

Vrije Universiteit Brussel

RATIONAL CONJUGACY OF TORSION UNITS IN INTEGRAL GROUP RINGS OF NON-SOLVABLE GROUPS

Andreas Bächle and Leo Margolis

Vrije Universiteit Brussel, University of Stuttgart

Groups St Andrews July 4th - July 10th, 2013

G finite group

- G finite group
- *R* commutative ring with identity element 1

- G finite group
- *R* commutative ring with identity element 1
- *RG* group ring of *G* with coefficients in *R*

- *G* finite group
- *R* commutative ring with identity element 1
- RG group ring of G with coefficients in R
- \mathbb{Q}_p the *p*-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p

- G finite group
- *R* commutative ring with identity element 1
- RG group ring of G with coefficients in R
- \mathbb{Q}_p the *p*-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p

$$\varepsilon$$
 augemtation map of *RG*, i.e. $\varepsilon \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} r_g$.

- G finite group
- *R* commutative ring with identity element 1
- RG group ring of G with coefficients in R
- \mathbb{Q}_p the *p*-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p

$$\varepsilon$$
 augemtation map of RG , i.e. $\varepsilon \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} r_g$.
U(RG) group of units of RG

- G finite group
- *R* commutative ring with identity element 1
- RG group ring of G with coefficients in R
- \mathbb{Q}_p the *p*-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p

$$\varepsilon$$
 augemtation map of *RG*, i.e. $\varepsilon \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} r_g$.

1

\

- U(RG) group of units of RG
- V(*RG*) group of units of *RG* of augmentation 1 aka normalized units.

- G finite group
- *R* commutative ring with identity element 1
- RG group ring of G with coefficients in R
- \mathbb{Q}_p the *p*-adic number field, \mathbb{Z}_p ring of integers of \mathbb{Q}_p

$$\varepsilon$$
 augemtation map of *RG*, i.e. $\varepsilon \left(\sum_{g \in G} r_g g\right) = \sum_{g \in G} r_g$.

1

\

- U(RG) group of units of RG
- V(*RG*) group of units of *RG* of augmentation 1 aka normalized units.

 $\mathsf{U}(RG) = R^{\times} \cdot \mathsf{V}(RG)$

(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1960s)

(ZC1) For $u \in V(\mathbb{Z}G)$ of finite order there exist $x \in U(\mathbb{Q}G)$ and $g \in G$ such that $x^{-1}ux = g$.

(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1960s)

(ZC1) For $u \in V(\mathbb{Z}G)$ of finite order there exist $x \in U(\mathbb{Q}G)$ and $g \in G$ such that $x^{-1}ux = g$.

Prime graph question (W. Kimmerle, 2006)

(PQ) For $u \in V(\mathbb{Z}G)$ of order pq, p and q two different rational primes, does there exists $g \in G$ such that u and g have the same order?

(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1960s)

(ZC1) For $u \in V(\mathbb{Z}G)$ of finite order there exist $x \in U(\mathbb{Q}G)$ and $g \in G$ such that $x^{-1}ux = g$.

Prime graph question (W. Kimmerle, 2006)

(PQ) For $u \in V(\mathbb{Z}G)$ of order pq, p and q two different rational primes, does there exists $g \in G$ such that u and g have the same order?

Clearly: $(ZC1) \Rightarrow (PQ)$.

(ZC1) has been verified for *certain classes of solvable groups* (cf. Leo Margolis' talk) and for the following groups:

 $\checkmark A_5 \simeq \mathsf{PSL}(2,5) \tag{Luthar, Passi, 1989}$

(ZC1) has been verified for *certain classes of solvable groups* (cf. Leo Margolis' talk) and for the following groups:

 $\label{eq:stars} \begin{array}{ll} \checkmark & \mathsf{A}_5 \simeq \mathsf{PSL}(2,5) & (Luthar, \,\mathsf{Passi},\, 1989) \\ \checkmark & \mathsf{S}_5 & (Luthar, \,\mathsf{Trama}\,\, 1991) \end{array}$

- ✓ $A_5 \simeq PSL(2,5)$ (Luthar, Passi, 1989)
- ✓ S₅ (Luthar, Trama 1991)
- ✓ SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)

- ✓ $A_5 \simeq PSL(2,5)$ (Luthar, Passi, 1989)
- ✓ S₅ (Luthar, Trama 1991)
- ✓ SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)
- ✓ PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004)

- \checkmark A₅ ≃ PSL(2,5) (Luthar, Passi, 1989) \checkmark S₅ (Luthar, Trama 1991)
- ✓ S₅ (Luthar, Trama 1991)
- ✓ SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)
- ✓ PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004)
- ✓ $A_6 \simeq \mathsf{PSL}(2,9)$ (Hertweck 2007)

(ZC1) has been verified for *certain classes of solvable groups* (cf. Leo Margolis' talk) and for the following groups:

- $\checkmark \ \ \mathsf{A}_5\simeq\mathsf{PSL}(2,5) \tag{Luthar, Passi, 1989}$
- ✓ S₅ (Luthar, Trama 1991)
- ✓ SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)
- ✓ PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004)
- $\checkmark \ \ \mathsf{A}_6\simeq\mathsf{PSL}(2,9) \tag{Hertweck 2007}$
- $\checkmark\,$ Central extensions of S_5 $\,$

(Bovdi-Hertweck 2008)

- $\checkmark A_5 \simeq \mathsf{PSL}(2,5) \tag{Luthar, Passi, 1989}$
- ✓ S₅ (Luthar, Trama 1991)
- ✓ SL(2,5) (Dokuchaev, Juriaans, Polcino Milies 1997)
- ✓ PSL(2,7), PSL(2,11), PSL(2,13) (Hertweck 2004)
- $\checkmark \ \ \mathsf{A}_6\simeq\mathsf{PSL}(2,9) \tag{Hertweck 2007}$
- \checkmark Central extensions of S5 (Bovdi-Hertweck 2008)
- ✓ PSL(2,8) , PSL(2,17) (Gildea; Kimmerle, Konovalov 2012)

(PQ) has a positive answer for

(PQ) has a positive answer for

✓ Frobenius groups

(Kimmerle, 2006)

Known reults (PQ)

(PQ) has a positive answer for

- ✓ Frobenius groups
- ✓ solvable groups

(Kimmerle, 2006) (Höfert, Kimmerle, 2006)

Known reults (PQ)

(PQ) has a positive answer for

- ✓ Frobenius groups
- ✓ solvable groups
- ✓ PSL(2, p), p a rational prime

(Kimmerle, 2006) (Höfert, Kimmerle, 2006) (Hertweck 2007)

Known reults (PQ)

(PQ) has a positive answer for

- ✓ Frobenius groups
- ✓ solvable groups
- ✓ PSL(2, p), p a rational prime
- ✓ certain sporadic simple groups

(Bovdi, Konovalov, et. al. 2005 –)

- (Kimmerle, 2006) (Höfert, Kimmerle, 2006)
 - (Hertweck 2007)

Theorem (Kimmerle, Konovalov 2012)

(PQ) holds for all groups, whose order is divisible by at most three primes, if there are no units of order 6 in V(\mathbb{Z} PGL(2,9)) and in V($\mathbb{Z}M_{10}$).

Theorem (Bächle, Margolis 2013)

There is no unit of order 6 in V(\mathbb{Z} PGL(2,9)) and in V($\mathbb{Z}M_{10}$).

Theorem (Bächle, Margolis 2013)

There is no unit of order 6 in V(\mathbb{Z} PGL(2,9)) and in V($\mathbb{Z}M_{10}$).

Corollary

If the order of a group is devisible by at most three different rational primes, then (PQ) holds for this groups.

Theorem (Bächle, Margolis 2013)

There is no unit of order 6 in V(\mathbb{Z} PGL(2,9)) and in V($\mathbb{Z}M_{10}$).

Corollary

If the order of a group is devisible by at most three different rational primes, then (PQ) holds for this groups.

Theorem (Bächle, Margolis 2013)

(**ZC1**) holds for PSL(2, 19) and PSL(2, 23).

HeLP 1

Let $x \in G$, x^G its conjugacy class in G, and $u = \sum_{g \in G} u_g g \in RG.$

HeLP 1

Let
$$x \in G$$
, x^G its conjugacy class in G , and
 $u = \sum_{g \in G} u_g g \in RG$. Then

$$\varepsilon_x(u) = \sum_{g \in x^G} u_g$$

is called the *partial augmentation of u at the conjugacy class of x*.

HeLP 1

Let
$$x \in G$$
, x^G its conjugacy class in G , and
 $u = \sum_{g \in G} u_g g \in RG$. Then

$$\varepsilon_{x}(u) = \sum_{g \in x^{G}} u_{g}$$

is called the *partial augmentation of u at the conjugacy class of x*.

Lemma (Marciniak, Ritter, Sehgal, Weiss 1987;
Luthar, Passi 1989)
Let
$$u \in V(\mathbb{Z}G)$$
 be of finite order. Then u is conjugate to an
element of G in $\mathbb{Q}G \Leftrightarrow \varepsilon_g(u) \ge 0$ for every $g \in G$.

Theorem (Luthar, Passi, 1989; Hertweck, 2004)

- $u \in \mathbb{Z}G$ torsion unit of order n
- F splitting field for G with $char(F) \nmid n$
- χ a (Brauer) character of F-representation D of G
- $\zeta \in \mathbb{C}$ primitive n-th root of unity
- $\xi \in F$ corresponding *n*-th root of unity

Theorem (Luthar, Passi, 1989; Hertweck, 2004)

- $u \in \mathbb{Z}G$ torsion unit of order n
- F splitting field for G with $char(F) \nmid n$
- χ a (Brauer) character of F-representation D of G
- $\zeta \in \mathbb{C}$ primitive n-th root of unity
- $\xi \in F$ corresponding *n*-th root of unity

Multiplicity of ξ^{ℓ} as an eigenvalue of D(u) is given by

$$\frac{1}{n} \sum_{\substack{d|n\\d\neq 1}} \operatorname{Tr}_{\mathbb{Q}(\zeta^d)/\mathbb{Q}}(\chi(u^d)\zeta^{-d\ell}) + \frac{1}{n} \sum_{x^G} \operatorname{Tr}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\chi(x)\zeta^{-\ell})\varepsilon_x(u)$$

Example $G = A_6$

Assume: $u \in V(\mathbb{Z}A_6)$ has order 6, u^4 is rationally conjugate to an element of 3b and u^3 is rationally conjugate to an element of 2a, $\varepsilon_{2a}(u) = -2$, $\varepsilon_{3a}(u) = 2$, $\varepsilon_{3b}(u) = 1$.

Example $G = A_6$

Assume: $u \in V(\mathbb{Z}A_6)$ has order 6, u^4 is rationally conjugate to an element of 3b and u^3 is rationally conjugate to an element of 2a, $\varepsilon_{2a}(u) = -2$, $\varepsilon_{3a}(u) = 2$, $\varepsilon_{3b}(u) = 1$. If D affords χ and $\zeta \in \mathbb{C}$ is a primitive 3rd root of unity, $D(u^3) \sim \text{diag}(1, 1, 1, -1, -1), \quad D(u^4) \sim \text{diag}(1, \zeta, \zeta^2, \zeta, \zeta^2)$

Example $G = A_6$

Assume: $u \in V(\mathbb{Z}A_6)$ has order 6, u^4 is rationally conjugate to an element of 3b and u^3 is rationally conjugate to an element of 2a, $\varepsilon_{2a}(u) = -2$, $\varepsilon_{3a}(u) = 2$, $\varepsilon_{3b}(u) = 1$. If D affords χ and $\zeta \in \mathbb{C}$ is a primitive 3rd root of unity,

$$D(u^3) \sim \operatorname{diag}(1, 1, 1, -1, -1), \quad D(u^4) \sim \operatorname{diag}(1, \zeta, \zeta^2, \zeta, \zeta^2)$$

Hence, as

$$\chi(u) = \varepsilon_{2a}(u)\chi(2a) + \varepsilon_{3a}(u)\chi(3a) + \varepsilon_{3b}(u)\chi(3b) = 1,$$

there is only the possibility

$$D(u) \sim \operatorname{diag}(1, \zeta, \zeta^2, -\zeta, -\zeta^2).$$

More notation

- ▶ $u \in V(\mathbb{Z}G)$ a torsion unit
- p a rational prime dividing the order of u
- D an ordinary representation of G

More notation

- $u \in V(\mathbb{Z}G)$ a torsion unit
- p a rational prime dividing the order of u
- ► D an ordinary representation of G
- ► K the p-adic completation of a number field admitting D with minimal ramification index over Q_p
- R the ring of interges of K with maximal ideal P containing p
- L an RG-lattice affording D
- ▶ k = R/P, the quotient field, and ⁻ the reduction mod P

Proposition

Let $o(u) = p^a m$, $p \nmid m$. Let $\zeta \in R$ be a primitive m-th root of unity. Let A_j be tuples of p^a -th roots of unity s.t. the eigenvalues of D(u) are $\zeta A_1 \cup \zeta^2 A_2 \cup ... \cup \zeta^m A_m$. Then, as $R\langle u \rangle$ -lattice, $L \simeq M_1 \oplus ... \oplus M_m$ where $\operatorname{rank}_R(M_j) = |A_j| = \dim_k(\overline{M}_j)$ and \overline{M}_j has only one composition factor up to isomorphism.

Proposition

Let $o(u) = p^a m$, $p \nmid m$. Let $\zeta \in R$ be a primitive m-th root of unity. Let A_j be tuples of p^a -th roots of unity s.t. the eigenvalues of D(u) are $\zeta A_1 \cup \zeta^2 A_2 \cup ... \cup \zeta^m A_m$. Then, as $R\langle u \rangle$ -lattice, $L \simeq M_1 \oplus ... \oplus M_m$ where $\operatorname{rank}_R(M_j) = |A_j| = \dim_k(\overline{M}_j)$ and \overline{M}_j has only one composition factor up to isomorphism.

Easiest case: K/\mathbb{Q}_p unramified, o(u) = p. Precisely three indecomposable $R\langle u \rangle$ -lattices: R, $I(RC_p)$, RC_p of rank 1, p - 1, p, respectively, with corresponding eigenvalues {1}, $\{\xi, ..., \xi^{p-1}\}$, $\{1, \xi, ..., \xi^{p-1}\}$, where ξ is a primitive p-th root of unity. The reduction of any such lattice modulo P stays indecomposable.

After applying HeLP, only one case is left, namely: elements $u \in V(\mathbb{Z}G)$ of order 10 having partial augmentations

$$(\varepsilon_{5a}(u), \varepsilon_{5b}(u), \varepsilon_{10a}(u)) = (1, -1, 1).$$

After applying HeLP, only one case is left, namely: elements $u \in V(\mathbb{Z}G)$ of order 10 having partial augmentations

$$(\varepsilon_{5a}(u), \varepsilon_{5b}(u), \varepsilon_{10a}(u)) = (1, -1, 1).$$

Let ζ be a 5th primitive root of unity, D_{18} , D_{19} (certain) ordinary representations of G, D_{18} can be realized over $\mathbb{Z}_5[\zeta + \zeta^{-1}]$, D_{19} can be realized over \mathbb{Z}_5 . Let L_{18} and L_{19} be corresponding RG-lattices (note that the R's are different), then $\overline{L}_{18} \leq \overline{L}_{19}$ and $\overline{L}_{19}/\overline{L}_{18}$ is a trivial kG-module.

Using partial augmentations:

$$D_{18}(u) \sim \text{diag}(\underbrace{,}_{-1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^4, -\zeta, -\zeta^4}_{\text{5th roots of unity}}, U_{19}(u) \sim \text{diag}(\underbrace{,}_{-1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4}_{\text{1}, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4})$$

Using partial augmentations:

$$D_{18}(u) \sim \text{diag}(\overbrace{,}^{5\text{th roots of unity}}, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^4, -\zeta, -\zeta^4)$$

$$D_{19}(u) \sim \text{diag}(\overbrace{,}^{-1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4)}, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4)$$

$$\bar{L}_{18} \simeq M_{18}^1 \oplus M_{18}^{-1}, \quad \bar{L}_{19} \simeq M_{19}^1 \oplus M_{19}^{-1}$$

 M_*^1 : trivial composition factors as $k\langle \bar{u} \rangle$ -module M_*^{-1} : non-trivial composition factors as $k\langle \bar{u} \rangle$ -module

Using partial augmentations:

$$\begin{array}{c} \underbrace{ \begin{array}{c} 5 \text{th roots of unity} \\ D_{18}(u) \sim \text{diag}(\overbrace{}^{}, \\ & -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^4, -\zeta, -\zeta^4) \\ \underbrace{ \begin{array}{c} 5 \text{th roots of unity} \\ \end{array}}_{5 \text{th roots of unity}} \\ D_{19}(u) \sim \text{diag}(\overbrace{}^{}, \\ & -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4, -1, -\zeta, -\zeta^2, -\zeta^3, -\zeta^4) \\ \hline \\ \overline{L}_{18} \simeq M_{18}^1 \oplus M_{18}^{-1}, \quad \overline{L}_{19} \simeq M_{19}^1 \oplus M_{19}^{-1} \\ M_*^1: \text{ trivial composition factors as } k\langle \overline{u} \rangle \text{-module} \\ M_*^{-1}: \text{ non-trivial composition factors as } k\langle \overline{u} \rangle \text{-module} \\ M_{19}^{-1} \in \{2(k)_- \oplus 2I(kC_5)_-, \ (k)_- \oplus I(kC_5)_- \oplus (kC_5)_-, \ 2(kC_5)_-\}. \end{array}$$

As $\bar{L}_{19}/\bar{L}_{18}$ is a trivial kG-module, we have $M_{19}^{-1} \simeq M_{18}^{-1}$. But this is impossible as the composition factors of M_{18}^{-1} as $k\langle \bar{u} \rangle$ -module can't coincide with those of M_{19}^{-1} we just calctulated (using results of Gudivok (1965) and Jacobinski (1967)).

As $\bar{L}_{19}/\bar{L}_{18}$ is a trivial kG-module, we have $M_{19}^{-1} \simeq M_{18}^{-1}$. But this is impossible as the composition factors of M_{18}^{-1} as $k\langle \bar{u} \rangle$ -module can't coincide with those of M_{19}^{-1} we just calctulated (using results of Gudivok (1965) and Jacobinski (1967)).

Hence, there is no such unit in question in $V(\mathbb{Z}PSL(2,19))$.

As $\bar{L}_{19}/\bar{L}_{18}$ is a trivial kG-module, we have $M_{19}^{-1} \simeq M_{18}^{-1}$. But this is impossible as the composition factors of M_{18}^{-1} as $k\langle \bar{u} \rangle$ -module can't coincide with those of M_{19}^{-1} we just calctulated (using results of Gudivok (1965) and Jacobinski (1967)).

Hence, there is no such unit in question in $V(\mathbb{Z}PSL(2,19))$.

(ZC1) holds for PSL(2, 19)

THANK YOU FOR YOUR ATTENTION!