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The sum-product phenomenon

A precursor (historically) to approximate groups is the following
result:

Theorem (Bourgain-Katz-Tao, 2003)

∀δ > 0, ∃ε > 0 s.t. if A is an arbitrary subset of the finite field Fp

(p any prime), then

|AA|+ |A + A| > |A|1+ε

unless |A| > p1−δ.

A similar result says that ∃ε > 0 s.t. for every subset A ⊂ Fp,

|A2 + A2 + A2| > min{|Fp|, |A|1+ε}
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The sum-product phenomenon

The proof of the sum-product theorem goes by finding a large
subset A′ ⊂ A which does not grow much under all operations
(addition, multiplication, division), i.e.

|A
′±k ± . . .± A′±k

A′±k ± . . .± A′±k
| � |A′|1+ε

There are variants of the sum-product theorem, where one
considers |AA + A| instead of |AA|+ |A + A| or other similar
expressions.

One can also define a notion of K -approximate field, and show
that they are either bounded in size or form a significant
proportion of genuine finite field.
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The sum-product phenomenon and approximate subgroups
of the affine group

It turns out (an observation of Helfgott) that one can see the
sum-product phenomenon as a special case of the classification of
approximate subgroups of the affine group Gp := {ax + b} over Fp.

Indeed set

B :=

(
A A
0 1

)
⊂ Gp =

(
F×p Fp

0 1

)
Then, if |AA + A| 6 K |A|, (later K will be K = |A|ε) then

|BB| 6 K 2|B|.

So B has doubling at most K 2, hence is roughly equivalent to a
CKC -approximate subgroup of the affine group {ax + b}.
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The sum-product phenomenon and approximate subgroups
of the affine group

The classification of approximate subgroups of the affine group
resembles the classification of genuine subgroups of the affine
group:

Unless they are small (i.e. 6 CKC ) or very large (i.e.
> |Gp|/CKC ), they are CKC -roughly equivalent to subsets of
either pure translations, or homotheties fixing a point.

But B is not of this type if K = |A|ε for small enough ε > 0. So
we must have

|AA + A| > |A|1+ε

.
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Approximate subgroups of linear groups

The new constructions of expander graphs alluded to earlier are
based on a classification theorem for approximate subgroups of
linear groups over finite fields.

In 2005, motivated by the new method of Bourgain-Gamburd for
expanders, H. Helfgott proved the following:

Theorem (H. Helfgott’s product theorem, 2005)

∀δ > 0, ∃ε > 0, s.t. if A ⊂ SL2(Fp) (p any prime) be any
generating subset, then

|AAA| > |A|1+ε

unless |A| > |SL2(Fp)|1−δ.
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Remark: why AAA and not AA ? here is a counter-example: take
A = H ∪ {x}, where

H :=

(
1 Fp

0 1

)
, and x :=

(
1 0
1 1

)

then AA = H ∪ xH ∪Hx ∪ {x2}, while xHx−1 ∩H = {1}, and thus

|AA| = 3|H|+ 1 = 3|A| − 2,

while
|AAA| > |HxH| = |H|2 = (|A| − 1)2.
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Approximate subgroups of linear groups

Translation of Helfgott theorem in terms of approximate groups:

Theorem (Helfgott reformulated)

Let A ⊂ SL2(Fp) be a K -approximate subgroup which generates
SL2(Fp). Then either |A| < CKC , or |A| > |SL2(Fp)|/CKC .

Here C > 0 is an absolute constant (independent of p).

Why is it a reformulation ?
how to get Helfgott’s theorem from this: if |AAA| < |A|1+ε, then set
K = |A|ε. Now A will be CKC -roughly equivalent to an
CKC -approximate group B ⊃ A. If |B| < CKC , then we must have
|A| 6 CKC |B| 6 C 2K 2C < C 2|A|2Cε, which implies that |A| is bounded if
2Cε < 1. If on the other hand |B| > |SL2(Fp)|/CKC , then

|A| > |B|/CKC > |SL2(Fp)|/C 2K 2C , so |A| > |SL2(Fp)|
1

1−2Cε . Done.
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Approximate subgroups of linear groups

Here is another way to reformulate yet again Helfgott’s theorem:

Theorem (Helfgott reformulated one more time)

Every generating K -approximate subgroup of SL2(Fp) is
CKC -roughly equivalent to either {1} or SL2(Fp).

In other words: There are no non trivial generating approximate
subgroups of SL2(Fp).
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Helfgott’s proof

Helfgott’s proof is based on the sum-product phenomenon:

first show that |tr(A)| � |A|
1
3 ,

show that there is a set V ⊂ AO(1) of simultaneously
diagonalisable elements s.t. |V | ' |tr(A)|,
(trace amplification) show that, for some a ∈ AO(1),
|tr(VaVa−1)| � |V |1+ε,

conclude using step 2 again and showing that
|VbVb−1V | � |V |3 for some b ∈ AO(1).
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Generalization to all finite fields and all Lie type

Pyber-Szabo and (simultaneously) B-Green-Tao proved the
following extension of Helfgott’s result:

Theorem (Product theorem for finite simple groups of Lie type)

∀δ > 0, ∃ε = ε(δ, r) > 0 such that if A is any generating subset of
a finite simple (or quasi-simple) group of Lie type G(q) with rank
at most r , one has:

|AAA| > |A|1+ε

unless |A| > |G(q)|1−δ.

In fact, if G(q) is simple, one can show (Gowers’ trick) that
AAA = G(q) if |A| > |G(q)|1−δ for δ = δ(r) > 0 small enough.
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Generalization to all finite fields and all Lie type

Theorem (Product theorem for finite simple groups of Lie type)

∀δ > 0, ∃ε = ε(δ, r) > 0 such that if A is any generating subset of
a finite simple (or quasi-simple) group of Lie type G(q) with rank
at most r , one has:

|AAA| > |A|1+ε

unless |A| > |G(q)|1−δ.

(Pyber) The analogous statement fails for the symmetric (or
alternating) groups: take inside G = Sn

A = H ∪ {σ±2},

where σ = (1, ..., n) a long cycle (say n odd), and
H := 〈(1, 2)〉 · . . . · 〈([n2 ], [n2 ] + 1)〉 ' (Z/2Z)[ n

2
].

Then A is a generating 4-approximate subgroup.
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Reformulation in terms of approximate groups

As before, the above product theorem can be reformulated in
terms of approximate subgroups:

Theorem (classification of approximate subgroups of G(q))

If A is a generating K-approximate subgroup of G(q), then either
|A| 6 CKC , or |A| > |G(q)|/CKC , where C = C (r) > 0 is a
constant depending on the rank r of G only.

To translate between the two formulations: take K = |A|ε and
apply Tao’s lemma relating small doubling and approximate groups.
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Some consequences: diameter bounds

Babai’s conjecture for bounded rank finite simple groups:
∃C = C (r) > 0 s.t.

diameter(G(q)) 6 (log |G(q)|)C

Indeed: if S is a generating set, applying the product theorem to
A := S3n repeatedly yields |S3n | > |S |(1+ε)n unless S3n = G(q).

Note however that for bounded rank much more is expected:

Conjecture (Diameter bound for bounded rank groups)

∃C = C (r) > 0 such that if G(q) is a finite simple group with rank
at most r ,

diameter(G(q)) 6 C log |G(q)|

→ known to hold (Breuillard-Gamburd) only for G(q) = PSL2(p)
and only for a set of primes of full density (among all primes).
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more consequences: infinite groups

Recall the strong-approximation theorem of
Matthews-Vaserstein-Weisfeiler: if Γ 6 G(Q) is a finitely generated
Zariski-dense subgroup and G a simply connected semisimple
algebraic group, then for almost all primes p the reduction mod p
map G(Z)→ G(Z/pZ) is surjective in restriction to Γ.

Corollary

Let G be a semisimple algebraic group. Then ∃ε = ε(dim(G)) > 0
s.t. if A is any finite subset of G(C) generating a Zariski dense
subgroup

|AAA| > |A|1+ε

Proof sketch: Γ := 〈A〉 maps onto G(Fp) for infinitely many primes
p. Apply the product theorem to the image of A.
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Proof of the product theorem: 1) the Larsen-Pink
non-concentration estimate

C. Jordan showed in 1878 that finite subgroups of GLn(C) have a
normal abelian subgroup of bounded index < c(n).

This fails of course for subgroups of GLn(Fq). Brauer and Feit,
then Weisfeiler gave characteristic p versions of Jordan’s theorem
culminating, by means of CFSG, in the full elucidation of the
subgroup structure of GLn(Fq).

In 1995, Larsen and Pink gave a completely new CFSG-free proof
of this classification theorem (close in spirit to Jordan’s original
proof).

The Larsen-Pink result essentially says that every subgroup Γ of
G(Fq) (G=simple algebraic group over Fq) is (a conjugate of)
G(F′q) for some smaller field F′q 6 Fq, unless it is contained in a
proper algebraic subgroup of G.
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Proof of the product theorem: 1) the Larsen-Pink
non-concentration estimate

The Larsen-Pink result essentially says that every subgroup Γ of
G(Fq) (G=simple algebraic group over Fq) is (a conjugate of)
G(F′q) for some smaller field F′q 6 Fq, unless it is contained in a
proper algebraic subgroup of G.

A key step in their proof consists in showing the following
non-concentration estimate:

Theorem (Larsen-Pink non-concentration estimate)

Suppose Γ is a subgroup of G(Fq) which is “sufficiently
Zariski-dense” in G, then for every algebraic subvariety V 6 G we
have:

|Γ ∩ V| < CV |Γ|
dim V
dim G
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Suppose Γ is a subgroup of G(Fq) which is “sufficiently
Zariski-dense” in G, then for every algebraic subvariety V 6 G we
have:

|Γ ∩ V| < CV |Γ|
dim V
dim G

In the BGT proof of the product theorem, the first step consists in
adapting the above to approximate subgroups:

Theorem (Larsen-Pink for approximate subgroups)

Suppose A is a K -approximate subgroup of G(Fq) which is
“sufficiently Zariski-dense” in G, then for every algebraic subvariety
V 6 G we have:

|A ∩ V| < KCV |A|
dim V
dim G
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Proof of the product theorem: 2) counting tori

The argument of the BGT proof then runs roughly as follows:

take V := non regular semisimple elements and apply
Larsen-Pink → get that most elements of A are regular
semisimple.
if a ∈ A2 is regular semisimple with centralizer C (a), then
applying Larsen-Pink to both V := C (a) and
V := {gag−1, g ∈ G(Fq)} and using the (approximate)
orbit-stabilizer formula, we get (T denotes a maximal torus).

|A2 ∩ C (a)| ' |A|
dim T
dim G

.
This means that whenever A2 intersects a maximal torus T
non trivially (i.e. contains a regular element), the intersection

must be large i.e. > |A|
dim T
dim G .

This implies that the set of tori intersecting A2 non trivially is
stable under conjugation by A, hence by 〈A〉 = G(Fq), hence
contains all tori, and it follows that A is almost all of G(q).
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towards a complete classification of approximate subgroups
of linear groups

The product theorem was stated for generating subsets of simple
groups. It does not holds without modification for generating
subsets of other groups (even semisimple). One conjectures the
following:

Conjecture (arbitrary linear approximate subgroups)

∃C = C (d) > 0 s.t. if A ⊂ GLd(Fq) is a K -approximate subgroup,
then there are subgroups N C H normalised by A with N ⊂ AC

and H/N nilpotent such that A is contained in 6 KC cosets of H.

Last year Pyber-Szabo announced a proof of the above with
‘nilpotent’ replaced by ’solvable’.
other open pb: get good explicit estimates on ε in the product
theorem!
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