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Let G be an ambient group with unit element 1.

Let A be a finite subset A C G.

Here are three equivalent conditions for A to be a subgroup of G.
Q AACA,
Q |AA| = |Aland 1 € A,
© Probascapea(ab e A) = 1.

What if we relax these conditions in some quantitative way ?

N

18



the notion of an approximate subgroup

For example suppose A is a finite subset of G such that 1 € A and
|AA| < (1 + ¢)]A| for some small € > 0.



the notion of an approximate subgroup

For example suppose A is a finite subset of G such that 1 € A and
|AA| < (1 + ¢)]A| for some small € > 0.

Fact: then there is a finite subgroup H of G such that A C H and
Al = (1 —¢)[H].



the notion of an approximate subgroup

For example suppose A is a finite subset of G such that 1 € A and
|AA| < (1 + ¢)]A| for some small € > 0.

Fact: then there is a finite subgroup H of G such that A C H and
Al = (1 —¢)[H].

Proof: Let H= A"1A. We have for all a,beA,

|aA N bA| = 2|A| — |aAU bA| > 2|A| — |A%| > (1 —¢)|A|.



the notion of an approximate subgroup

For example suppose A is a finite subset of G such that 1 € A and
|AA| < (1 + ¢)]A| for some small € > 0.

Fact: then there is a finite subgroup H of G such that A C H and
Al = (1 —¢)[H].

Proof: Let H= A"1A. We have for all a,beA,

|aA N bA| = 2|A| — |aAU bA| > 2|A| — |A%| > (1 —¢)|A|.

So AA™l = A=1A = H and every x € H has at least (1 — ¢)
representations of the form x = dc™!, d,c € A. Hence
H| < i A



the notion of an approximate subgroup

For example suppose A is a finite subset of G such that 1 € A and
|AA| < (1 + ¢)]A| for some small € > 0.

Fact: then there is a finite subgroup H of G such that A C H and
Al = (1 —¢)[H].

Proof: Let H= A"1A. We have for all a,beA,

|aA N bA| = 2|A| — |aAU bA| > 2|A| — |A%| > (1 —¢)|A|.

So AA™l = A=A = H and every x € H has at least (1 — ¢)
representations of the form x = dc™!, d,c € A. Hence

] < A,

(if e < ) Given x,y € H, there must be representations x = dc~!
and y = ef ~! with ¢ = e. Hence xy € H.



the notion of an approximate subgroup

For example suppose A is a finite subset of G such that 1 € A and
|AA| < (1 + ¢)]A| for some small € > 0.

Fact: then there is a finite subgroup H of G such that A C H and
Al = (1 —¢)[H].

Proof: Let H= A"1A. We have for all a,beA,

|aA N bA| = 2|A| — |aAU bA| > 2|A| — |A%| > (1 —¢)|A|.

So AA™l = A=A = H and every x € H has at least (1 — ¢)
representations of the form x = dc™!, d,c € A. Hence

] < A,

(if e < ) Given x,y € H, there must be representations x = dc~!
and y = ef ~! with ¢ = e. Hence xy € H.

Done.
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the notion of an approximate subgroup

More generally, let K > 1 be a parameter, and consider the
following conditions on a finite subset A of G.

Q@ AA C XA, for some set X with |[X| < K.
@ |AAl < KIA|,
(s ) ProbaaeA’beA(ab S A) > %

Proposition

There is an absolute constant C > 0 such that: If condition (i)
holds for A and K, then condition (i") holds for some subset A’
with |Al/K' < |A'| < K'|Al, |ANA| > |Al/K, and K' < CKC.

’

Proof: Balog-Szemeredi-Gowers-Tao.
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the notion of an approximate subgroup

We will say that two finite subsets A, A’ of an ambient group G are
K-roughly equivalent if

max{|A[, [A"|}
K
In 2005, T. Tao introduced the following:

JANA| >

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a
K-approximate subgroup if:

e A=Aland1€A

e AA C XA for some subset X C G with |X| < K.




Approximate groups and their applications

Motivations for studying approximate groups:

@ construction of new families of expander graphs,
(Bourgain-Gamburd, Bourgain-Gamburd-Sarnak, Varju, BGT,
etc).

o extending additive combinatorics to the non-commutative
setting (Freiman, Ruzsa, Gowers, Tao, BGT, etc.)

@ new applications in analytic number theory (sieving) and
counting primes in orbits (Bourgain-Gamburd-Sarnak,
Salehi-Sarnak, Kowalski, Lubotzky-Meiri,...)

@ connection with Model Theory and Stability theory
(Hrushovski),

@ new results for finite simple groups (Waring type problems:
Liebeck, Nikolov, Shalev, etc).

@ applications to growth of groups (improvements of Gromov's
theorem, counting conjugacy classes), to Riemannian
geometry (almost flat manifolds, structure of large transitive

graphs)
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Sets with small doubling and the Freiman inverse problem

A finite subset A C G of an ambient group G is said to have
doubling at most K if

IAA| < KA.

A central problem in additive combinatorics is to understand the
structure of such sets.

Examples:

@ Ais a finite subgroup — AA = A. In this case K = 1.
e A={a,a+ b,a+2b,...,a+ Nb} an arithmetic progression
in Z. In this case K < 2.

@ A any subset with |A| > |G|/2 in a finite group G. In this
case AA= G and K < 2.



Let A be a finite subset in a group G. Suppose |AA| = |A|. Then:

e A = aH for some finite subgroup H of G and some (all) a € A,

o H is normalized by every element of A.

10/18



Under the K = 2 threshold: Only groups!
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Under the K = 2 threshold: Only groups!

Lemma (Freiman 3 lemma (1960's))

If|AA| < 3|A
normalized by A with |H| < 3|A|.

, then A C aH, for some finite subgroup H of G

This is sharp! take A :={0,1} in Z.
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Under the K = 2 threshold: Only groups!

Lemma (Freiman 3 lemma (1960's))

If|AA| < 3|A
normalized by A with |H| < 3|A|.

, then A C aH, for some finite subgroup H of G

This is sharp! take A :={0,1} in Z.

Lemma (Hamidoune's 2 — ¢ result (2010))

If|AA| < (2 —€)|A|, then AC aiH U ... U anH, for some finite
subgroup H of G, with |H| < 2|A| and N < 2.
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The case when G = Z : Freiman'’s classification theorem:

Theorem (Freiman's theorem (1960's))
Suppose A C Z and |A+ A] < K|A|. Then

AC X+ P,

where
o IX| = Ok(1),
e P is multi-dimensional progression P of dimension d = Ok(1).
o |P| < Ok(1)IAl
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The case when G = Z : Freiman'’s classification theorem:

Theorem (Freiman's theorem (1960's))
Suppose A C Z and |A+ A] < K|A|. Then

AC X+ P,

where
o IX| = Ok(1),
e P is multi-dimensional progression P of dimension d = Ok(1).
o |P| < Ok(1)IAl

Remark: A subset P C G is called a multi-dimensional progression
if P =7(B), where B is a box [[/_,[~N;, N;] € Z9, and
7729 — 7 is a homomorphism.
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Green and Ruzsa generalized Freiman's theorem to arbitrary
abelian groups:

Theorem (Green-Ruzsa 2006)
Suppose G is abelian and A C G has |AA| < K|A|. Then

ACX+H+P,

where
o X = Ok(1),
e P is multi-dimensional progression P of dimension d = Ok (1).
@ H is a finite subgroup of G,
o |H+P| < Ok(1)Al
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Green and Ruzsa generalized Freiman's theorem to arbitrary
abelian groups:

Theorem (Green-Ruzsa 2006)
Suppose G is abelian and A C G has |AA| < K|A|. Then

ACX+H+P,

where
o X = Ok(1),
e P is multi-dimensional progression P of dimension d = Ok(1).
@ H is a finite subgroup of G,
o |H+P| < Ok(1)Al

Remark: Such a set of the form H + P as above is called a coset
multi-dimensional progression.
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Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a
K-approximate subgroup if:
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Approximate subgroups and small doubling

Recall our definition:

Definition (Approximate subgroup)
A (finite) subset A in an ambient group G, is called a
K-approximate subgroup if:

e A=Aland 1€ A

e AA C XA for some subset X C G with |X| < K.

Proposition (Tao)

If A is a finite subset of G with |AA| < K|A|, then there is A’ C A
st |A| > |A|/CKE, and B:= (A UATU{1})3 isa

CK € -approximate subgroup with |B| < CK€|A| and A C XB for
some set X with |X| < CKC.

In particular any subset with doubling at most K is CK€-roughly
equivalent to a CK ©-approximate subgroup.
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Approximate subgroups and small doubling

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a
K-approximate subgroup if:

e A=Aland 1€ A,

@ AA C XA for some subset X C G with | X| < K.

Proposition (Tao)

If A is a finite subset of G with |AA| < K|A|, then there is A’ C A
st. |A'| > |A|/CKE, and B := (A UA-1U{1})3 is a

CK € -approximate subgroup with |B| < CKC|A| and A C XB for
some set X with |X| < CKC.

— it is enough to characterize approximate subgroups. They are
easier to handle.
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Approximate subgroups and small doubling

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G, is called a
K-approximate subgroup if:

e A=Aland1€A

e AA C XA for some subset X C G with |X| < K.

| A

Proposition (Tao)

If A is a finite subset of G with |AA| < K|A|, then there is A’ C A
st. |A| > |A|/CKE, and B:= (A UATU{1})3 isa

CK € -approximate subgroup with |B| < CK€|A| and A C XB for
some set X with |X| < CKC.

Remark: If |[AAA| < K|A|, we can assume A" = A. In particular
ACB.
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Basic properties of approximate groups

Here are some simple properties:

o (powers) If Ais a K-approximate subgroup and n > 1, then
A" is a K"-approximate subgroup which is K"-roughly
equivalent to A.

o (intersection) If A and B are K-approximate subgroups, then
A’ N B? is a K%-approximate subgroup.

@ (sub-approximate group) If A is a K-approximate group and
H < G a subgroup, then A> N H is a K?-approximate
subgroup.

e (quotient) If 7 : G — H is a group homomorphism, and A is a
K-approximate group, then 7(A) is a K-approximate group.

@ (group action) If G acts on a set X, and A'is a
K-approximate subgroup, then for each n > 1,

|A| < |A - x| -|A" N Stab(x)| < K"|A

o (approximate partition into orbits) X can be decomposed into
approximate A-orbits, A- x, i.e. X = Uy A2 v, Ay, yey
diSjOint. 17/18



Basic properties of approximate groups

Here is a surprisingly successful principle: when trying to prove a
result about approximate subgroups, try to adapt a known
argument valid in the classical setting of group theory.
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Basic properties of approximate groups

Here is a surprisingly successful principle: when trying to prove a
result about approximate subgroups, try to adapt a known
argument valid in the classical setting of group theory.

For example: adapt the group theoretical arguments needed to
understand the subgroup structure of a given group in order to
classify its approximate subgroups.

Caveat: any group theoretical argument using divisibility properties
of the order of a finite group will not have any approximate
analogue...

18/18



