

On connected transversals to nilpotent subgroups

Markku Niemenmaa Miikka Rytty

Department of Mathematical Sciences

Basic situation

H ≤ G,
 G = AH = BH, where A and B are left transversals to H in G.

Basic situation

- 1. $H \leq G$,
- 2. G = AH = BH, where A and B are left transversals to H in G.
- 3. $a^{-1}b^{-1}ab \in H$ for all $a \in A$ and $b \in B$.

Basic situation

- 1. $H \leq G$,
- 2. G = AH = BH, where A and B are left transversals to H in G.
- 3. $a^{-1}b^{-1}ab \in H$ for all $a \in A$ and $b \in B$.

A and B are H-connected transversals in G.

1. Let G = AH = BH and $[A, B] \le H$. Under which conditions on H does it follow that G is solvable?

- 1. Let G = AH = BH and $[A, B] \le H$. Under which conditions on H does it follow that G is solvable?
- 2. Let G = AH = BH and $[A, B] \le H$ and $G = \langle A, B \rangle$. Under which conditions on H does it follow that H is subnormal in G?

- 1. Let G = AH = BH and $[A, B] \le H$. Under which conditions on H does it follow that G is solvable?
- 2. Let G = AH = BH and $[A, B] \le H$ and $G = \langle A, B \rangle$. Under which conditions on H does it follow that H is subnormal in G?
- 3. Let G = AH = BH and $[A, B] \le H$ and $G = \langle A, B \rangle$. Under which conditions on H does it follow that $G' \le N_G(H)$.

- 1. Kepka, Niemenmaa (1994): If G is a finite group and H is abelian, then G is solvable.
 - Proof: First assume that H is maximal in G and use Herstein (1958). If H is not maximal in G, then we proceed by induction.

1. Kepka, Niemenmaa (1994): If G is a finite group and H is abelian, then G is solvable.

Proof: First assume that H is maximal in G and use Herstein (1958). If H is not maximal in G, then we proceed by induction.

2. If G is finite, H is abelian and $G = \langle A, B \rangle$, then H is subnormal in G.

3. If H is cyclic and $G = \langle A, B \rangle$, then $G' \leq H$.

- 3. If *H* is cyclic and $G = \langle A, B \rangle$, then $G' \leq H$.
- 4. If $H \cong C_p \times C_p$ and $G = \langle A, B \rangle$, then $G' \leq N_G(H)$.

- 3. If H is cyclic and $G = \langle A, B \rangle$, then $G' \leq H$.
- 4. If $H \cong C_p \times C_p$ and $G = \langle A, B \rangle$, then $G' \leq N_G(H)$.
- 5. Csörgö (2006): If $H \cong C_p \times C_p \times C_p$ and $G = \langle A, B \rangle$, then $G' \leq N_G(H)$.

- 3. If H is cyclic and $G = \langle A, B \rangle$, then $G' \leq H$.
- 4. If $H \cong C_p \times C_p$ and $G = \langle A, B \rangle$, then $G' \leq N_G(H)$.
- 5. Csörgö (2006): If $H \cong C_p \times C_p \times C_p$ and $G = \langle A, B \rangle$, then $G' \leq N_G(H)$.
- 6. Csörgö (2007): $|G| = 2^{13}$, *H* is elementary abelian of order 2^6 , $G = \langle A, B \rangle$ and $G' \leq N_G(H)$ does not hold.

What happens if $G = \langle A, B \rangle$ and $\blacktriangleright H \cong C_p \times C_p \times C_p \times C_p$ or $\blacktriangleright H \cong C_p \times C_p \times C_p \times C_p \times C_p?$

What happens if $G = \langle A, B \rangle$ and

•
$$H \cong C_p \times C_p \times C_p \times C_p$$
 or

$$\blacktriangleright H \cong C_p \times C_p \times C_p \times C_p \times C_p?$$

Do we need some extra conditions (like A = B or $A = A^{-1}$ and $B = B^{-1}$) to get $G' \leq N_G(H)$?

Results for the nilpotent case

1. Mazur (2007): If G is a finite group and H is nilpotent, then G is solvable.

Proof: By using CFSG.

Results for the nilpotent case

1. Mazur (2007): If G is a finite group and H is nilpotent, then G is solvable.

Proof: By using CFSG. Remark: It is possible to prove the result without CFSG.

Results for the nilpotent case

1. Mazur (2007): If G is a finite group and H is nilpotent, then G is solvable.

Proof: By using CFSG.
Remark: It is possible to prove the result without CFSG.
2. Niemenmaa (2009): If G is finite, H is nilpotent and G = ⟨A, B⟩, then H is subnormal in G.