
Engel Groups
(a survey)

Gunnar Traustason

Department of Mathematical Sciences

University of Bath



Definition. Let G be a group and a ∈ G.

(a) We say that G is an Engel group if for each pair (x, y) ∈ G×G

there exists an integer n = n(x, y) such that

[y,n x] = 1.

(b) We say that a is a left Engel element if for each x ∈ G there
exists an integer n = n(x) such that

[x,n a] = 1.

(c) We say that G is a right Engel element if for each x ∈ G
there exists an integer n = n(x) such that

[a,n x] = 1.

In (a) we call the number sup {n(x, y) : (x, y) ∈ G × G}, the
Engel degree of G.

If in (a) we have n(x, y) ≤ m for all (x, y) ∈ G × G then we
say that G is an m-Engel group and if in (b)[(c)] we have that
n(x) ≤ m for all x ∈ G then we say that a is a left [right] m-
Engel element.

Observation

(a) G locally nilpotent ⇒ G is an Engel group.
(b) a a left Engel element ⇐ a is in the locally nilpotent radical.
(c) a a right Engel element ⇐ a is in the hyper centre.



. . . Although some useful facts have been brought to
light about Engel groups by K. W. Gruenberg and also
by the attempts on the Burnside problem, the word
problem for En remains unsolved for n > 2. Problems
such as these still seem to present a formidable chal-
lenge to the ingenuity of algebraists. In spite of, or
perhaps because of, their relatively concrete and par-
ticular character, they appear, to me at least, to offer
an amiable alternative to the ever popular pursuit of
abstractions. (P. Hall, 1958)



1) Origin. 2-Engel groups.

Observation (Burnside,1901)

x3 = 1 ⇒ xxy = xyx (or equivalently [y, x, x] = 1)

Structure

[x, y, z] = [y, z, x]

[x, y, z]3 = 1 (Burnside, 1902)

[x, y, z, t] = 1 (Hopkins, 1929)

Problem 1. (a) Let G be a group of which every element com-
mutes with all its endomorphic images. Is G nilpotent of class
at most 2?

(b) Does there exist a finite 2-Engel 3-group of class three such
that AutG = AutcG · InnG where AutcG is the group of central
automorphisms of G?



2) Zorn’s Theorem and some generalisations

Theorem 1 (Zorn, 1936) Every finite Engel group is nilpotent

Theorem 2 (Gruenberg, 1953) Every finitely generated solvable
Engel group is nilpotent

Theorem 3 (Baer, 1957)Every Engel group satisfying max is
nilpotent

Theorem 4 (Suprenenko and Gars̆c̆uk, 1962) Every linear En-
gel group is nilpotent



The analogs to the Burnside problems

b1) The general Burnside problem. Is every finitely gener-
ated periodic group finite?

b2) The Burnside problem. Let n be a given positive in-
teger. Is every finitely generated group of exponent n finite?

b3) The restricted Burnside problem. Let r and n be given
positive integers. Is there a largest finite r-generator group of
exponent n?

e1) The general local nilpotence problem. Is every finitely
generated Engel group nilpotent?

e2) The local nilpotence problem. Let n be a given posi-
tive integer. Is every finitely generated n-Engel group nilpotent?

e3) The restricted local nilpotence problem Let r and n be
given positive integers. Is there a largest nilpotent r-generator
n-Engel group?



Two results on Lie rings

Theorem 1 (Zel’manov, 1991) Let L = 〈a1, . . . , ar〉 be a finitely
generated Lie ring and suppose that there exist positive integers
s, t such that

∑

σ∈Sym(s)

xxσ(1)xσ(2) · · · xσ(s) = 0 (i)

xyt = 0 (ii)

for all x, x1, . . . , xs ∈ L and all Lie products y of the generators
a1, a2, . . . , ar.

Then L is nilpotent.

Theorem 2 (Zel’manov, 1987) Any torsion free n-Engel Lie
ring is nilpotent.



2) Zorn’s Theorem and some generalisations

Theorem 1 (Zorn, 1936) Every finite Engel group is nilpotent

Theorem 2 (Gruenberg, 1953) Every finitely generated solvable
Engel group is nilpotent

Theorem 3 (Baer, 1957)Every Engel group satisfying max is
nilpotent

Theorem 4 (Suprenenko and Gars̆c̆uk, 1962) Every linear En-
gel group is nilpotent

Theorem 5 (Wilson, 1991)Every finitely generated residually
nilpotent n-Engel group is nilpotent.

Problem 2. Is every finitely generated n-Engel group nilpo-
tent?



Theorem 6 (Medvedev, 2003)Every compact Engel group is lo-
cally nilpotent

Theorem 7 (Kim and Rhemtulla, 1991)Every orderable n-Engel
group is nilpotent

Problem 3. Is every right orderable n-Engel group nilpotent?

Remark. True if n = 4 (Longobardi and Maj, 1997)

Theorem 8 (H. Smith, 2002)Every n-Engel group with all sub-
groups subnormal is nilpotent.



3) Structure of n-Engel groups.

Theorem 1 Let G be a finitely generated n-Engel group that
is non-nilpotent. There exists a finitely generated section S of
G that is simple non-abelian.

Locally nilpotent n-Engel groups

Theorem 2 (Burns and Medvedev, 1998)There exist positive
integers m = m(n) and r = r(n) such that for any locally nilpo-
tent n-Engel group we have

γm+1(G)r = {1}.

Theorem 3 (T, Crosby, 2010) There exist positive integers
m = m(n) and r = r(n) such that any locally nilpotent n-Engel
group satisfies the law

[xr, x1, . . . , xm] = 1.



Theorem 4 (Abdollahi and T, 2002) There exists a positive
integer s = s(n) such that every powerful n-Engel p-group is
nilpotent of class at most s.

Theorem 5 (Abdollahi and T, 2002) Let p a prime and let
r = r(p, n) be the integer satisfying pr−1 < n ≤ pr. Let G be a
locally finite n-Engel p-group.

(a) If p is odd, then Gpr

is nilpotent of n-bounded class.
(b) If p = 2 then (G2r

)2 is nilpotent of n-bounded class.



Some structure questions for n-Engel groups

G nilpotent =⇒ G solvable =⇒ G locally nilpotent.

Question 1. Which primes need to be excluded to have nilpo-
tence?
Question 2. Which primes need to be excluded to have solv-
ability?

Theorem 6 (Gruenberg, 1961) Let G be a solvable n-Engel
group with derived length d. If G has no elements of prime
order p < n then G is nilpotent of class at most (n + 1)d−1.

Question 3. When is a locally nilpotent n-Engel group a Fit-
ting group?

Problem 4. Let G be an n-Engel p-group where p > n. Is
G a Fitting group?



3-Engel groups

Theorem 1 (Heineken, 1961) Every 3-Engel group is locally
nilpotent.

Theorem 2 (Heineken, 1961) Let G be a 3-Engel group that
is {2, 5}-free. Then G is nilpotent of class at most 4.

Theorem 3 (L. Kappe, W. Kappe, 1972) Let G be a 3-Engel
group then 〈x〉G is nilpotent of class at most 2 for all x ∈ G.

Theorem 4 (Gupta, 1972) Every 3-Engel 2-group is solvable.

Problem 5. To obtain a normal form theorem for the rela-
tively free 3-Engel group of infinite countable rank.



The local nilpotence problem for 4-Engel groups

Let G = 〈x1, . . . , xr〉 be a r-generated 4-Engel group. Suffices
to show that G is nilpotent when r = 3.

1 〈x, xy〉 is nilpotent. (T, Longobardi and Maj, Vaughan-Lee)
(1995-1997)

2 Every 4-Engel group that is either a 2-group or a 3-group
is locally finite. Further more Gp is contained in the locally
nilpotent radical for any p-group G. [T]

3. Every 4-Engel 5-group is locally finite. (Vaughan-Lee, 1997)

4. 〈x, y〉 is nilpotent (T, 2005)

5. 4-Engel groups are locally nilpotent (Havas, Vaughan-Lee,
2005)



4-Engel groups

Theorem 1 (Havas and Vaughan-Lee, 2005) Every 4-Engel
group is locally nilpotent.

Theorem 2 (T, 1995) Let G be a 4-Engel group that is {2, 3, 5}-
free. Then G is nilpotent of class at most 7.

Theorem 3 (Abdollahi and T, 2002) Every 4-Engel 3-group
is solvable

Theorem 4 (T, 2003) Every 4-Engel group is a Fitting group
of Fitting degree at most 4. Furthermore if G is {2, 5}-free then
the Fitting degree is a most 3

Theorem 5 (Vaughan-Lee, 2007) G is a 4-Engel group if and
only if 〈x〉G is 3-Engel for all x ∈ G.

Problem 6. Let G be a group. Do the right 4-Engel elements
belong to the locally nilpotent radical of G? Do the left 3-Engel
elements belong to the locally nilpotent radical of G?

Problem 7. Describe the structure of 5-Engel groups?



4) Generalisations of Engel groups

A. Generalised Burnside varieties.

A variety of groups V is said to be a strong generalised Burnside
variety if it satisfies the following equivalent properties.

1) For each positive integer r the class of all nilpotent r-
generator groups in V is r-bounded.

2) Every finitely generated group G in V that is residually
nilpotent is nilpotent.

3) The locally nilpotent groups in V form a subvariety.

Theorem 1 (T, 2005) Let V be a variety. The following are
equivalent.

(1) V is a strong generalised Burnside variety.
(2) The groups Cp wr C and C wrCp do not belong to V for any

prime p.

Theorem 2 (Endimioni, 2002) Let V be a variety. The follow-
ing are equivalent.

(1) V is a strong generalised Burnside variety.
(2) There exist positive integers c, e such that all locally

nilpotent groups in V are both in NcB̄e and B̄eNc.



Theorem 3 (Zel’manov, 1993) The variety Bp is finitely based
for every prime p

Proposition (Endimioni, written correspondence) The follow-
ing are equivalent

(1) The variety Bn of all locally nilpotent groups of exponent
n is finitely based for all positive integers n.

(2) The variety En of all locally nilpotent n-Engel groups is
finitely based for all positive integers n.

(3) If a strong generalised Burnside variety V is finitely based
then so is the variety V consisting of all locally nilpotent
groups in V .

Problem 8. Is it true that for every strong generalised Burn-
side variety V that is finitely based, we have that the variety V
of all the locally nilpotent groups in V is also finitely based?

Remark. In particular if all n-Engel groups are locally nilpo-
tent then the answer is yes.



B. Generalised Engel groups

Let G be any group. For a, t ∈ G, let H = H(a, t) = 〈a〉〈t〉
and

A(a, t) = H/[H, H].

Then A(a, t) is an abelian section of G. Let E(a, t) be the ring
of all endomorphisms of A(a, t). Notice that t induces an endo-
morphism on A(a, t) by conjugation.

Definition. Let I £ Z[x]. We say that G is an I-group if

af(t) = 0

in A(a, t) for all a, t ∈ G and for all f ∈ I.

For example any n-Engel group is an Z[x](x− 1)n-group.

If G is any group then the set of polynomials f , such that
af(t) = 0 in A(a, t) for all a, t ∈ G, form an ideal I(G). There
is therefore a unique maximal ideal I such that G is an I-
group. We say that two groups H and G are Z[x]-equivalent
if I(H) = I(G).

Theorem 1 [T, 2005] Let f ∈ Z[x] such that f is neither di-
visible by p nor fp for all primes p. For each positive integer r

there exists a positive integer c(r, f) such that

γc(r,f) = {1}
for any nilpotent r-generator Z[x]f -group in G.



Theorem 2 [T] Let f ∈ Z[x] such that f is neither divisible by
p nor fp for all primes p. There exist positive integers c(f) and
e(f) such that

[Ge(f),c G] = (γc(f)(G))e(f) = {1}
for any nilpotent Z[x]f -group in G


