Approximate groups and their applications: part 1

E. Breuillard

Université Paris-Sud, Orsay

St. Andrews, August 3-10, 2013

1/18

Let G be an ambient group with unit element 1.

Let G be an ambient group with unit element 1. Let A be a finite subset $A \subset G$.

Let G be an ambient group with unit element 1. Let A be a finite subset $A \subset G$. Here are three equivalent conditions for A to be a *subgroup* of G.

2/18

$$AA \subset A,$$

2
$$|AA| = |A|$$
 and $1 \in A$,

3
$$Proba_{a \in A, b \in A}(ab \in A) = 1.$$

Let G be an ambient group with unit element 1. Let A be a finite subset $A \subset G$. Here are three equivalent conditions for A to be a *subgroup* of G.

$$2 |AA| = |A| \text{ and } 1 \in A,$$

3
$$Proba_{a \in A, b \in A}(ab \in A) = 1.$$

What if we relax these conditions in some quantitative way ?

For example suppose A is a finite subset of G such that $1 \in A$ and $|AA| \leq (1 + \varepsilon)|A|$ for some small $\varepsilon > 0$.

For example suppose A is a finite subset of G such that $1 \in A$ and $|AA| \leq (1 + \varepsilon)|A|$ for some small $\varepsilon > 0$.

Fact: then there is a finite subgroup H of G such that $A \subset H$ and $|A| \ge (1 - \varepsilon)|H|$.

For example suppose A is a finite subset of G such that $1 \in A$ and $|AA| \leq (1 + \varepsilon)|A|$ for some small $\varepsilon > 0$.

Fact: then there is a finite subgroup H of G such that $A \subset H$ and $|A| \ge (1 - \varepsilon)|H|$.

Proof: Let $H = A^{-1}A$. We have for all $a, b \in A$,

 $|aA \cap bA| = 2|A| - |aA \cup bA| \ge 2|A| - |A^2| \ge (1 - \varepsilon)|A|.$

For example suppose A is a finite subset of G such that $1 \in A$ and $|AA| \leq (1 + \varepsilon)|A|$ for some small $\varepsilon > 0$.

Fact: then there is a finite subgroup H of G such that $A \subset H$ and $|A| \ge (1 - \varepsilon)|H|$.

Proof: Let $H = A^{-1}A$. We have for all $a, b \in A$,

 $|aA \cap bA| = 2|A| - |aA \cup bA| \ge 2|A| - |A^2| \ge (1 - \varepsilon)|A|.$ So $AA^{-1} = A^{-1}A = H$ and every $x \in H$ has at least $(1 - \varepsilon)$ representations of the form $x = dc^{-1}$, $d, c \in A$. Hence $|H| \le \frac{1}{(1-\varepsilon)}|A|.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

For example suppose A is a finite subset of G such that $1 \in A$ and $|AA| \leq (1 + \varepsilon)|A|$ for some small $\varepsilon > 0$.

Fact: then there is a finite subgroup H of G such that $A \subset H$ and $|A| \ge (1 - \varepsilon)|H|$.

Proof: Let $H = A^{-1}A$. We have for all $a, b \in A$,

 $\begin{aligned} |aA \cap bA| &= 2|A| - |aA \cup bA| \ge 2|A| - |A^2| \ge (1 - \varepsilon)|A|. \\ \text{So } AA^{-1} &= A^{-1}A = H \text{ and every } x \in H \text{ has at least } (1 - \varepsilon) \\ \text{representations of the form } x &= dc^{-1}, \ d, c \in A. \text{ Hence} \\ |H| &\leq \frac{1}{(1-\varepsilon)}|A|. \\ (\text{if } \varepsilon < \frac{1}{2}) \text{ Given } x, y \in H, \text{ there must be representations } x = dc^{-1} \\ \text{and } y &= ef^{-1} \text{ with } c = e. \text{ Hence } xy \in H. \end{aligned}$

For example suppose A is a finite subset of G such that $1 \in A$ and $|AA| \leq (1 + \varepsilon)|A|$ for some small $\varepsilon > 0$.

Fact: then there is a finite subgroup H of G such that $A \subset H$ and $|A| \ge (1 - \varepsilon)|H|$.

Proof: Let $H = A^{-1}A$. We have for all $a, b \in A$,

 $|aA \cap bA| = 2|A| - |aA \cup bA| \ge 2|A| - |A^2| \ge (1 - \varepsilon)|A|.$ So $AA^{-1} = A^{-1}A = H$ and every $x \in H$ has at least $(1 - \varepsilon)$ representations of the form $x = dc^{-1}$, $d, c \in A$. Hence $|H| \le \frac{1}{(1-\varepsilon)}|A|.$ (if $\varepsilon < \frac{1}{2}$) Given $x, y \in H$, there must be representations $x = dc^{-1}$ and $y = ef^{-1}$ with c = e. Hence $xy \in H$. Done.

More generally, let $K \ge 1$ be a parameter, and consider the following conditions on a finite subset A of G.

1 $AA \subset XA$, for some set X with $|X| \leq K$.

More generally, let $K \ge 1$ be a parameter, and consider the following conditions on a finite subset A of G.

- **1** $AA \subset XA$, for some set X with $|X| \leq K$.
- $|AA| \leqslant K|A|,$

More generally, let $K \ge 1$ be a parameter, and consider the following conditions on a finite subset A of G.

- **1** $AA \subset XA$, for some set X with $|X| \leq K$.
- $|AA| \leqslant K|A|,$

More generally, let $K \ge 1$ be a parameter, and consider the following conditions on a finite subset A of G.

- **1** $AA \subset XA$, for some set X with $|X| \leq K$.
- $|AA| \leqslant K|A|,$

3 Proba_{$$a \in A, b \in A$$} $(ab \in A) \geqslant \frac{1}{K}$.

Proposition

There is an absolute constant C > 0 such that: If condition (i) holds for A and K, then condition (i') holds for some subset A' with $|A|/K' \leq |A'| \leq K'|A|$, $|A \cap A'| \geq |A|/K'$, and $K' \leq CK^C$.

More generally, let $K \ge 1$ be a parameter, and consider the following conditions on a finite subset A of G.

- **1** $AA \subset XA$, for some set X with $|X| \leq K$.
- $|AA| \leqslant K|A|,$

3 Proba_{$$a \in A, b \in A$$} $(ab \in A) \geqslant \frac{1}{K}$.

Proposition

There is an absolute constant C > 0 such that: If condition (i) holds for A and K, then condition (i') holds for some subset A' with $|A|/K' \leq |A'| \leq K'|A|$, $|A \cap A'| \geq |A|/K'$, and $K' \leq CK^C$.

Proof: Balog-Szemeredi-Gowers-Tao.

We will say that two finite subsets A, A' of an ambient group G are *K*-roughly equivalent if

$$|A \cap A'| \geqslant rac{\max\{|A|, |A'|\}}{K}$$

We will say that two finite subsets A, A' of an ambient group G are *K*-roughly equivalent if

$$|A \cap A'| \geqslant rac{\max\{|A|, |A'|\}}{K}$$

In 2005, T. Tao introduced the following:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a K-approximate subgroup if:

•
$${\sf A}={\sf A}^{-1}$$
 and $1\in{\sf A}$,

• $AA \subset XA$ for some subset $X \subset G$ with $|X| \leq K$.

Approximate groups and their applications

Motivations for studying approximate groups:

- construction of new families of expander graphs, (Bourgain-Gamburd, Bourgain-Gamburd-Sarnak, Varju, BGT, etc).
- extending additive combinatorics to the non-commutative setting (Freiman, Ruzsa, Gowers, Tao, BGT, etc.)
- new applications in analytic number theory (sieving) and counting primes in orbits (Bourgain-Gamburd-Sarnak, Salehi-Sarnak, Kowalski, Lubotzky-Meiri,...)
- connection with Model Theory and Stability theory (Hrushovski),
- new results for finite simple groups (Waring type problems: Liebeck, Nikolov, Shalev, etc).
- applications to growth of groups (improvements of Gromov's theorem, counting conjugacy classes), to Riemannian geometry (almost flat manifolds, structure of large transitive graphs)

papers on approximate subgroups

- J. Bourgain. N. Katz, T. Tao, A sum-product estimate for finite fields, and applications, Geom. Func. Anal. 14 (2004), 27–57.
- T. C. Tao and V. H. Vu, Additive Combinatorics, CUP 2006.
- J. Bourgain, A. Gamburd, *Uniform expansion bounds for Cayley graphs of* SL₂(𝔽_p), Ann. of Math. **167** (2008), no. 2, 625–642.
- T. Tao, *Product set estimates in noncommutative groups*, Combinatorica **28** (2008), 547–594.
- H. Helfgott, Growth and generation in SL₂(ℤ/pℤ), Ann. of Math. 167 (2008), 601–623.

papers on approximate subgroups

- E. Hrushovski, *Stable group theory and approximate subgroups*, J. Amer. Math. Soc. 25 (2012), no. 1, 189–243.
- L. Pyber, E. Szabó, *Growth in finite simple groups of Lie type*, preprint (2010) arXiv:1001.4556
- E. Breuillard, B. Green and T. Tao, *Approximate subgroups of linear groups*, Geom. Funct. Anal. 21 (2011), no. 4, 774–819.
- E. Breuillard, B. Green and T. Tao, *The structure of approximate groups*, Publ. Inst. Hautes Études Sci., **116**, Issue 1, 115–221, (2012)

Sets with small doubling and the Freiman inverse problem

A finite subset $A \subset G$ of an ambient group G is said to have doubling at most K if

 $|AA| \leq K|A|.$

Sets with small doubling and the Freiman inverse problem

A finite subset $A \subset G$ of an ambient group G is said to have doubling at most K if

 $|AA| \leq K|A|.$

A central problem in additive combinatorics is to understand the structure of such sets.

Sets with small doubling and the Freiman inverse problem

A finite subset $A \subset G$ of an ambient group G is said to have doubling at most K if

 $|AA| \leq K|A|.$

A central problem in additive combinatorics is to understand the structure of such sets.

Examples:

- A is a finite subgroup $\rightarrow AA = A$. In this case K = 1.
- A = {a, a + b, a + 2b, ..., a + Nb} an arithmetic progression in ℤ. In this case K ≤ 2.
- A any subset with |A| > |G|/2 in a finite group G. In this case AA = G and $K \leq 2$.

Lemma (K=1)

Let A be a finite subset in a group G. Suppose |AA| = |A|. Then:

- A = aH for some finite subgroup H of G and some (all) $a \in A$,
- H is normalized by every element of A.

Under the K = 2 threshold: Only groups!

Under the K = 2 threshold: Only groups!

Lemma (Freiman $\frac{3}{2}$ lemma (1960's))

If $|AA| < \frac{3}{2}|A|$, then $A \subset aH$, for some finite subgroup H of G normalized by A with $|H| < \frac{3}{2}|A|$.

イロト 不得下 イヨト イヨト 二日

This is sharp! take $A := \{0, 1\}$ in \mathbb{Z} .

Under the K = 2 threshold: Only groups!

Lemma (Freiman $\frac{3}{2}$ lemma (1960's))

If $|AA| < \frac{3}{2}|A|$, then $A \subset aH$, for some finite subgroup H of G normalized by A with $|H| < \frac{3}{2}|A|$.

This is sharp! take $A := \{0, 1\}$ in \mathbb{Z} .

Lemma (Hamidoune's $2 - \varepsilon$ result (2010))

If $|AA| < (2 - \varepsilon)|A|$, then $A \subset a_1 H \cup ... \cup a_N H$, for some finite subgroup H of G, with $|H| < \frac{2}{\varepsilon}|A|$ and $N < \frac{2}{\varepsilon}$.

The case when $G = \mathbb{Z}$: Freiman's classification theorem:

Theorem (Freiman's theorem (1960's))

Suppose $A \subset \mathbb{Z}$ and $|A + A| \leq K|A|$. Then

 $A \subset X + P$,

where

•
$$|X| = O_K(1)$$
,

• P is multi-dimensional progression P of dimension $d = O_K(1)$.

• $|P| \leq O_K(1)|A|$.

The case when $G = \mathbb{Z}$: Freiman's classification theorem:

Theorem (Freiman's theorem (1960's))

Suppose $A \subset \mathbb{Z}$ and $|A + A| \leq K|A|$. Then

 $A \subset X + P$,

where

•
$$|X| = O_K(1)$$
,

• *P* is multi-dimensional progression *P* of dimension $d = O_K(1)$.

• $|P| \leq O_{\mathcal{K}}(1)|A|$.

Remark: A subset $P \subset G$ is called a multi-dimensional progression if $P = \pi(B)$, where B is a box $\prod_{i=1}^{r} [-N_i, N_i] \subset \mathbb{Z}^d$, and $\pi : \mathbb{Z}^d \to \mathbb{Z}$ is a homomorphism. Green and Ruzsa generalized Freiman's theorem to arbitrary *abelian* groups:

Theorem (Green-Ruzsa 2006)

Suppose G is abelian and $A \subset G$ has $|AA| \leq K|A|$. Then

 $A \subset X + H + P,$

where

• $|X| = O_K(1)$,

• P is multi-dimensional progression P of dimension $d = O_{\mathcal{K}}(1)$.

- H is a finite subgroup of G,
- $|H+P| \leq O_{\mathcal{K}}(1)|A|$.

Green and Ruzsa generalized Freiman's theorem to arbitrary *abelian* groups:

Theorem (Green-Ruzsa 2006)

Suppose G is abelian and $A \subset G$ has $|AA| \leq K|A|$. Then

 $A \subset X + H + P,$

where

• $|X| = O_K(1)$,

• P is multi-dimensional progression P of dimension $d = O_K(1)$.

- H is a finite subgroup of G,
- $|H+P| \leq O_{\mathcal{K}}(1)|A|$.

Remark: Such a set of the form H + P as above is called a coset multi-dimensional progression.

Approximate subgroups and small doubling

Recall our definition:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a K-approximate subgroup if:

•
$$A = A^{-1}$$
 and $1 \in A$,

• $AA \subset XA$ for some subset $X \subset G$ with $|X| \leq K$.

Approximate subgroups and small doubling

Recall our definition:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a K-approximate subgroup if:

- $A = A^{-1}$ and $1 \in A$,
- $AA \subset XA$ for some subset $X \subset G$ with $|X| \leq K$.

Proposition (Tao)

If A is a finite subset of G with $|AA| \leq K|A|$, then there is $A' \subset A$ s.t. $|A'| \geq |A|/CK^{C}$, and $B := (A' \cup A'^{-1} \cup \{1\})^{3}$ is a CK^{C} -approximate subgroup with $|B| \leq CK^{C}|A|$ and $A \subset XB$ for some set X with $|X| \leq CK^{C}$.

Approximate subgroups and small doubling

Recall our definition:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a K-approximate subgroup if:

•
$$A = A^{-1}$$
 and $1 \in A$,

• $AA \subset XA$ for some subset $X \subset G$ with $|X| \leq K$.

Proposition (Tao)

If A is a finite subset of G with $|AA| \leq K|A|$, then there is $A' \subset A$ s.t. $|A'| \geq |A|/CK^{C}$, and $B := (A' \cup A'^{-1} \cup \{1\})^{3}$ is a CK^{C} -approximate subgroup with $|B| \leq CK^{C}|A|$ and $A \subset XB$ for some set X with $|X| \leq CK^{C}$.

In particular any subset with doubling at most K is CK^C -roughly equivalent to a CK^C -approximate subgroup.

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a K-approximate subgroup if:

•
$$A=A^{-1}$$
 and $1\in A$,

• $AA \subset XA$ for some subset $X \subset G$ with $|X| \leq K$.

Proposition (Tao)

If A is a finite subset of G with $|AA| \leq K|A|$, then there is $A' \subset A$ s.t. $|A'| \geq |A|/CK^C$, and $B := (A' \cup A'^{-1} \cup \{1\})^3$ is a CK^C -approximate subgroup with $|B| \leq CK^C|A|$ and $A \subset XB$ for some set X with $|X| \leq CK^C$.

 \rightarrow it is enough to characterize approximate subgroups. They are easier to handle.

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a K-approximate subgroup if:

- $A = A^{-1}$ and $1 \in A$,
- $AA \subset XA$ for some subset $X \subset G$ with $|X| \leq K$.

Proposition (Tao)

If A is a finite subset of G with $|AA| \leq K|A|$, then there is $A' \subset A$ s.t. $|A'| \geq |A|/CK^C$, and $B := (A' \cup A'^{-1} \cup \{1\})^3$ is a CK^C -approximate subgroup with $|B| \leq CK^C|A|$ and $A \subset XB$ for some set X with $|X| \leq CK^C$.

Remark: If $|AAA| \leq K|A|$, we can assume A' = A. In particular $A \subset B$.

Basic properties of approximate groups

Here are some simple properties:

- (powers) If A is a K-approximate subgroup and n≥ 1, then Aⁿ is a Kⁿ-approximate subgroup which is Kⁿ-roughly equivalent to A.
- (intersection) If A and B are K-approximate subgroups, then $A^2 \cap B^2$ is a K^6 -approximate subgroup.
- (sub-approximate group) If A is a K-approximate group and $H \leq G$ a subgroup, then $A^2 \cap H$ is a K^2 -approximate subgroup.
- (quotient) If $\pi : G \to H$ is a group homomorphism, and A is a *K*-approximate group, then $\pi(A)$ is a *K*-approximate group.
- (group action) If G acts on a set X, and A is a K-approximate subgroup, then for each n ≥ 1,

$$|A| \leqslant |A \cdot x| \cdot |A^n \cap Stab(x)| \leqslant K^n |A|$$

• (approximate partition into orbits) X can be decomposed into approximate A-orbits, $A \cdot x$, i.e. $X = \bigcup_{Y} A^2 \cdot y$, $A \cdot y$, $y \in Y$ disjoint.

Here is a surprisingly successful principle: when trying to prove a result about approximate subgroups, try to adapt a known argument valid in the classical setting of group theory.

Here is a surprisingly successful principle: when trying to prove a result about approximate subgroups, try to adapt a known argument valid in the classical setting of group theory.

For example: adapt the group theoretical arguments needed to understand the subgroup structure of a given group in order to classify its approximate subgroups. Here is a surprisingly successful principle: when trying to prove a result about approximate subgroups, try to adapt a known argument valid in the classical setting of group theory.

For example: adapt the group theoretical arguments needed to understand the subgroup structure of a given group in order to classify its approximate subgroups.

Caveat: any group theoretical argument using divisibility properties of the order of a finite group will not have any approximate analogue...