Shift Dynamics and Asphericity for Cyclically Presented Groups

William A. Bogley Oregon State University

Groups St. Andrews 2013

Ask a simple question...

J. H. Conway, Advanced Problem 5327, Amer. Math. Monthly **72** (1965), 915.

Show that the group generated by a, b, c, d, e subject to ab = c, bc = d, cd = e, de = a, ea = b is cyclic of order 11.

This group is Fib₅.

Many interesting responses!

In 1967 the Monthly reported solutions from

- correspondents on five continents (**plus Scotland**),
- in 52 separate communications,
- and including solutions from Ahmad, Baron, Brisley, Bumby, **Campbell**, Conway, Coxeter, Flanders, Imrich, Lyndon, Mendelsohn, Moser, Sinkov, Wicks....

Cyclic Symmetry

Fib₅ =
$$\langle a, b, c, d, e :$$

 $ab = c, bc = d, cd = e, de = a, ea = b \rangle$

has a **shift automorphism** of exponent 5:

$$a \mapsto b \mapsto c \mapsto d \mapsto e \mapsto a$$

Lyndon's Argument that $Fib_5 \cong C_{11}$

- Fib₅ = $\langle a, b \rangle$ (easy),
- $a^5 = b^4$ is central (clever manipulations),
- $b^5 = c^4$ is central (shift!!!),
- so b is central,
- so Fib₅ is abelian.

A Rich Story Unfolds

Fib_n = $\langle x_i : x_i x_{i+1} x_{i+2}^{-1} \rangle$ is:

- Finite iff n = 1, 2, 3, 4, 5, or 7 (1967-1990);
- Infinite if $n \ge 11$ [Lyndon 1974];
- Infinite if n = 8 or 10 [Brunner 1974];
- Infinite and automatic if n = 9 [Havas-Richardson-Sterling 1979, Newman 1990, Holt 1995];

And More

$$Fib_n = \langle x_i : x_i x_{i+1} x_{i+2}^{-1} \rangle$$
 is:

- The fundamental group of a closed orientable hyperbolic three-manifold if $n \ge 8$ is even [Helling-Kim-Mennicke 1994];
- NOT the fundamental group of a hyperbolic three-orbifold of finite volume if n is odd [Maclachlan 1995].

Cyclically Presented Groups and the Shift

$$w \in F = \operatorname{Free}(x_0, \dots, x_{n-1})$$

 $\theta(x_i) = x_{i+1}$
 $\mathcal{P}_n(w) = \langle x_i : \theta^i(w) \rangle \ (i \mod n)$
 $G_n(w) = F/\langle \langle \theta^i(w) \rangle \rangle$
Shift : $\theta^n = 1$ in $\operatorname{Aut}(G_n(w))$

Example. Fib_n = $G_n(x_0x_1x_2^{-1})$

Theorem. [D. Johnson, 1974] For all n, the shift θ has order n in $Aut(Fib_n)$. (I.e. C_n acts faithfully via the shift on Fib_n .)

Main Results

Theorem A. If $\mathcal{P}_n(w)$ is orientable and combinatorially aspherical, then C_n acts freely via the shift on the nonidentity elements of $G_n(w)$.

Theorem B(xxx). $\mathcal{P}_n(x_0x_kx_l)$ is combinatorially aspherical if and only if C_n acts freely via the shift on the nonidentity elements of $G_n(x_0x_kx_l)$.

Theorem C(xxx). $G_n(x_0x_kx_l)$ is finite if and only if the shift θ has a nonidentity fixed point.

Theorems B and C rely on [Edjvet-Williams 2010] and [B-Pride 1990].

Orientability is Necessary

Definition. $\mathcal{P}_n(w)$ is **orientable** if w is not a cyclic permutation of the inverse of any of its shifts.

Lemma. $\mathcal{P}_n(w)$ is not orientable if and only if n = 2m is even and w is freely equal to a word of the form $u\theta^m(u)^{-1}$.

Note that θ^m fixes $u \in G_{2m}(u\theta^m(u)^{-1})$.

Example. The shift acts as the identity on $G_2(x_0x_1^{-1}) \cong C_{\infty}$.

Identities Among Relations

Given $\mathcal{P} = \langle \mathbf{x} : \mathbf{r} \rangle$ for G, let $F = \text{Free}(\mathbf{x})$ and define $\text{Free}(F \times \mathbf{r}) \xrightarrow{\partial} F$ by

$$\partial(w,r) = wrw^{-1}.$$

The group $\mathbb{I} = \ker \partial$ of identity sequences contains the normal closure \mathbb{P} of **Peiffer** identities:

$$(w,r)^{\epsilon}(v,s)^{\delta}(w,r)^{-\epsilon}(wrw^{-1}v,s)^{-\delta}.$$

Then $\mathbb{I}/\mathbb{P} \cong \pi_2 K$ as $\mathbb{Z}G$ -modules where $K = \bigvee_{\mathbf{x}} S_x^1 \cup \bigcup_{\mathbf{r}} c_r^2$ is the cellular model of \mathcal{P} . [Reidemeister 1949]

Combinatorial Asphericity

Definition. \mathcal{P} is combinatorially aspherical (CA) if \mathbb{I}/\mathbb{P} is $\mathbb{Z}G$ -generated by (classes of) length two identity sequences.

Examples. \mathcal{P} is CA if $\pi_2 K \cong \mathbb{I}/\mathbb{P} = 0$ (topological asphericity). One-relator presentations $\langle \mathbf{x} : \dot{W}^e \rangle$ are CA (Lyndon 1950).

$$(1, \dot{W}^e)(\dot{W}, \dot{W}^e)^{-1}$$

Also, $\mathcal{P}_3(x_0x_1x_2)$ is a CA presentation for the free group $F = F(x_0, x_1)$. As in Thm A, the order three automorphism of F with

$$x_0 \mapsto x_1 \text{ and } x_1 \mapsto (x_0 x_1)^{-1}$$

has no nontrivial fixed points.

A Look Inside Theorem A

The shift is realized as conjugation by a in $E = G_n(w) \rtimes_{\theta} C_n = \langle a, x : a^n, W(a, x) \rangle$ where $x_i = a^i x a^{-i}$. There is a C_n -covering

$$p: \widehat{M} \to M = K(C_n, 1) \vee S_x^1 \cup c_{W(a, x)}^2$$

where $p^{-1}(K(C_n, 1)) \simeq *$. Collapsing this pre-image to a point yields the cellular model K of the cyclic presentation $\mathcal{P}_n(w)$.

$$\begin{array}{c}
\widehat{M} \stackrel{\simeq}{\longrightarrow} K \\
p \downarrow \\
M
\end{array}$$

Thus $\pi_2 M \cong \pi_2 K \cong \mathbb{I}/\mathbb{P}$.

Special Case: W(a,x) is not a proper power

Then orientable $\mathcal{P}_n(w)$ is CA iff M = K(E, 1) for $E = G_n(w) \rtimes_{\theta} C_n$. (When W(a, x) is a proper power, add a cell in each dimension three and up to obtain a K(E, 1).)

Now $H^k(E; -) \cong H^k(C_n; -)$ $(k \ge 3)$. By a Theorem of Serre (1979),

- $G_n(w)$ is torsion-free and
- $gC_ng^{-1} \cap C_n \neq \{1\} \Rightarrow g \in C_n$.

So no nontrivial power of $a \in E$ centralizes any nontrivial element of $G_n(w)$. QED

Moral of Theorem A

If any power of the shift has a nontrivial fixed point, then $\mathcal{P}_n(w)$ supports an "interesting" identity sequence (i.e. spherical map).

Commensurability

$$E = \langle a, x : a^n, W(a, x) \rangle$$

= $\langle a, x : a^n, x^{\epsilon_1} a^{p_1} \dots x^{\epsilon_L} a^{p_L} \rangle$

Theorem. If $n \mid f \sum \epsilon_i + \sum p_i$ then

$$\nu^f(a) = a \text{ and } \nu^f(x) = a^f$$

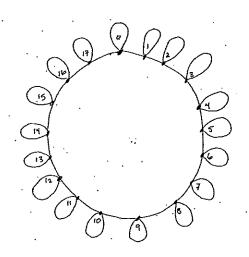
defines a retraction $\nu^f : E \to C_n = \langle a \rangle$. The kernel G^f of any such retraction is cyclically presented and the C_n -action on G^f via the shift is isomorphic to the C_n action on E/C_n .

Moral. Cyclically presented kernels corresponding to different retractions are commensurable (in E) and have identical shift dynamics.

Example: $E = \langle a, x : a^{18}, xaxa^5xa^{-6} \rangle$

Retractions $\nu^0, \nu^6, \nu^{12}: E \to C_{18}$ determine C_{18} -covers of M.

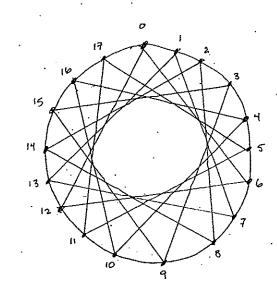
$$\widehat{M}^0$$
 $\ker \nu^0 = G^0 \cong G_{18}(x_0 x_1 x_6)$

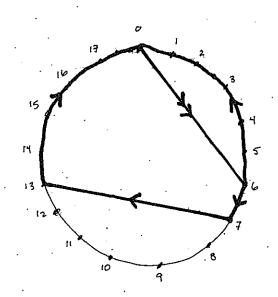


 G^0 , G^6 , G^{12} all have index 18 in E; all are cyclically presented with identical shift dynamics.

Example: $E = \langle a, x : a^{18}, xaxa^5xa^{-6} \rangle$ (cont'd)

 \widehat{M}^6





$$G^6 \cong G_{18}(x_0^2 x_7) \cong C_s$$
 where $s = 2^{18} - 1$.

$$x_0^2 x_7 = x_7^2 x_{14} = \cdots \quad x_4^2 x_{11} = x_{11}^2 x_0 = 1$$

$$\theta^7(x_0) = x_0^{-2}$$

$$\theta^7(x_0^{s/3}) = x_0^{s/3}$$

Metacyclic $G_n(x_0x_kx_l)$

Theorem. The cyclically presented group $G_{3m}(x_0x_1x_m)$

- is metacyclic of order $2^{3m} (-1)^m$ [Edjvet-Williams 2010] and
- has a fixed point subgroup of order three under the shift.

A Group of Order $342 = 2 \cdot 3^2 \cdot 19$

$$E = \langle a, x : a^{18}, xaxa^{4}xa^{-5} \rangle$$

$$u = a^{5}x^{-1} \langle a, u : a^{18}, u^{2}a^{9}ua^{6} \rangle$$

$$= J *_{b=a^{3}} C_{18} \text{ where}$$

 $J = \langle b, u : b^6, u^2b^3ub^2 \rangle = C_{19} \rtimes_{-4} C_{18}$ is a Frobenius group of order |J| = 342 [GAP,B-Pride 1990]. From a suitable retraction:

$$E = G_{18}(x_0 x_1 x_5) \rtimes_{\theta} C_{18}.$$

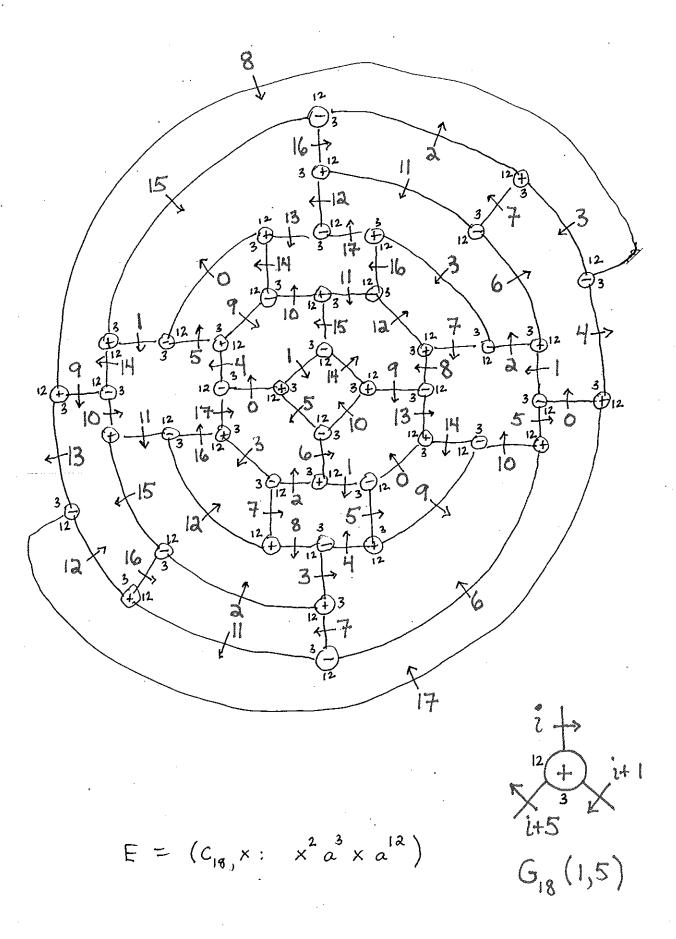
$$E = G_{18}(x_0x_1x_5) \rtimes_{\theta} C_{18} = J *_{b=a^3} C_{18}$$

The shift on $G_{18}(x_0x_1x_5)$ is fixed point free (viz Thm C).

 $|J/C_6| = 19 \cdot 3$, so C_6 does not act freely on $J/C_6 - \{1C_6\}$.

The shift action by C_{18} is faithful but not free on the infinite group $G_{18}(x_0x_1x_5)$.

Thm B demands an interesting identity sequence (or sphere).



A Class of Cyclically Presented Groups

$$J_{m} = \langle b, u : b^{6}, u^{m-1}b^{3}ub^{2} \rangle$$

$$E_{m} = J_{m} *_{b=a^{m}} C_{6m}$$

$$= G_{6m}(x_{0}x_{1} \dots x_{m-1}x_{4m-1}) \rtimes_{\theta} C_{6m}$$

$\lceil m \rceil$	$ J_m $
2	12
3	342
4	4632
5	38010
6	235908
7	?

The Story Continues?

The shift on the cyclically presented groups

$$G_{6m}(x_0x_1\dots x_{m-1}x_{4m-1})$$

is fixed point free for all m. For $3 \le m \le 6$, they have nontrivial torsion and so are not CA; the corresponding cyclic presentations support interesting, yet unseen, identity sequences.