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the notion of an approximate subgroup

Let G be an ambient group with unit element 1.

Let A be a finite subset A ⊂ G .
Here are three equivalent conditions for A to be a subgroup of G .

1 AA ⊂ A,

2 |AA| = |A| and 1 ∈ A,

3 Probaa∈A,b∈A(ab ∈ A) = 1.

What if we relax these conditions in some quantitative way ?
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the notion of an approximate subgroup

For example suppose A is a finite subset of G such that 1 ∈ A and
|AA| 6 (1 + ε)|A| for some small ε > 0.

Fact: then there is a finite subgroup H of G such that A ⊂ H and
|A| > (1− ε)|H|.

Proof: Let H = A−1A. We have for all a, b ∈ A,

|aA ∩ bA| = 2|A| − |aA ∪ bA| > 2|A| − |A2| > (1− ε)|A|.

So AA−1 = A−1A = H and every x ∈ H has at least (1− ε)
representations of the form x = dc−1, d , c ∈ A. Hence
|H| 6 1

(1−ε) |A|.
(if ε < 1

2 ) Given x , y ∈ H, there must be representations x = dc−1

and y = ef −1 with c = e. Hence xy ∈ H.
Done.
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the notion of an approximate subgroup

More generally, let K > 1 be a parameter, and consider the
following conditions on a finite subset A of G .

1 AA ⊂ XA, for some set X with |X | 6 K .

2 |AA| 6 K |A|,
3 Probaa∈A,b∈A(ab ∈ A) > 1

K .

Proposition

There is an absolute constant C > 0 such that: If condition (i)
holds for A and K , then condition (i ′) holds for some subset A′

with |A|/K ′ 6 |A′| 6 K ′|A|, |A ∩ A′| > |A|/K ′, and K ′ 6 CKC .

Proof: Balog-Szemeredi-Gowers-Tao.
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the notion of an approximate subgroup

We will say that two finite subsets A,A′ of an ambient group G are
K -roughly equivalent if

|A ∩ A′| > max{|A|, |A′|}
K

In 2005, T. Tao introduced the following:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G , is called a
K -approximate subgroup if:

A = A−1 and 1 ∈ A,

AA ⊂ XA for some subset X ⊂ G with |X | 6 K .
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Approximate groups and their applications

Motivations for studying approximate groups:

construction of new families of expander graphs,
(Bourgain-Gamburd, Bourgain-Gamburd-Sarnak, Varju, BGT,
etc).
extending additive combinatorics to the non-commutative
setting (Freiman, Ruzsa, Gowers, Tao, BGT, etc.)
new applications in analytic number theory (sieving) and
counting primes in orbits (Bourgain-Gamburd-Sarnak,
Salehi-Sarnak, Kowalski, Lubotzky-Meiri,...)
connection with Model Theory and Stability theory
(Hrushovski),
new results for finite simple groups (Waring type problems:
Liebeck, Nikolov, Shalev, etc).
applications to growth of groups (improvements of Gromov’s
theorem, counting conjugacy classes), to Riemannian
geometry (almost flat manifolds, structure of large transitive
graphs)
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papers on approximate subgroups
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Sets with small doubling and the Freiman inverse problem

A finite subset A ⊂ G of an ambient group G is said to have
doubling at most K if

|AA| 6 K |A|.

A central problem in additive combinatorics is to understand the
structure of such sets.

Examples:

A is a finite subgroup → AA = A. In this case K = 1.

A = {a, a + b, a + 2b, . . . , a + Nb} an arithmetic progression
in Z. In this case K 6 2.

A any subset with |A| > |G |/2 in a finite group G . In this
case AA = G and K 6 2.
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Lemma (K=1)

Let A be a finite subset in a group G . Suppose |AA| = |A|. Then:

A = aH for some finite subgroup H of G and some (all) a ∈ A,

H is normalized by every element of A.

10 / 18



Under the K = 2 threshold: Only groups!

Lemma (Freiman 3
2 lemma (1960’s))

If |AA| < 3
2 |A|, then A ⊂ aH, for some finite subgroup H of G

normalized by A with |H| < 3
2 |A|.

This is sharp! take A := {0, 1} in Z.

Lemma (Hamidoune’s 2− ε result (2010))

If |AA| < (2− ε)|A|, then A ⊂ a1H ∪ . . . ∪ aNH, for some finite
subgroup H of G , with |H| < 2

ε |A| and N < 2
ε .
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The case when G = Z : Freiman’s classification theorem:

Theorem (Freiman’s theorem (1960’s))

Suppose A ⊂ Z and |A + A| 6 K |A|. Then

A ⊂ X + P,

where

|X | = OK (1),

P is multi-dimensional progression P of dimension d = OK (1).

|P| 6 OK (1)|A|.

Remark: A subset P ⊂ G is called a multi-dimensional progression
if P = π(B), where B is a box

∏r
i=1[−Ni ,Ni ] ⊂ Zd , and

π : Zd → Z is a homomorphism.
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Green and Ruzsa generalized Freiman’s theorem to arbitrary
abelian groups:

Theorem (Green-Ruzsa 2006)

Suppose G is abelian and A ⊂ G has |AA| 6 K |A|. Then

A ⊂ X + H + P,

where

|X | = OK (1),

P is multi-dimensional progression P of dimension d = OK (1).

H is a finite subgroup of G ,

|H + P| 6 OK (1)|A|.

Remark: Such a set of the form H + P as above is called a coset
multi-dimensional progression.
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Approximate subgroups and small doubling

Recall our definition:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G , is called a
K -approximate subgroup if:

A = A−1 and 1 ∈ A,

AA ⊂ XA for some subset X ⊂ G with |X | 6 K .

Proposition (Tao)

If A is a finite subset of G with |AA| 6 K |A|, then there is A′ ⊂ A
s.t. |A′| > |A|/CKC , and B := (A′ ∪ A′−1 ∪ {1})3 is a
CKC -approximate subgroup with |B| 6 CKC |A| and A ⊂ XB for
some set X with |X | 6 CKC .

In particular any subset with doubling at most K is CKC -roughly
equivalent to a CKC -approximate subgroup.

14 / 18



Approximate subgroups and small doubling

Recall our definition:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G , is called a
K -approximate subgroup if:

A = A−1 and 1 ∈ A,

AA ⊂ XA for some subset X ⊂ G with |X | 6 K .

Proposition (Tao)

If A is a finite subset of G with |AA| 6 K |A|, then there is A′ ⊂ A
s.t. |A′| > |A|/CKC , and B := (A′ ∪ A′−1 ∪ {1})3 is a
CKC -approximate subgroup with |B| 6 CKC |A| and A ⊂ XB for
some set X with |X | 6 CKC .

In particular any subset with doubling at most K is CKC -roughly
equivalent to a CKC -approximate subgroup.

14 / 18



Approximate subgroups and small doubling

Recall our definition:

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G , is called a
K -approximate subgroup if:

A = A−1 and 1 ∈ A,

AA ⊂ XA for some subset X ⊂ G with |X | 6 K .

Proposition (Tao)

If A is a finite subset of G with |AA| 6 K |A|, then there is A′ ⊂ A
s.t. |A′| > |A|/CKC , and B := (A′ ∪ A′−1 ∪ {1})3 is a
CKC -approximate subgroup with |B| 6 CKC |A| and A ⊂ XB for
some set X with |X | 6 CKC .

In particular any subset with doubling at most K is CKC -roughly
equivalent to a CKC -approximate subgroup.

14 / 18



Approximate subgroups and small doubling

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G , is called a
K -approximate subgroup if:

A = A−1 and 1 ∈ A,

AA ⊂ XA for some subset X ⊂ G with |X | 6 K .

Proposition (Tao)

If A is a finite subset of G with |AA| 6 K |A|, then there is A′ ⊂ A
s.t. |A′| > |A|/CKC , and B := (A′ ∪ A′−1 ∪ {1})3 is a
CKC -approximate subgroup with |B| 6 CKC |A| and A ⊂ XB for
some set X with |X | 6 CKC .

→ it is enough to characterize approximate subgroups. They are
easier to handle.
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Approximate subgroups and small doubling

Definition (Approximate subgroup)

A (finite) subset A in an ambient group G , is called a
K -approximate subgroup if:

A = A−1 and 1 ∈ A,

AA ⊂ XA for some subset X ⊂ G with |X | 6 K .

Proposition (Tao)

If A is a finite subset of G with |AA| 6 K |A|, then there is A′ ⊂ A
s.t. |A′| > |A|/CKC , and B := (A′ ∪ A′−1 ∪ {1})3 is a
CKC -approximate subgroup with |B| 6 CKC |A| and A ⊂ XB for
some set X with |X | 6 CKC .

Remark: If |AAA| 6 K |A|, we can assume A′ = A. In particular
A ⊂ B.
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Basic properties of approximate groups

Here are some simple properties:

(powers) If A is a K -approximate subgroup and n > 1, then
An is a Kn-approximate subgroup which is Kn-roughly
equivalent to A.
(intersection) If A and B are K -approximate subgroups, then
A2 ∩ B2 is a K 6-approximate subgroup.
(sub-approximate group) If A is a K -approximate group and
H 6 G a subgroup, then A2 ∩ H is a K 2-approximate
subgroup.
(quotient) If π : G → H is a group homomorphism, and A is a
K -approximate group, then π(A) is a K -approximate group.
(group action) If G acts on a set X , and A is a
K -approximate subgroup, then for each n > 1,

|A| 6 |A · x | · |An ∩ Stab(x)| 6 Kn|A|
(approximate partition into orbits) X can be decomposed into
approximate A-orbits, A · x , i.e. X = ∪Y A2 · y , A · y , y ∈ Y
disjoint. 17 / 18



Basic properties of approximate groups

Here is a surprisingly successful principle: when trying to prove a
result about approximate subgroups, try to adapt a known
argument valid in the classical setting of group theory.

For example: adapt the group theoretical arguments needed to
understand the subgroup structure of a given group in order to
classify its approximate subgroups.

Caveat: any group theoretical argument using divisibility properties
of the order of a finite group will not have any approximate
analogue...
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