A generalisation on the solvability of finite groups with three class sizes for normal subgroups

Antonio Beltrán

Universidad Jaume I de Castellón (Spain)

Groups St. Andrews 2013, August 3-11

(in collaboration with María José Felipe)

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION

Let G be a finite group

• If $x \in G$, then the set $x^G = \{x^g/g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION

Let G be a finite group

• If $x \in G$, then the set $x^G = \{x^g/g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.

• We denote by $cs(G) = \{|x^G| : x \in G\}.$

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION

Let G be a finite group

• If $x \in G$, then the set $x^G = \{x^g/g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.

- We denote by $cs(G) = \{|x^G| : x \in G\}.$
- If $N \trianglelefteq G$, and $x \in N$, we consider the G-class of x, and define

$$\operatorname{cs}_{G}(N) = \{ |x^{G}| : x \in N \}.$$

We present the main results and techniques used for proving that a normal subgroup of a group G with three G-class sizes is solvable.

NOTATION

Let G be a finite group

• If $x \in G$, then the set $x^G = \{x^g/g \in G\}$ is the conjugacy class of x in G and $|x^G|$ is called the class size of x.

- We denote by $cs(G) = \{|x^G| : x \in G\}.$
- If $N \trianglelefteq G$, and $x \in N$, we consider the G-class of x, and define

$$\operatorname{cs}_{G}(N) = \{ |x^{G}| : x \in N \}.$$

New Topic

Influence of $cs_G(N)$ on the structure of N

If $N \trianglelefteq G$, in general the inequality $|cs_G(N)| \le |cs(N)|$ does not hold.

直 と く ヨ と く ヨ と

3

If $N \leq G$, in general the inequality $|cs_G(N)| \leq |cs(N)|$ does not hold.

Example

Let $G = S_3 \wr \mathbb{Z}_2$ and let $N = S_3 \times S_3 \trianglelefteq G$. Then

 $cs(N) = \{1, 2, 3, 4, 6, 9\}$, while $cs_G(N) = \{1, 4, 6, 9, 12\}$.

Problem: How is the structure of normal subgroups with two *G*-class sizes?

▶ < 문 > < 문 >

э

Problem: How is the structure of normal subgroups with two *G*-class sizes?

Theorem (Itô, 1953)

If $cs(G) = \{1, m\}$ then $m = p^a$ for some prime p and $G = P \times A$, with A abelian, and P a p-group.

Problem: How is the structure of normal subgroups with two *G*-class sizes?

Theorem (Itô, 1953)

If $cs(G) = \{1, m\}$ then $m = p^a$ for some prime p and $G = P \times A$, with A abelian, and P a p-group.

Theorem (Alemany, Beltrán, Felipe)

Suppose that N is a normal subgroup of a group G having two G-class sizes, then either N is abelian or $N = P \times A$, with P a p-group and $A \subseteq \mathbf{Z}(G)$.

E. Alemany, A. Beltrán, M.J. Felipe, Nilpotency of normal subgroups having two *G*-class sizes. Proc. Amer. Math. Soc., 139 (2011), 2663-2669.

高 と く ヨ と く ヨ と

3

Theorem (Itô, 1970)

If a finite group G has three class sizes, then G is solvable.

伺 ト く ヨ ト く ヨ ト

Theorem (Itô, 1970)

If a finite group G has three class sizes, then G is solvable.

Definition. A nonabelian group *G* is said to be an F-group if for every $x, y \in G \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

Theorem (Itô, 1970)

If a finite group G has three class sizes, then G is solvable.

Definition. A nonabelian group *G* is said to be an F-group if for every $x, y \in G \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

• F-groups were classified by J. Rebmann (1971). As a consequence, Rebmann obtains the solvability of groups with three class sizes which are F-groups.

伺 ト イ ヨ ト イ ヨ ト

Theorem (Itô, 1970)

If a finite group G has three class sizes, then G is solvable.

Definition. A nonabelian group *G* is said to be an F-group if for every $x, y \in G \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

• F-groups were classified by J. Rebmann (1971). As a consequence, Rebmann obtains the solvability of groups with three class sizes which are F-groups.

• A. Camina (1974) shows that any group with three class sizes which is not an F-group is a direct product of an abelian group and a group whose order involves no more than two primes.

伺 と く ヨ と く ヨ と

Theorem (Dolfi, Jabara, 2009)

A finite group G has three class sizes if and only if, up to an abelian factor, either

- (1) G is a p-group for some prime p or
- (2) G = KL with $K \leq G$, (|K|, |L|) = 1 and one of the following occurs
 - (a) both K and L are abelian, Z(G) < L and G is a quasi-Frobenius group,
 - (b) K is abelian, L is a non-abelian p-group, for some prime p and O_p(G) is an abelian subgroup of index p in L and G/O_p(G) is a Frobenius group or
 - (c) K is a *p*-group with two class sizes for some prime *p*, *L* is abelian, $Z(K) = Z(G) \cap K$ and *G* is quasi-Frobenius.

伺 とくき とくき とうき

▲圖▶ ▲屋▶ ▲屋▶

3

The case in which m does not divide n

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

The case in which m does not divide n

Definition

A non-central normal subgroup N of a group G is said to be an F-normal subgroup if for every $x, y \in N \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

The case in which m does not divide n

Definition

A non-central normal subgroup N of a group G is said to be an F-normal subgroup if for every $x, y \in N \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

Lemma

If N is an F-normal subgroup of a group G, then $N/(N \cap \mathbf{Z}(G))$ has a non-trivial normal abelian partition.

The case in which m does not divide n

Definition

A non-central normal subgroup N of a group G is said to be an F-normal subgroup if for every $x, y \in N \setminus Z(G)$, such that $C_G(x) \subseteq C_G(y)$, then $C_G(x) = C_G(y)$.

Lemma

If N is an F-normal subgroup of a group G, then $N/(N \cap \mathbf{Z}(G))$ has a non-trivial normal abelian partition.

We use results of Baer and Suzuki on groups having a non-trivial normal partition to clasify F-normal subgroups.

伺 ト イ ヨ ト イ ヨ ト

Let G be a group and N be an F-normal subgroup of G. Then N satisfies one of the following conditions:

- (1) $N/\mathbf{Z}(N)$ is a Frobenius group, with Frobenius kernel $L/\mathbf{Z}(N)$ and complement $K/\mathbf{Z}(N)$, with K and L abelian.
- (2) N/Z(N) is a Frobenius group, with kernel L/Z(N) and complement K/Z(N), where K is abelian, and L/Z(N) is of prime-power order, and L is an F-normal subgroup.
- (3) $N/\mathbb{Z}(N) \cong S_4$ and V is non-abelian, for $V/\mathbb{Z}(N)$, the Klein four-group of $N/\mathbb{Z}(N)$. In particular, N is an F-group.
- (4) *N* has abelian Fitting subgroup of index *p*, *p* divides $|\mathbf{F}(N)/\mathbf{Z}(N)|$, and *N* is an F-group.
- (5) $N = P \times \mathbf{Z}(N)_{p'}$, where $P \in \operatorname{Syl}_{p}(N)$.
- (6) $N/\mathbb{Z}(N) \cong PSL(2, p^h)$ or $PGL(2, p^h)$, where $p^h \ge 4$.

Let N be an F-normal subgroup of G such that $|cs_G(N)| = 3$. Then N is solvable. In particular, when $cs_G(N) = \{1, m, n\}$ and m does not divide n, then N is solvable.

Let N be an F-normal subgroup of G such that $|cs_G(N)| = 3$. Then N is solvable. In particular, when $cs_G(N) = \{1, m, n\}$ and m does not divide n, then N is solvable.

The proof consists in showing that case (6) in the above classification cannot happen.

Z. Akhlaghi, A. Beltrán, M.J. Felipe, M. Khatami, Structure of normal subgroups with three G-class sizes. Monatsh. Math. **167** (2012), no 1, 1-12.

伺 ト イ ヨ ト イ ヨ ト

Let N be a normal subgroup of a finite group G such that $cs_G(N) = \{1, m, n\}$, where m < n and m does not divide n. Then one of the following conditions is satisfied:

(1) $N = P \times A$, where $P \in Syl_p(N)$, p prime and $A \subseteq \mathbf{Z}(G)$.

(2) $N/\mathbf{Z}(N)$ is a Frobenius group, with Frobenius kernel $L/\mathbf{Z}(N)$ and Frobenius complement $K/\mathbf{Z}(N)$, and

(a) either K and L are abelian, and

 $\mathsf{cs}(N) = \{1, |L/\mathbf{Z}(N)|, |K/\mathbf{Z}(N)|\}.$

(b) or K is abelian, and $L/\mathbb{Z}(N)$ is of prime-power order, and $cs(N) = \{1, |L/\mathbb{Z}(N)|, |K/\mathbb{Z}(N)||x^{L}| : x \in L \setminus \mathbb{Z}(N)\}.$

伺 と く ヨ と く ヨ と … ヨ

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

э

a) Every element in N whose class size is m belongs to F(N)

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

a) Every element in N whose class size is m belongs to F(N)
If z ∈ N is a p-element |z^G| = m, for some prime p, and if y is a p-regular element of C_G(z), then

 $|y^{\mathbf{C}_G(z)}|$

a) Every element in N whose class size is m belongs to F(N)
If z ∈ N is a p-element |z^G| = m, for some prime p, and if y is a p-regular element of C_G(z), then

$$|y^{\mathsf{C}_G(z)}| = |\mathsf{C}_G(z) : \mathsf{C}_G(z) \cap \mathsf{C}_G(y)|$$

a) Every element in N whose class size is m belongs to F(N)
If z ∈ N is a p-element |z^G| = m, for some prime p, and if y is a p-regular element of C_G(z), then

$$|y^{\mathsf{C}_G(z)}| = |\mathsf{C}_G(z) : \mathsf{C}_G(z) \cap \mathsf{C}_G(y)| = |\mathsf{C}_G(z) : \mathsf{C}_G(yz)| = 1, n/m.$$

a) Every element in N whose class size is m belongs to F(N)
If z ∈ N is a p-element |z^G| = m, for some prime p, and if y is a p-regular element of C_G(z), then

$$|y^{\mathsf{C}_G(z)}| = |\mathsf{C}_G(z) : \mathsf{C}_G(z) \cap \mathsf{C}_G(y)| = |\mathsf{C}_G(z) : \mathsf{C}_G(yz)| = 1, n/m.$$

Thus, $\mathbf{C}_N(z) \leq \mathbf{C}_G(z)$ and this normal subgroup has at most two *p*-regular $\mathbf{C}_G(z)$ -class sizes.

a) Every element in N whose class size is m belongs to F(N)
If z ∈ N is a p-element |z^G| = m, for some prime p, and if y is a p-regular element of C_G(z), then

$$|y^{\mathsf{C}_G(z)}| = |\mathsf{C}_G(z) : \mathsf{C}_G(z) \cap \mathsf{C}_G(y)| = |\mathsf{C}_G(z) : \mathsf{C}_G(yz)| = 1, n/m.$$

Thus, $C_N(z) \leq C_G(z)$ and this normal subgroup has at most two *p*-regular $C_G(z)$ -class sizes.

Theorem (Akhlaghi, Beltrán, Felipe, J. Group Theory, 2013)

Let $N \trianglelefteq G$ having exactly two *G*-class sizes of *p*-regular elements. Then *N* is solvable. Moreover, either *N* has abelian *p*-complements or all *p*-regular elements of $N/(N \cap \mathbf{Z}(G))$ have prime power order.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

b) Properties of $\mathbf{F}(N)$ and $\mathbf{Z}(N)$.

A B > A B >

э

The case in which m divides n

b) Properties of $\mathbf{F}(N)$ and $\mathbf{Z}(N)$.

Theorem

Suppose that N is a solvable normal subgroup of a group G and suppose that an integer m divides s for every $s \in cs_G(N)$, $s \neq 1$. If $g \in N$ and $|g^G| = m$, then $g \in \mathbf{F}(N)$.

The case in which m divides n

b) Properties of $\mathbf{F}(N)$ and $\mathbf{Z}(N)$.

Theorem

Suppose that N is a solvable normal subgroup of a group G and suppose that an integer m divides s for every $s \in cs_G(N)$, $s \neq 1$. If $g \in N$ and $|g^G| = m$, then $g \in \mathbf{F}(N)$.

Theorem

Suppose that N is a nonsolvable normal subgroup of a group G and suppose that an integer m divides $|x^G|$ for every $x \in N \setminus \mathbb{Z}(N)$. Then m divides $|\mathbb{Z}(N)|$.

Lemma

A finite nonabelian simple group does not have a nontrivial conjugacy class whose size divides the order of its Schur multiplier.

Lemma

A finite nonabelian simple group does not have a nontrivial conjugacy class whose size divides the order of its Schur multiplier.

Theorem

If N is a nonabelian normal subgroup of a finite group G and $|cs_G(N)| = 3$, then Z(N) is properly contained in F(N).

伺 ト く ヨ ト く ヨ ト

Lemma

A finite nonabelian simple group does not have a nontrivial conjugacy class whose size divides the order of its Schur multiplier.

Theorem

If N is a nonabelian normal subgroup of a finite group G and $|cs_G(N)| = 3$, then Z(N) is properly contained in F(N).

A. Beltrán, M.J. Felipe, Solvability of normal subgroups and *G*-class sizes. Publ. Math. Deb. In print.

・ 同 ト ・ ヨ ト ・ ヨ ト

c) Results on the structure of the normal section $N/\mathbf{F}(N)$.

伺 と く ヨ と く ヨ と

3

c) Results on the structure of the normal section $N/\mathbf{F}(N)$. By (a), every element of class size *m* lies in $\mathbf{F}(N)$, so we obtain that every element of $N \setminus \mathbf{F}(N)$ has *G*-class size *n*.

c) Results on the structure of the normal section $N/\mathbf{F}(N)$. By (a), every element of class size *m* lies in $\mathbf{F}(N)$, so we obtain that every element of $N \setminus \mathbf{F}(N)$ has *G*-class size *n*.

Suppose $N \leq G$. What happens if every element in $G \setminus N$ has the same class size?

c) Results on the structure of the normal section $N/\mathbf{F}(N)$. By (a), every element of class size *m* lies in $\mathbf{F}(N)$, so we obtain that every element of $N \setminus \mathbf{F}(N)$ has *G*-class size *n*.

Suppose $N \leq G$. What happens if every element in $G \setminus N$ has the same class size?

Theorem (Isaacs, 1970)

Let *N* be a normal subgroup of a group *G* such that all of the conjugacy classes of *G* which lie outside *N* have equal sizes. Then G/N is cyclic or else every nonidentity element of G/N has prime order.

Definition

A normal section N/K of a group G satisfies condition (*) over G when N is a nonabelian normal subgroup of G such that all the G-conjugacy classes in N lying outside of K have equal size.

Definition

A normal section N/K of a group G satisfies condition (*) over G when N is a nonabelian normal subgroup of G such that all the G-conjugacy classes in N lying outside of K have equal size.

Theorem (Akhlaghi, Beltrán, Felipe)

Let N/K be a normal section satisfying (*) over G.

- i) If $Z(N) \nsubseteq K$, then N/K is a *p*-group for some prime *p* and N/K is either abelian or has exponent *p*.
- ii) If $\mathbf{Z}(N) \subseteq K$, then either N/K is cyclic or is a CP-group. In the first case, N has abelian Hall π -subgroups and normal π -complement, where $\pi = \pi(N/K)$.

d) CP-groups and final arguments.

A B > A B >

d) CP-groups and final arguments. We can assume that N/F(N) is a non-solvable CP-group.

d) CP-groups and final arguments. We can assume that N/F(N) is a non-solvable CP-group.

Theorem (Heineken, 2006)

If G is a finite non-solvable CP-group, then there exist normal subgroups B, C of G such that $1 \subseteq B \subseteq C \subseteq G$ and B is a 2-group, C/B is non-abelian and simple, and G/C is a p-group for some prime p and cyclic or generalised quaternion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic to: $L_2(q)$, for q = 5, 7, 8, 9, 17, $L_3(4)$, Sz(8) or Sz(32).

伺 ト く ヨ ト く ヨ ト

d) CP-groups and final arguments. We can assume that N/F(N) is a non-solvable CP-group.

Theorem (Heineken, 2006)

If G is a finite non-solvable CP-group, then there exist normal subgroups B, C of G such that $1 \subseteq B \subseteq C \subseteq G$ and B is a 2-group, C/B is non-abelian and simple, and G/C is a p-group for some prime p and cyclic or generalised quaternion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic to: $L_2(q)$, for q = 5, 7, 8, 9, 17, $L_3(4)$, Sz(8) or Sz(32).

• By induction on |N| we have that N is perfect. If N' < N, then $|cs_G(N')| \le 3$, so N' is solvable and N is solvable as well.

く 戸 と く ヨ と く ヨ と …

d) CP-groups and final arguments. We can assume that N/F(N) is a non-solvable CP-group.

Theorem (Heineken, 2006)

If G is a finite non-solvable CP-group, then there exist normal subgroups B, C of G such that $1 \subseteq B \subseteq C \subseteq G$ and B is a 2-group, C/B is non-abelian and simple, and G/C is a p-group for some prime p and cyclic or generalised quaternion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic to: $L_2(q)$, for q = 5, 7, 8, 9, 17, $L_3(4)$, Sz(8) or Sz(32).

By induction on |N| we have that N is perfect. If N' < N, then |cs_G(N')| ≤ 3, so N' is solvable and N is solvable as well.
Therefore, there exists B ≤ N, such that N/B is simple (CP-group) and B/F(N) is a 2-group

・ 同 ト ・ ヨ ト ・ ヨ ト

d) CP-groups and final arguments. We can assume that N/F(N) is a non-solvable CP-group.

Theorem (Heineken, 2006)

If G is a finite non-solvable CP-group, then there exist normal subgroups B, C of G such that $1 \subseteq B \subseteq C \subseteq G$ and B is a 2-group, C/B is non-abelian and simple, and G/C is a p-group for some prime p and cyclic or generalised quaternion. In particular, if G is a finite non-abelian simple CP-group, then G is isomorphic to: $L_2(q)$, for q = 5, 7, 8, 9, 17, $L_3(4)$, Sz(8) or Sz(32).

• By induction on |N| we have that N is perfect. If N' < N, then $|cs_G(N')| \le 3$, so N' is solvable and N is solvable as well.

• Therefore, there exists $B \leq N$, such that N/B is simple (CP-group) and $B/\mathbf{F}(N)$ is a 2-group

• We make a case-by-case analysis for each of the simple groups, and we finally get a contradiction.

A complete classification of the structure of normal subgroups N with $cs_G(N) = \{1, m, n\}$ when m divides n is still open.

A complete classification of the structure of normal subgroups N with $cs_G(N) = \{1, m, n\}$ when m divides n is still open.

Theorem (Dolfi, Jabara, 2009)

If $cs(G) = \{1, m, n\}$ with *m* dividing *n*, then either $G/\mathbb{Z}(G)$ is a *p*-group for some prime *p*, or $\mathbb{F}(G)$ is an abelian subgroup and $|G: \mathbb{F}(G)| = p$.

A complete classification of the structure of normal subgroups N with $cs_G(N) = \{1, m, n\}$ when m divides n is still open.

Theorem (Dolfi, Jabara, 2009)

If $cs(G) = \{1, m, n\}$ with *m* dividing *n*, then either $G/\mathbb{Z}(G)$ is a *p*-group for some prime *p*, or $\mathbb{F}(G)$ is an abelian subgroup and $|G : \mathbb{F}(G)| = p$.

When dealing with *G*-class sizes and normal subgroups, such structure does not hold.

Thank you for your attention