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(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1960s)

(ZC1) For u € V(ZG) of finite order there exist x € U(QG) and
g € G such that x tux = g.

Prime graph question (W. Kimmerle, 2006)

(PQ) For u € V(ZG) of order pqg, p and g two different rational
primes, does there exists g € G such that u and g have the same
order?

Clearly: (ZC1) = (PQ).



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:

v As ~ PSL(2,5) (Luthar, Passi, 1989)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:

v As ~ PSL(2,5) (Luthar, Passi, 1989)
v Ss (Luthar, Trama 1991)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:

v As ~ PSL(2,5) (Luthar, Passi, 1989)
v Ss (Luthar, Trama 1991)
v SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:

v As ~ PSL(2,5) (Luthar, Passi, 1989)
v Ss (Luthar, Trama 1991)
v SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)
v PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:

v As ~ PSL(2,5) (Luthar, Passi, 1989
v Ss (Luthar, Trama 1991
v SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997

v PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004
v A ~ PSL(2,9) (Hertweck 2007



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:

v As ~ PSL(2,5) (Luthar, Passi, 1989)
v Ss (Luthar, Trama 1991)
v SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)
v PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004)
v A ~ PSL(2,9) (Hertweck 2007)
v~ Central extensions of Ss (Bovdi-Hertweck 2008)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis' talk) and for the following groups:

As ~ PSL(2,5) (Luthar, Passi, 1989
Ss (Luthar, Trama 1991
SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997

PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004
Ae ~ PSL(2,9) (Hertweck 2007
Central extensions of Sg (Bovdi-Hertweck 2008
PSL(2,8) , PSL(2,17)  (Gildea; Kimmerle, Konovalov 2012
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Known reults (PQ)

(PQ) has a positive answer for

v Frobenius groups (Kimmerle, 2006)
v solvable groups (Hofert, Kimmerle, 2006)
v PSL(2, p), p a rational prime (Hertweck 2007)

v certain sporadic simple groups
(Bovdi, Konovalov, et. al. 2005 — )



Theorem (Kimmerle, Konovalov 2012)

(PQ) holds for all groups, whose order is divisible by at most three
primes, if there are no units of order 6 in V(ZPGL(2,9)) and in
V(ZMyy).
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Results

Theorem (Béchle, Margolis 2013)

There is no unit of order 6 in V(ZPGL(2,9)) and in V(ZMhy).

If the order of a group is devisible by at most three different
rational primes, then (PQ) holds for this groups.

Theorem (Béchle, Margolis 2013)
(ZC1) holds for PSL(2,19) and PSL(2,23).
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Let x € G, x© its conjugacy class in G, and

u= ) ugg € RG.Then
geG

ex(u) = Z Ug

g€exC

is called the partial augmentation of u at the conjugacy class of x.

Lemma (Marciniak, Ritter, Sehgal, Weiss 1987;

Luthar, Passi 1989)

Let u € V(ZG) be of finite order. Then u is conjugate to an
element of G in QG < e4(u) >0 for every g € G.
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» F splitting field for G with char(F){ n

» x a (Brauer) character of F-representation D of G
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» £ € F corresponding n-th root of unity




Theorem (Luthar, Passi, 1989; Hertweck, 2004)
» u € ZG torsion unit of order n
» F splitting field for G with char(F){ n

» x a (Brauer) character of F-representation D of G

» ( € C primitive n-th root of unity
» £ € F corresponding n-th root of unity

Multiplicity of ¢ as an eigenvalue of D(u) is given by

1 1
- > Traea o)) + - > Troweye(x(x)¢ ex(u)
d|n 58

d#1
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x|5 1 2 -1

Assume: u € V(ZAg) has order 6, u* is rationally conjugate to an
element of 3b and w3 is rationally conjugate to an element of 2a,

e2a(U) = =2, e32(u) = 2, e3p(u) = 1.
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Example G = Ag

|1a 2a 3a 3b 4a 5a 5b
x| 5 1 2 -1

Assume: u € V(ZAg) has order 6, u* is rationally conjugate to an
element of 3b and w3 is rationally conjugate to an element of 2a,
e2a(U) = =2, e32(u) = 2, e3p(u) = 1.

If D affords x and ¢ € C is a primitive 3rd root of unity,

D(u®) ~ diag(1,1,1,-1,-1), D(u*) ~ diag(1,¢, ¢3¢, ¢?)
Hence, as
x(u) = e2a()x(2a) + €3a(u)x(3a) + 35(u)x(3b) = 1,
there is only the possibility

D(u) ~ diag(1,¢, 2, —¢, —¢?).
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More notation

>

u € V(ZG) a torsion unit

p a rational prime dividing the order of u

v

v

D an ordinary representation of G

v

K the p-adic completation of a number field admitting D with
minimal ramification index over Q,

v

R the ring of interges of K with maximal ideal P containing p

L an RG-lattice affording D
k = R/P, the quotient field, and ~ the reduction mod P

v

v



Proposition

Let o(u) = p?m, pt m. Let ¢ € R be a primitive m-th root of
unity. Let A; be tuples of p?-th roots of unity s.t. the eigenvalues
of D(u) are (A1 UC?Ay U ...U(C™A,,. Then, as R{u)-lattice,

L~ M & ...® M, where rankg(M;) = |A;| = dimx(M;) and M;
has only one composition factor up to isomorphism.




Proposition

Let o(u) = p?m, pt m. Let ¢ € R be a primitive m-th root of
unity. Let A; be tuples of p?-th roots of unity s.t. the eigenvalues
of D(u) are (A1 UC?Ay U ...U(C™A,,. Then, as R{u)-lattice,

L~ M & ...® M, where rankg(M;) = |A;| = dimx(M;) and M;
has only one composition factor up to isomorphism.

Easiest case: K/Qp unramified, o(u) = p.

Precisely three indecomposable R(u)-lattices: R, I(RC,), RC, of
rank 1, p — 1, p, respectively, with corresponding eigenvalues {1},
{€,...,6P71} {1,€,...,6P7 1}, where € is a primitive p-th root of
unity. The reduction of any such lattice modulo P stays
indecomposable.
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Application: (ZC1) for G = PSL(2,19)

After applying HelLP, only one case is left, namely:
elements u € V(ZG) of order 10 having partial augmentations

(€5a(U), 85b(u), 510a(u)) = (1, —1, 1)

Let ¢ be a 5th primitive root of unity, Dig, D19 (certain) ordinary
representations of G, Dig can be realized over Zs[¢ + (7], Dig
can be realized over Zs. Let L1g and Lig9 be corresponding
RG-lattices (note that the R's are different), then L1g < L19 and
L19/Lyg is a trivial kG-module.
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Application: (ZC1) for G = PSL(2,19)

Using partial augmentations:

5th roots of unity

- 17 _Cv _Cza _437 _C4a _17 _C7 _C4a _Cv _64)
5th roots of unity
Dig(u) ~ diag(”~ :
- 17 _Ca _C27 _<37 _C47 _17 _C7 _C27 _C37 _€4)
Z]_g ~ M118 D Ml_gl, Z]_g ~ Mllg D Ml_gl

M}: trivial composition factors as k(ii)-module
M1 non-trivial composition factors as k(@)-module

Mgt € {2(k)— @ 21(kCs)—, (k)— @ I(kCs)— @ (kCs)—, 2(kCs)_}.
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As Ly9/L1g is a trivial kG-module, we have I\/Il_g1 ~ Ml_gl. But this
is impossible as the composition factors of M1_81 as k(u)-module
can't coincide with those of M1_91 we just calctulated (using results
of Gudivok (1965) and Jacobinski (1967)).
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Application: (ZC1) for G = PSL(2,19)

As Ly9/L1g is a trivial kG-module, we have I\/Il_g1 ~ Ml_gl. But this
is impossible as the composition factors of M1_81 as k(u)-module
can't coincide with those of M1_91 we just calctulated (using results
of Gudivok (1965) and Jacobinski (1967)).

Hence, there is no such unit in question in V(ZPSL(2,19)).

(ZC1) holds for PSL(2,19)
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