# Logically and algebraically homogeneous groups

Elena Aladova

Bar Ilan University

#### Joint work with B.I. Plotkin<sup>1</sup>, E. Plotkin<sup>2</sup>

<sup>1</sup>Hebrew University of Jerusalem <sup>2</sup>Bar-Ilan University

August 4, 2013

We study algebraic structures within the frames of Logical Geometry.

What is Logical Geometry?

### **Classical Algebraic Geometry**

$$f(x_1,\ldots,x_n)=0,$$

 $f(x_1, \ldots, x_n)$  are elements of the algebra  $K[x_1, \ldots, x_n]$ .  $K[x_1, \ldots, x_n]$  is the free algebra in the variety Com - K.

## Equational Universal Algebraic Geometry

$$w(x_1,\ldots,x_n)=w'(x_1,\ldots,x_n),$$

w, w' are elements of the free algebra  $W(x_1, \ldots, x_n)$  in the fixed variety of algebras.

Research in this area started with a series of papers by B. Plotkin, G. Baumslag, O. Kharlampovich, A. Myasnikov, and V. Remeslennikov.

algebraic geometry over

- groups (free groups, solvable groups, ),
- associative algebras,
- Lie algebras,

## Equational Universal Algebraic Geometry

$$w(x_1,\ldots,x_n)=w'(x_1,\ldots,x_n),$$

w, w' are elements of the free algebra  $W(x_1, \ldots, x_n)$  in the fixed variety of algebras.

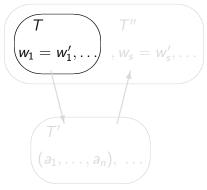
Research in this area started with a series of papers by B. Plotkin, G. Baumslag, O. Kharlampovich, A. Myasnikov, and V. Remeslennikov.

algebraic geometry over

- groups (free groups, solvable groups, ),
- associative algebras,
- Lie algebras,

#### Galois correspondence

Algebra  $W(x_1,\ldots,x_n)$ 



Affine space A<sup>n</sup>

#### Galois correspondence

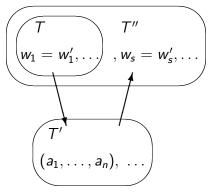
Algebra  $W(x_1,\ldots,x_n)$ 



Affine space A<sup>n</sup>

#### Galois correspondence

Algebra  $W(x_1,\ldots,x_n)$ 



Affine space A<sup>n</sup>

#### Logical Geometry

Logical Geometry studies solutions of systems of first order logic formulas "over" equalities w = w',  $w, w' \in W(x_1, \ldots, x_n)$ .

$$\left(\exists x_1(x_1=x_2^3)\right) \lor \left(x_1x_2=x_3\right)$$

We do not use the other predicates (or relations):

$$(\exists x_1(x_1 > x_2)) \lor (x_1x_2 = x_3).$$

#### Logical Geometry

Logical Geometry studies solutions of systems of first order logic formulas "over" equalities w = w',  $w, w' \in W(x_1, \ldots, x_n)$ .

$$\left(\exists x_1(x_1=x_2^3)\right) \lor \left(x_1x_2=x_3\right)$$

We do not use the other predicates (or relations):

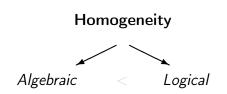
$$(\exists x_1(x_1 > x_2)) \lor (x_1x_2 = x_3).$$

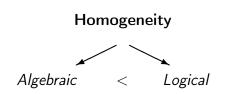
### Logical Geometry

- Algebra
- Geometry
- Logic and Model Theory

#### Homogeneity









# Algebraically homogeneous groups

### Definition

A group G is called algebraically homogeneous if every isomorphism between two of its finitely generated subgroups can be extended up to an automorphism of G.

Let

- F(X) be a free group,  $X = \{x_1, \ldots, x_n\}$ ,
- ▶ *G* be a group,
- ▶  $\mu_1, \mu_2 : F(X) \to G$  be homomorphisms (points in the affine space  $G^n$ :  $\mu = (g_1, \dots, g_n), \ \mu(x_i) = g_i$ ).

### Definition

A group G is algebraically homogeneous if for every two homomorphisms  $\mu_1, \mu_2 : F(X) \to G$  whenever  $Ker \mu_1 = Ker \mu_2$ then there is an automorphism  $\sigma$  if G such that  $\sigma(\mu_1) = \mu_2$ .

# Algebraically homogeneous groups

## Definition

A group G is called algebraically homogeneous if every isomorphism between two of its finitely generated subgroups can be extended up to an automorphism of G.

Let

- F(X) be a free group,  $X = \{x_1, \ldots, x_n\}$ ,
- G be a group,
- ▶  $\mu_1, \mu_2 : F(X) \to G$  be homomorphisms (points in the affine space  $G^n$ :  $\mu = (g_1, \ldots, g_n), \ \mu(x_i) = g_i$ ).

## Definition

A group G is algebraically homogeneous if for every two homomorphisms  $\mu_1, \mu_2 : F(X) \to G$  whenever  $Ker \mu_1 = Ker \mu_2$ then there is an automorphism  $\sigma$  if G such that  $\sigma(\mu_1) = \mu_2$ .

# Algebraically homogeneous groups

## Definition

A group G is called algebraically homogeneous if every isomorphism between two of its finitely generated subgroups can be extended up to an automorphism of G.

Let

- F(X) be a free group,  $X = \{x_1, \ldots, x_n\}$ ,
- G be a group,
- ▶  $\mu_1, \mu_2 : F(X) \to G$  be homomorphisms (points in the affine space  $G^n$ :  $\mu = (g_1, \ldots, g_n), \ \mu(x_i) = g_i$ ).

### Definition

A group G is algebraically homogeneous if for every two homomorphisms  $\mu_1, \mu_2 : F(X) \to G$  whenever  $Ker\mu_1 = Ker\mu_2$ then there is an automorphism  $\sigma$  if G such that  $\sigma(\mu_1) = \mu_2$ .

#### Logically homogeneous groups

Let

- ▶ *G* be a group,
- $\mu = (g_1, \dots g_n)$  be a point in  $G^n$ .

#### Definition

A complete model-theoretical type of a point  $\mu = (g_1, \dots, g_n)$ is the set of all first order logic formulas (in a language  $\mathbb{L}$ ) in free variables  $x_1, \dots, x_n$  which hold true on the point  $\mu$ :

$$tp^{G}(\mu) = \{u(x_1,\ldots,x_n,y_1,\ldots) \in \mathbb{L} \mid G \models u(g_1,\ldots,g_n)\}.$$

$$\mathbb{L} = \{ \land, \lor, \neg, \exists, =, \cdot, \dots \}.$$

Let

- ▶ G be a group,
- $\mu = (g_1, \dots g_n)$  be a point in  $G^n$ .

#### Definition

A complete model-theoretical type of a point  $\mu = (g_1, \ldots, g_n)$ is the set of all first order logic formulas (in a language  $\mathbb{L}$ ) in free variables  $x_1, \ldots, x_n$  which hold true on the point  $\mu$ :

$$tp^{G}(\mu) = \{u(x_1,\ldots,x_n,y_1,\ldots) \in \mathbb{L} \mid G \models u(g_1,\ldots,g_n)\}.$$

$$\mathbb{L} = \{ \land, \lor, \neg, \exists, =, \cdot, \dots \}.$$

Let

- ▶ G be a group,
- $\mu = (g_1, \dots g_n)$  be a point in  $G^n$ .

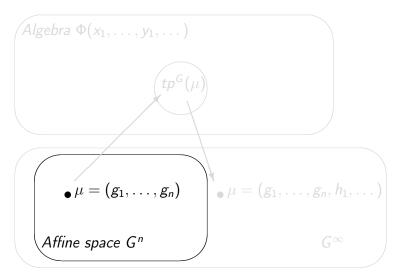
#### Definition

A complete model-theoretical type of a point  $\mu = (g_1, \ldots, g_n)$ is the set of all first order logic formulas (in a language  $\mathbb{L}$ ) in free variables  $x_1, \ldots, x_n$  which hold true on the point  $\mu$ :

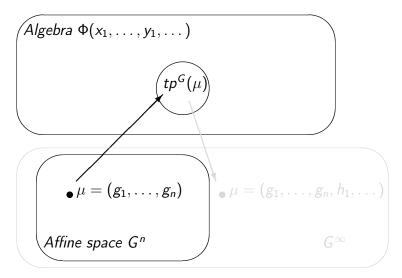
$$tp^{G}(\mu) = \{u(x_1,\ldots,x_n,y_1,\ldots) \in \mathbb{L} \mid G \models u(g_1,\ldots,g_n)\}.$$

$$\mathbb{L} = \{ \land, \lor, \neg, \exists, =, \cdot, \dots \}.$$

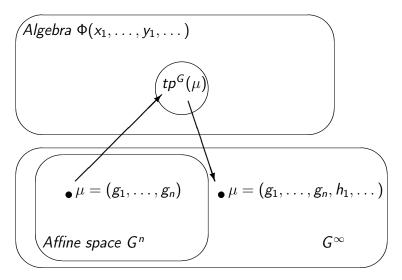
MT-Types



MT-Types



MT-Types



## LG-Types

#### Definition (B. Plotkin)

A logically-geometrical type of a point  $\mu = (g_1, \ldots, g_n)$  is the set of all first order logic formulas in variables  $x_1, \ldots, x_n$  (not necessarily free) which hold true on the point  $\mu$ .

$$LKer(\mu) = \{u(x_1, \ldots, x_n) \in \mathbb{L}^* \mid G \models u(g_1, \ldots, g_n)\}.$$

$$\mathbb{L}^* = \{ \land, \lor, \neg, \exists, =, \cdot, s_*, \dots \}.$$

## LG-Types

#### Definition (B. Plotkin)

A logically-geometrical type of a point  $\mu = (g_1, \ldots, g_n)$  is the set of all first order logic formulas in variables  $x_1, \ldots, x_n$  (not necessarily free) which hold true on the point  $\mu$ .

$$LKer(\mu) = \{u(x_1, \ldots, x_n) \in \mathbb{L}^* \mid G \models u(g_1, \ldots, g_n)\}.$$

$$\mathbb{L}^* = \{ \land, \lor, \neg, \exists, =, \cdot, s_*, \dots \}.$$

### Logically homogeneous groups

Recall,

#### Definition

A group G is algebraically homogeneous if for every two homomorphisms  $\mu_1, \mu_2 : F(X) \to G$  whenever  $Ker\mu_1 = Ker\mu_2$  then there is an automorphism  $\sigma$  if G such that  $\sigma(\mu_1) = \mu_2$ .

#### Definition

A group G is called logically homogeneous if for every two points  $\mu_1, \mu_2 \in G^n$  whenever  $LKer(\mu_1) = LKer(\mu_2)$  then there exists  $\sigma \in Aut(G)$  such that  $\sigma(\mu_1) = \mu_2$ .

### Logically homogeneous groups

Recall,

#### Definition

A group G is algebraically homogeneous if for every two homomorphisms  $\mu_1, \mu_2 : F(X) \to G$  whenever  $Ker\mu_1 = Ker\mu_2$  then there is an automorphism  $\sigma$  if G such that  $\sigma(\mu_1) = \mu_2$ .

#### Definition

A group G is called logically homogeneous if for every two points  $\mu_1, \mu_2 \in G^n$  whenever  $LKer(\mu_1) = LKer(\mu_2)$  then there exists  $\sigma \in Aut(G)$  such that  $\sigma(\mu_1) = \mu_2$ .

# Logically homogeneous groups. Some results

# Theorem (C. Perin-R. Sklinos, A. Ould Houcine) Finitely generated free non-abelian group is logically homogeneous.

# Theorem (G. Zhitomirskii)

Finitely generated free nilpotent groups are logically homogeneous.

#### Problem

*Is a finitely generated free solvable group logically homogeneous?* 

# Logically homogeneous groups. Some results

# Theorem (C. Perin-R. Sklinos, A. Ould Houcine) Finitely generated free non-abelian group is logically homogeneous.

# Theorem (G. Zhitomirskii)

Finitely generated free nilpotent groups are logically homogeneous.

#### Problem

*Is a finitely generated free solvable group logically homogeneous?* 

## Weakly homogeneous groups

# Definition (G. Zhitomirskii)

A group G is called weakly (algebraically) homogeneous if for every isomorphism  $\varphi : H_1 \to H_2$  between two of its finitely generated subgroups  $H_1$  and  $H_2$ , the following condition is satisfied: if  $\varphi$  itself and its inverse map  $\varphi^{-1} : H_2 \to H_1$  both can be extended to endomorphisms of G then  $\varphi$  can be extended to an automorphism of G.

# Theorem (G. Zhitomirskii)

Every weakly homogeneous finitely generated free group is logically homogeneous.

### Proposition

Free solvable group of rank 2 is not weakly homogeneous.

## Weakly homogeneous groups

# Definition (G. Zhitomirskii)

A group G is called weakly (algebraically) homogeneous if for every isomorphism  $\varphi : H_1 \to H_2$  between two of its finitely generated subgroups  $H_1$  and  $H_2$ , the following condition is satisfied: if  $\varphi$  itself and its inverse map  $\varphi^{-1} : H_2 \to H_1$  both can be extended to endomorphisms of G then  $\varphi$  can be extended to an automorphism of G.

# Theorem (G. Zhitomirskii)

Every weakly homogeneous finitely generated free group is logically homogeneous.

### Proposition

Free solvable group of rank 2 is not weakly homogeneous.

## Weakly homogeneous groups

# Definition (G. Zhitomirskii)

A group G is called weakly (algebraically) homogeneous if for every isomorphism  $\varphi : H_1 \to H_2$  between two of its finitely generated subgroups  $H_1$  and  $H_2$ , the following condition is satisfied: if  $\varphi$  itself and its inverse map  $\varphi^{-1} : H_2 \to H_1$  both can be extended to endomorphisms of G then  $\varphi$  can be extended to an automorphism of G.

# Theorem (G. Zhitomirskii)

Every weakly homogeneous finitely generated free group is logically homogeneous.

#### Proposition

Free solvable group of rank 2 is not weakly homogeneous.