ]kn ∈̃ E ′
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To show that every binary law has the General Engel Construction,
we need a technical Lemma, which states:

〈 [x , iy ], 0≤ i≤n 〉 = 〈 x , [x , y i ], 0< i≤n 〉 = 〈xy i
, 0≤ i≤n 〉.

[x , yn] ∈ En−1[x , ny ],

So we have

En = 〈xy i
, 0≤ i≤n〉 and E = 〈xy i

, 0≤ i〉.
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Theorem

Every binary law w≡1 has the General Engel Construction

xk0 [x , y ]k1 [x , 2y ]k2... [x , ny ]kn ∈̃ E ′.

Proof. Let w ∈ F ′. Since F ′ ⊆ 〈x〉F , w is a product of some xy i

with say, −m≤ i . Conjugation by ym gives us the equivalent law
with w ∈ 〈xy i

, 0≤ i 〉 = E . So w is a product of powers of x and
commutators [x , iy ], 1≤ i . By ordering these factors modulo E ′,
we get

[x , y ]k1 [x , 2y ]k2... [x , ny ]kn ∈̃ E ′.

Now we add xk0 to get the required construction.
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xk0[x , y ]k1 [x , 2y ]k2... [x , ny ]kn ∈̃ S ⊆ E ′.

We consider construction with kn = 1 and S = E ′
n−1, that is

xk0 [x , y ]k1 [x , 2y ]k2... [x , n−1y ]kn−1 [x , ny ] ∈̃ E ′
n−1.

If n = 1 we have only one type of laws xk [x , y ] ≡ 1 defining
varieties Ak .
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R-laws

Definition

A law is called an R-law if it implies a law with the Engel
Construction

xk0 [x , y ]k1 [x , 2y ]k2... [x , n−1y ]kn−1 [x , ny ] ∈̃ E ′
n−1, n ∈ N, ki ∈ Z,

or shortly
[x , ny ] ∈̃ En−1.

Clearly, n-Engel law is the R-law.
It can be shown that a positive law is the R-law.
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Why ”R”?

1968: J. Milnor considered f.g. groups with the property:

for all g , h ∈ G the subgroup 〈ghi
, i ∈Z〉 is f.g.

This property is called the Milnor property by F.Point.
In 1976 Rosset proved that each group without free non-cyclic
subsemigroups has this property.
1994 - Kim and Rhemtulla call the groups with this property
restrained.
So the groups satisfying positive laws are restrained.

We say that a law is restraining if it provides the above property.

We show that a law is restraining if and only if it is an R-law.
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R means restraining

Recall: An R-law is the law implying a law with the Engel

Construction [x , y ]k1 [x , 2y ]k2... [x , n−1y ]kn−1 [x , ny ] ∈̃ E ′
n−1,

[x , ny ] ∈̃ En−1.

Theorem

A law w≡1 is an R-law if and only if in every group G satisfying
this law
for all g , h ∈ G the subgroup 〈ghi

, i ∈N〉 is finitely generated.
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[x , ny ] ∈̃ En−1.

Proof.

If use [x , yn]∈En−1[x , ny ] then we get [x , yn] ∈̃En−1,

xyn ∈̃En−1. Since En−1 = 〈xy i
, 0≤ i ≤ n−1〉, we have

xyn ∈̃ 〈 x , xy , xy2
, ..., xyn−1〉.

Conjugation by y−n gives x ∈̃ 〈 xy−n
, xy−(n−1)

, ..., xy−2
, xy−1〉,

if change y → y−1, then x ∈̃ 〈 xy , xy2
, ..., xy (n−1)

, xyn〉. Let G be a
relatively free group, freely generated by a, b, ... , satisfying an
R-law, then a ∈ 〈 ab, ab2

, ..., ab(n−1)
, abn〉. Conjugation by b−1 gives

ab−1∈ 〈 a, ab, , ..., ab(n−2)
, ab(n−1)〉⊆〈 ab, ab2

, ..., ab(n−1)
, abn〉.

By repeating the conjugation by b−1 we obtain for all i ≥ 0,

ab−i∈ 〈 ab, ab2
, ..., ab(n−1)

, abn〉.
〈abi

, i ∈Z〉=〈 ab−n
, ab−(n−1)

, ... , ab−1
, a, ab, ..., abn−1

, abn〉 is f.g.

Now use the fact, that a, b are the free generators.
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have in common?



Engel laws and positive laws are the R-laws

1976, S. Rosset: if G is a finitely generated group and
for all g , h ∈ G the subgroup 〈ghi

, i ∈N〉 is f.g.

(i) G ′ is finitely generated.

(ii) If G/N is cyclic then N is finitely generated.

It follows:



Engel laws and positive laws are the R-laws

1976, S. Rosset: if G is a finitely generated group and
for all g , h ∈ G the subgroup 〈ghi

, i ∈N〉 is f.g.

(i) G ′ is finitely generated.

(ii) If G/N is cyclic then N is finitely generated.

It follows:



Engel laws and positive laws are the R-laws

1976, S. Rosset: if G is a finitely generated group and
for all g , h ∈ G the subgroup 〈ghi

, i ∈N〉 is f.g.

(i) G ′ is finitely generated.

(ii) If G/N is cyclic then N is finitely generated.

It follows:



Engel laws and positive laws are the R-laws

1976, S. Rosset: if G is a finitely generated group and
for all g , h ∈ G the subgroup 〈ghi

, i ∈N〉 is f.g.

(i) G ′ is finitely generated.

(ii) If G/N is cyclic then N is finitely generated.

It follows:



Engel laws and positive laws are the R-laws

1976, S. Rosset: if G is a finitely generated group and
for all g , h ∈ G the subgroup 〈ghi

, i ∈N〉 is f.g.

(i) G ′ is finitely generated.

(ii) If G/N is cyclic then N is finitely generated.

It follows:



(ii) If G/N is cyclic then N is finitely generated

The groups satisfying Engel laws or positive laws are restrained.

Rosset Lemma

If G is a finitely generated group satisfying an R-law, then:

1. G ′ is finitely generated,

2. if G/N is polycyclic then N is finitely generated.

Proof
There is a finite subnormal series from G to N with cyclic factors
and by repeated application of result (ii) we obtain that N is
finitely generated.
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Engel laws and positive laws are the R-laws

Theorem

A law is an R-law if and only if every f.g. group G satisfying this
law has its commutator subgroup G ′ finitely generated.

Corollary

Every f.g. metabelian group G satisfying an R-law is
nilpotent-by-finite

because by J. Groves, G is either nilpotent-by-finite or var G
contains a subvariety ApA which contains W = CpwrC with W ′

infinitely generated.
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Engel laws and positive laws are the R-laws

Lemma (cf. 2003, Burns and Medvedev )

If every f.g. metabelian group satisfying a law w ≡ 1 is
nilpotent-by-finite then:
every f.g. residually finite group satisfying the law w ≡ 1 is
nilpotent-by-finite.
Moreover, the parameters c , e depend on the law only.

Corollary

Every f.g. residually finite group G satisfying an R-law is
nilpotent-by-finite.
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We need one more property of R-laws

Lemma

In every f.g. group G satisfying an R-law

the finite residual R is finitely generated.

We use the fact that G/R is nilpotent-by-finite, so it has a
nilpotent subgroup H/R which is f.g., hence polycyclic.
It follows by Rosset Lemma, that R is finitely generated.
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Now we can answer the question:
What do the Engel laws and positive laws have in common that
forces f.g. locally graded groups satisfying them to be
nilpotent-by-finite?

The answer is: Engel laws and positive laws are the R-laws and

every R-law forces f.g. locally graded groups satisfying it to be

nilpotent-by-finite.

We show that
Every f.g. locally graded group satisfying an R-law is
nilpotent-by-finite.
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Every f.g. residually finite group satisfying an R-law is nilpotent-by-finite

Theorem

Every f.g. locally graded group satisfying an R-law is
nilpotent-by-finite.

Proof. G is locally graded, R is finitely generated. If R 6= 1, it
must contain a proper subgroup of finite index T ( R, say.
We show that there exists K C G , such that K ⊆ T ( R and
|R : K | < ∞.

Since (G/K )/(R/K ) ∼= G/R,
G/K is finite-by-(nilpotent-by-finite), hence G/K is
nilpotent-by-finite and then residually finite.

Then R ⊆ K , which contradicts to K ⊆ T ( R.
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Engel laws and positive laws are the R-laws

Corollary

For every R-law there exist positive integers c and e depending
only on the law, such that every locally graded group satisfying
this law lies in the product variety NcBe .

There are groups satisfying R-laws, which are not in any of NcBe :

Burnside groups B(r , n) for sufficiently large n,
the groups satisfying the R-law xyn = ynx also for n sufficiently
large.
Ol’shanskii and Storozhev groups which are not even locally soluble
by-(finite exponent).

Problem Is there an R-law that implies neither positive nor Engel
law?
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Special kind of R-laws



The construction [x , ny ] ∈̃En−1 defines the R-laws.

We consider the laws called Ln of the form

[x , y ] ≡ [x , ny ], n > 1.

Proposition

(i) Every metabelian group G satisfying Ln is abelian.
(ii) Every finite group G satisfying Ln is abelian.

Proof (i) If substitute [y , n−1x ] for y , we get
[x , [y , n−1x ]] ≡ [x , n[y , n−1x ]] ∈ F ′′.
By taking inverse and interchanging x � y we obtain [x , ny ] ∈̃F ′′.
Now by Ln we have [x , y ] ∈̃F ′′. So G ′ = G ′′ = {e}.
(ii) If there exist a non-abelian finite group satisfying Ln. Take
such a group G of the smallest order. By Miller and Moreno result
(1903), a finite group G , all whose proper subgroups are abelian, is
metabelian. Hence G must be abelian, a contradiction.
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It was conjectured in 1966 by N. Gupta that each such a law is
abelian. The proof was given only for n ≤ 3.
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We have looked for a shorter proof that the law [x , y ] ≡ [x , ny ] is
abelian.

Our proof for n = 2, 3 is based on the following

Observation Let G satisfies the law Ln. If an element b is
conjugate to its inverse, b−1 = ba say, then b2 = 1.

Proof b2 = (ba)−1b = [a, b] ≡ [a, nb] = [b2, n−1b]=1.
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For n = 2 and n = 3 we used the commutator identities (the
equality in F ) saying that [x , ny

−1] is conjugate to [x , ny ](−1)n .

[x , y−1] = [x , y ]−y−1
,

[x , 2y
−1] = [x , 2y ][x ,y ]−1y−2

, [x , 3y
−1] = [x , 3y ]−y−1[x ,y ]−1y−2

.

However [x , 4y
−1] is NOT conjugate to [x , 4y ]±1.

We conjecture that for n>3 the law [x , y ] ≡ [x , ny ] need not be
abelian.

THANK YOU
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