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We study algebraic structures within the frames of Logical
Geometry.

What is Logical Geometry?
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Classical Algebraic Geometry

f (x1, . . . , xn) = 0,

f (x1, . . . , xn) are elements of the algebra K [x1, . . . , xn].

K [x1, . . . , xn] is the free algebra in the variety Com − K .
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Equational Universal Algebraic Geometry

w(x1, . . . , xn) = w ′(x1, . . . , xn),

w ,w ′ are elements of the free algebra W (x1, . . . , xn) in the
fixed variety of algebras.

Research in this area started with a series of papers by
B. Plotkin, G. Baumslag, O. Kharlampovich, A. Myasnikov,
and V. Remeslennikov.

algebraic geometry over
I groups (free groups, solvable groups, ),
I associative algebras,
I Lie algebras,
I . . . .
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Galois correspondence
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Logical Geometry

Logical Geometry studies solutions of systems of first order
logic formulas "over" equalities w = w ′,
w ,w ′ ∈ W (x1, . . . , xn).

(∃x1(x1 = x32 )
) ∨ (x1x2 = x3

)

We do not use the other predicates (or relations):
(∃x1(x1 > x2)

) ∨ (x1x2 = x3
)
.
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Logical Geometry

I Algebra
I Geometry
I Logic and Model Theory
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Homogeneity
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HHHj

Algebraic Logical<
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Algebraically homogeneous groups

Definition
A group G is called algebraically homogeneous if every
isomorphism between two of its finitely generated subgroups
can be extended up to an automorphism of G.
Let
I F (X ) be a free group, X = {x1, . . . , xn},
I G be a group,
I µ1, µ2 : F (X )→ G be homomorphisms (points in the

affine space G n: µ = (g1, . . . , gn), µ(xi) = gi).

Definition
A group G is algebraically homogeneous if for every two
homomorphisms µ1, µ2 : F (X )→ G whenever Kerµ1 = Kerµ2
then there is an automorphism σ if G such that σ(µ1) = µ2.
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Logically homogeneous groups
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MT -Types

Let
I G be a group,
I µ = (g1, . . . gn) be a point in G n.

Definition
A complete model-theoretical type of a point µ = (g1, . . . , gn)
is the set of all first order logic formulas (in a language L) in
free variables x1, . . . , xn which hold true on the point µ:

tpG (µ) = {u(x1, . . . , xn, y1, . . . ) ∈ L | G |= u(g1, . . . , gn)}.

L = {∧,∨,¬,∃,=, ·, . . . }.
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LG -Types

Definition (B. Plotkin)
A logically-geometrical type of a point µ = (g1, . . . , gn) is the
set of all first order logic formulas in variables x1, . . . , xn (not
necessarily free) which hold true on the point µ.

LKer(µ) = {u(x1, . . . , xn) ∈ L∗ | G |= u(g1, . . . , gn)}.

L∗ = {∧,∨,¬,∃,=, ·, s∗, . . . }.

Elena Aladova Logically and algebraically homogeneous groups



Introduction
Basic notions
Some results

LG -Types

Definition (B. Plotkin)
A logically-geometrical type of a point µ = (g1, . . . , gn) is the
set of all first order logic formulas in variables x1, . . . , xn (not
necessarily free) which hold true on the point µ.

LKer(µ) = {u(x1, . . . , xn) ∈ L∗ | G |= u(g1, . . . , gn)}.

L∗ = {∧,∨,¬,∃,=, ·, s∗, . . . }.

Elena Aladova Logically and algebraically homogeneous groups



Introduction
Basic notions
Some results

Logically homogeneous groups

Recall,

Definition
A group G is algebraically homogeneous if for every two homomorphisms
µ1, µ2 : F (X )→ G whenever Kerµ1 = Kerµ2 then there is an
automorphism σ if G such that σ(µ1) = µ2.

Definition
A group G is called logically homogeneous if for every two
points µ1, µ2 ∈ G n whenever LKer(µ1) = LKer(µ2) then there
exists σ ∈ Aut(G ) such that σ(µ1) = µ2.
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Logically homogeneous groups. Some results

Theorem (C. Perin-R. Sklinos, A. Ould Houcine)
Finitely generated free non-abelian group is logically
homogeneous.

Theorem (G. Zhitomirskii)
Finitely generated free nilpotent groups are logically
homogeneous.

Problem
Is a finitely generated free solvable group logically
homogeneous?
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Weakly homogeneous groups

Definition (G. Zhitomirskii)
A group G is called weakly (algebraically) homogeneous if for
every isomorphism ϕ : H1 → H2 between two of its finitely
generated subgroups H1 and H2, the following condition is
satisfied: if ϕ itself and its inverse map ϕ−1 : H2 → H1 both
can be extended to endomorphisms of G then ϕ can be
extended to an automorphism of G.

Theorem (G. Zhitomirskii)
Every weakly homogeneous finitely generated free group is
logically homogeneous.

Proposition
Free solvable group of rank 2 is not weakly homogeneous.
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