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Notations

G finite group

R commutative ring with identity element 1

RG group ring of G with coefficients in R

Qp the p-adic number field, Zp ring of integers of Qp

ε augemtation map of RG , i.e. ε

(∑
g∈G

rgg

)
=
∑
g∈G

rg .

U(RG ) group of units of RG

V(RG ) group of units of RG of augmentation 1
aka normalized units.

U(RG ) = R× · V(RG )
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(First) Zassenhaus Conjecture (H.J. Zassenhaus, 1960s)

(ZC1) For u ∈ V(ZG ) of finite order there exist x ∈ U(QG ) and
g ∈ G such that x−1ux = g .

Prime graph question (W. Kimmerle, 2006)

(PQ) For u ∈ V(ZG ) of order pq, p and q two different rational
primes, does there exists g ∈ G such that u and g have the same
order?

Clearly: (ZC1) ⇒ (PQ).
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Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (ZC1)

(ZC1) has been verified for certain classes of solvable groups (cf.
Leo Margolis’ talk) and for the following groups:

X A5 ' PSL(2, 5) (Luthar, Passi, 1989)

X S5 (Luthar, Trama 1991)

X SL(2, 5) (Dokuchaev, Juriaans, Polcino Milies 1997)

X PSL(2, 7), PSL(2, 11), PSL(2, 13) (Hertweck 2004)

X A6 ' PSL(2, 9) (Hertweck 2007)

X Central extensions of S5 (Bovdi-Hertweck 2008)

X PSL(2, 8) , PSL(2, 17) (Gildea; Kimmerle, Konovalov 2012)



Known reults (PQ)

(PQ) has a positive answer for

X Frobenius groups (Kimmerle, 2006)

X solvable groups (Höfert, Kimmerle, 2006)

X PSL(2, p), p a rational prime (Hertweck 2007)

X certain sporadic simple groups
(Bovdi, Konovalov, et. al. 2005 – )
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Theorem (Kimmerle, Konovalov 2012)

(PQ) holds for all groups, whose order is divisible by at most three
primes, if there are no units of order 6 in V(ZPGL(2, 9)) and in
V(ZM10).



Results

Theorem (Bächle, Margolis 2013)

There is no unit of order 6 in V(ZPGL(2, 9)) and in V(ZM10).

Corollary

If the order of a group is devisible by at most three different
rational primes, then (PQ) holds for this groups.

Theorem (Bächle, Margolis 2013)

(ZC1) holds for PSL(2, 19) and PSL(2, 23).
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Theorem (Bächle, Margolis 2013)

There is no unit of order 6 in V(ZPGL(2, 9)) and in V(ZM10).

Corollary

If the order of a group is devisible by at most three different
rational primes, then (PQ) holds for this groups.
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Theorem (Bächle, Margolis 2013)

(ZC1) holds for PSL(2, 19) and PSL(2, 23).



HeLP 1

Let x ∈ G , xG its conjugacy class in G , and
u =

∑
g∈G

ugg ∈ RG .

Then

εx(u) =
∑
g∈xG

ug

is called the partial augmentation of u at the conjugacy class of x .

Lemma (Marciniak, Ritter, Sehgal, Weiss 1987;
Luthar, Passi 1989)

Let u ∈ V(ZG ) be of finite order. Then u is conjugate to an
element of G in QG ⇔ εg (u) ≥ 0 for every g ∈ G .
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HeLP 2

Theorem (Luthar, Passi, 1989; Hertweck, 2004)

I u ∈ ZG torsion unit of order n

I F splitting field for G with char(F ) - n

I χ a (Brauer) character of F -representation D of G

I ζ ∈ C primitive n-th root of unity

I ξ ∈ F corresponding n-th root of unity

Multiplicity of ξ` as an eigenvalue of D(u) is given by

1

n

∑
d |n
d 6=1

TrQ(ζd )/Q(χ(ud)ζ−d`) +
1

n

∑
xG

TrQ(ζ)/Q(χ(x)ζ−`)εx(u)
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Example G = A6

1a 2a 3a 3b 4a 5a 5b

χ 5 1 2 -1 ... ... ...

Assume: u ∈ V(ZA6) has order 6, u4 is rationally conjugate to an
element of 3b and u3 is rationally conjugate to an element of 2a,
ε2a(u) = −2, ε3a(u) = 2, ε3b(u) = 1.

If D affords χ and ζ ∈ C is a primitive 3rd root of unity,

D(u3) ∼ diag(1, 1, 1,−1,−1), D(u4) ∼ diag(1, ζ, ζ2, ζ, ζ2)

Hence, as

χ(u) = ε2a(u)χ(2a) + ε3a(u)χ(3a) + ε3b(u)χ(3b) = 1,

there is only the possibility

D(u) ∼ diag(1, ζ, ζ2,−ζ,−ζ2).
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More notation

I u ∈ V(ZG ) a torsion unit

I p a rational prime dividing the order of u

I D an ordinary representation of G

I K the p-adic completation of a number field admitting D with
minimal ramification index over Qp

I R the ring of interges of K with maximal ideal P containing p

I L an RG -lattice affording D

I k = R/P, the quotient field, and ¯ the reduction mod P
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Proposition

Let o(u) = pam, p - m. Let ζ ∈ R be a primitive m-th root of
unity. Let Aj be tuples of pa-th roots of unity s.t. the eigenvalues
of D(u) are ζA1 ∪ ζ2A2 ∪ ... ∪ ζmAm. Then, as R〈u〉-lattice,
L ' M1 ⊕ ...⊕Mm where rankR(Mj) = |Aj | = dimk(M̄j) and M̄j

has only one composition factor up to isomorphism.

Easiest case: K/Qp unramified, o(u) = p.
Precisely three indecomposable R〈u〉-lattices: R, I (RCp), RCp of
rank 1, p − 1, p, respectively, with corresponding eigenvalues {1},
{ξ, ..., ξp−1}, {1, ξ, ..., ξp−1}, where ξ is a primitive p-th root of
unity. The reduction of any such lattice modulo P stays
indecomposable.
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Application: (ZC1) for G = PSL(2, 19)

After applying HeLP, only one case is left, namely:
elements u ∈ V(ZG ) of order 10 having partial augmentations

(ε5a(u), ε5b(u), ε10a(u)) = (1,−1, 1).

Let ζ be a 5th primitive root of unity, D18, D19 (certain) ordinary
representations of G , D18 can be realized over Z5[ζ + ζ−1], D19

can be realized over Z5. Let L18 and L19 be corresponding
RG -lattices (note that the R’s are different), then L̄18 ≤ L̄19 and
L̄19/L̄18 is a trivial kG -module.
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Application: (ZC1) for G = PSL(2, 19)

Using partial augmentations:

D18(u) ∼ diag(

5th roots of unity︷ ︸︸ ︷
,

− 1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ4,−ζ,−ζ4)

D19(u) ∼ diag(

5th roots of unity︷ ︸︸ ︷
,

− 1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ2,−ζ3,−ζ4)

L̄18 ' M1
18 ⊕M−118 , L̄19 ' M1

19 ⊕M−119

M1
∗ : trivial composition factors as k〈ū〉-module

M−1∗ : non-trivial composition factors as k〈ū〉-module

M−119 ∈ {2(k)− ⊕ 2I (kC5)−, (k)− ⊕ I (kC5)− ⊕ (kC5)−, 2(kC5)−}.
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Application: (ZC1) for G = PSL(2, 19)

As L̄19/L̄18 is a trivial kG -module, we have M−119 ' M−118 . But this
is impossible as the composition factors of M−118 as k〈ū〉-module
can’t coincide with those of M−119 we just calctulated (using results
of Gudivok (1965) and Jacobinski (1967)).

Hence, there is no such unit in question in V(ZPSL(2, 19)).

(ZC1) holds for PSL(2, 19)
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is impossible as the composition factors of M−118 as k〈ū〉-module
can’t coincide with those of M−119 we just calctulated (using results
of Gudivok (1965) and Jacobinski (1967)).

Hence, there is no such unit in question in V(ZPSL(2, 19)).

(ZC1) holds for PSL(2, 19)



Application: (ZC1) for G = PSL(2, 19)

As L̄19/L̄18 is a trivial kG -module, we have M−119 ' M−118 . But this
is impossible as the composition factors of M−118 as k〈ū〉-module
can’t coincide with those of M−119 we just calctulated (using results
of Gudivok (1965) and Jacobinski (1967)).

Hence, there is no such unit in question in V(ZPSL(2, 19)).

(ZC1) holds for PSL(2, 19)



Thank you for your attention!


