

On connected transversals to nilpotent subgroups

Markku Niemenmaa Miikka Rytty

Department of Mathematical Sciences

Basic situation

1. $H \leq G$,
2. $G=A H=B H$, where A and B are left transversals to H in G.

Basic situation

1. $H \leq G$,
2. $G=A H=B H$, where A and B are left transversals to H in G.
3. $a^{-1} b^{-1} a b \in H$ for all $a \in A$ and $b \in B$.

Basic situation

1. $H \leq G$,
2. $G=A H=B H$, where A and B are left transversals to H in G.
3. $a^{-1} b^{-1} a b \in H$ for all $a \in A$ and $b \in B$.
A and B are H-connected transversals in G.

Problems

1. Let $G=A H=B H$ and $[A, B] \leq H$. Under which conditions on H does it follow that G is solvable?

Problems

1. Let $G=A H=B H$ and $[A, B] \leq H$. Under which conditions on H does it follow that G is solvable?
2. Let $G=A H=B H$ and $[A, B] \leq H$ and $G=\langle A, B\rangle$. Under which conditions on H does it follow that H is subnormal in G ?

Problems

1. Let $G=A H=B H$ and $[A, B] \leq H$. Under which conditions on H does it follow that G is solvable?
2. Let $G=A H=B H$ and $[A, B] \leq H$ and $G=\langle A, B\rangle$. Under which conditions on H does it follow that H is subnormal in G ?
3. Let $G=A H=B H$ and $[A, B] \leq H$ and $G=\langle A, B\rangle$. Under which conditions on H does it follow that $G^{\prime} \leq N_{G}(H)$.

Results for the abelian case

1. Kepka, Niemenmaa (1994): If G is a finite group and H is abelian, then G is solvable.

Proof: First assume that H is maximal in G and use Herstein (1958). If H is not maximal in G, then we proceed by induction.

Results for the abelian case

1. Kepka, Niemenmaa (1994): If G is a finite group and H is abelian, then G is solvable.

Proof: First assume that H is maximal in G and use Herstein (1958). If H is not maximal in G, then we proceed by induction.
2. If G is finite, H is abelian and $G=\langle A, B\rangle$, then H is subnormal in G.

Results for the abelian case

3. If H is cyclic and $G=\langle A, B\rangle$, then $G^{\prime} \leq H$.

Results for the abelian case

3. If H is cyclic and $G=\langle A, B\rangle$, then $G^{\prime} \leq H$.
4. If $H \cong C_{p} \times C_{p}$ and $G=\langle A, B\rangle$, then $G^{\prime} \leq N_{G}(H)$.

Results for the abelian case

3. If H is cyclic and $G=\langle A, B\rangle$, then $G^{\prime} \leq H$.
4. If $H \cong C_{p} \times C_{p}$ and $G=\langle A, B\rangle$, then $G^{\prime} \leq N_{G}(H)$.
5. Csörgö (2006): If $H \cong C_{p} \times C_{p} \times C_{p}$ and $G=\langle A, B\rangle$, then $G^{\prime} \leq N_{G}(H)$.

Results for the abelian case

3. If H is cyclic and $G=\langle A, B\rangle$, then $G^{\prime} \leq H$.
4. If $H \cong C_{p} \times C_{p}$ and $G=\langle A, B\rangle$, then $G^{\prime} \leq N_{G}(H)$.
5. Csörgö (2006): If $H \cong C_{p} \times C_{p} \times C_{p}$ and $G=\langle A, B\rangle$, then $G^{\prime} \leq N_{G}(H)$.
6. Csörgö (2007): $|G|=2^{13}, H$ is elementary abelian of order $2^{6}, G=\langle A, B\rangle$ and $G^{\prime} \leq N_{G}(H)$ does not hold.

Problems

What happens if $G=\langle A, B\rangle$ and

- $H \cong C_{p} \times C_{p} \times C_{p} \times C_{p}$ or
- $H \cong C_{p} \times C_{p} \times C_{p} \times C_{p} \times C_{p}$?

Problems

What happens if $G=\langle A, B\rangle$ and

- $H \cong C_{p} \times C_{p} \times C_{p} \times C_{p}$ or
- $H \cong C_{p} \times C_{p} \times C_{p} \times C_{p} \times C_{p}$?

Do we need some extra conditions (like $A=B$ or $A=A^{-1}$ and $B=B^{-1}$) to get $G^{\prime} \leq N_{G}(H)$?

Results for the nilpotent case

1. Mazur (2007): If G is a finite group and H is nilpotent, then G is solvable.

Proof: By using CFSG.

Results for the nilpotent case

1. Mazur (2007): If G is a finite group and H is nilpotent, then G is solvable.

Proof: By using CFSG.
Remark: It is possible to prove the result without CFSG.

Results for the nilpotent case

1. Mazur (2007): If G is a finite group and H is nilpotent, then G is solvable.

Proof: By using CFSG.
Remark: It is possible to prove the result without CFSG.
2. Niemenmaa (2009): If G is finite, H is nilpotent and $G=\langle A, B\rangle$, then H is subnormal in G.

