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Expander graphs

Let G be a k-regular connected finite graph with N vertices. The
Laplacian on G is a non-negative symmetric operator on the space
of functions on the set of vertices of G defined by

∆f (x) := f (x)− 1

k

∑
y∼x

f (y)

Here y ∼ x means that y is a neighbor of the vertex x (i.e. they
are connected by an edge).

Definition (Spectrum)

The spectrum of G is the set of eigenvalues of ∆. We order them
as

0 = λ0 < λ1 6 λ2 6 . . . 6 λN 6 2
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Expander graphs

Definition

The graph G is said to be a ε-expander if

λ1(G) > ε

There is also an equivalent definition in terms of isoperimetry. Let
h(G) be the largest constant h > 0 such that for every subset A of
vertices of G of size < N

2 ,

|∂A| > h|A|

where ∂A is the boundary of A (= edges connecting a point in A
to a point outside A).

Lemma (Cheeger-Buser)

One has
1

2
λ1 6

1

k
h(G) 6

√
2λ1
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Expander Cayley graphs

A sequence of k-regular graphs with Ni := |Gi | going to ∞ is
called a family of expanders if there is a uniform ε > 0 such that
λ1(Gi ) > ε for all i .

Margulis (1972) gave the first construction of a family expanders:
using representation theory and Kazhdan’s property (T ), he
showed that the family of Cayley graphs of SL3(Z/nZ) with
respect to a fixed generating set of SL3(Z) is a family of expanders.

Lubotzky and others (in particular Lubotzky-Phillips-Sarnak) have
refined and pushed Margulis method to other groups (e.g.
arithmetic subgroups of SL2). They also asked the following
question:

Question: Which finite groups can be turned into expanders ?
Namely given an infinite family of finite groups, can one find a
generating set of bounded size with respect to which the
associated Cayley graphs form a family of expanders ?
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Results of Kassabov–Lubotzky-Nikolov

Solvable groups are not expanders:

Theorem (Lubotzky-Weiss)

Given k , ` > 0, if Gi is any family of k-generated finite solvable
groups with derived length 6 `, then λ1(Gi ) tends to 0 as |Gi |
tends to +∞.

But it is expected that simple groups are:

Theorem (Kassabov-Lubotzky-Nikolov)

There is k > 0 and ε > 0 such that every∗ finite simple group has
a generating set of size k w.r.t which the associated Cayley graph
is an ε-expander.

every∗ : with the exception of the family of Suzuki groups; now
this family can be included in the theorem (work of B-Green-Tao).
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Random walk characterisation of expanders

Yet another way to understand the expander property is in terms of
fast equidistribution of random walks.

Suppose G is a Cayley graph of a finite group G with (symmetric)
generating set S of size k . Let

µ :=
1

k

∑
s∈S

δs

be the uniform probability measure on S (δs is the Dirac mass at
s).
The convolution of two measures µ, ν on a group G is the image
of the product measure µ⊗ ν under the product map G × G → G ,
(x , y) 7→ xy .

µ ∗ ν(x) :=
∑
y∈G

µ(xy)ν(y−1)
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Random walk characterisation of expanders

Then the n-th convolution power

µ∗n := µ ∗ . . . ∗ µ
represents the probability distribution of the nearest neighbor
random walk on the Cayley graph G.
Note that as n→ +∞, the random walk becomes equidistributed
in G , i.e. µ∗n(x)→ 1

|G | for every x ∈ G .
We fix the size k of the generating set.

Lemma (Rapid mixing definition of expanders)

The Cayley graph G is an ε-expander if and only if the random
walk becomes well equidistribution already in less than Cε log |G |
steps, namely:

sup
x∈G
|µ∗n(x)− 1

|G |
| 6 1

|G |10

for all n > Cε log |G |. (Cε ' ε−1).

7 / 16



Random walk characterisation of expanders

Then the n-th convolution power

µ∗n := µ ∗ . . . ∗ µ
represents the probability distribution of the nearest neighbor
random walk on the Cayley graph G.
Note that as n→ +∞, the random walk becomes equidistributed
in G , i.e. µ∗n(x)→ 1

|G | for every x ∈ G .
We fix the size k of the generating set.

Lemma (Rapid mixing definition of expanders)

The Cayley graph G is an ε-expander if and only if the random
walk becomes well equidistribution already in less than Cε log |G |
steps, namely:

sup
x∈G
|µ∗n(x)− 1

|G |
| 6 1

|G |10

for all n > Cε log |G |. (Cε ' ε−1).
7 / 16



The Bourgain-Gamburd method

In 2005, Bourgain and Gamburd came up with a new (more
analytic) method for proving that certain Cayley graphs are
expanders.

Their idea is based on the above random walk characterisation of
the expander property: we will prove fast equidistribution directly,
then deduce the expander property (i.e. the lower bound on λ1).
One (of several) key ingredients in their method are the
approximate subgroups, or rather the absence of non-trivial
approximate subgroups of G (which as we saw last time is a
feature of bounded rank finite simple groups).

Theorem (Bourgain-Gamburd 2005)

Let G be a k-regular Cayley graph of G := SL2(Fp) (p prime).
Assume that the girth of G is at least τ log p. Then ∃ε(τ) > 0 s.t.

λ1(G) > ε.
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Other expander results based on the Bourgain-Gamburd
method

Their theorem has since been generalized in some (but not yet all)
directions. Here are some recent results proved using the
Bourgain-Gamburd method:

Theorem (B.-Green-Guralnick-Tao: Random pairs in G(q))

There is ε = ε(r) > 0 such that every finite simple group G of
rank 6 r has a pair of generators whose associated Cayley graph is
an ε-expander.
In fact almost every pair works, i.e. the number of possible
exceptions is at most |G |2−η for some η = η(r) > 0.

Remark: This includes the family of Suzuki groups Suz(22n+1),
thus completing the missing bit in the theorem of Kassabov,
Lubotzky and Nikolov.
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Other expander results based on the Bourgain-Gamburd
method

Theorem (B.-Gamburd: Uniformity in SL2(Fp))

There is a set of primes P0 of density one among all primes such
that every k-generated Cayley graph of SL2(Fp), p ∈ P0, is an
εk -expander for some εk > 0.

In fact one can conjecture the following strong uniformity:

Conjecture (Uniformity conjecture)

There is ε = ε(k, r) > 0 such that every k-generated Cayley graph
of a finite simple group of rank at most r is an ε-expander.

Remark. Both the BGGT and the BG results above can be seen as
evidence towards this conjecture. This would also imply the
uniform logarithmic diameter conjecture mentioned last time.
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Other expander results based on the Bourgain-Gamburd
method

Theorem (super-strong-approximation)

Let G be a semisimple algebraic group over Q. Suppose Γ = 〈S〉 is
a finitely generated Zariski-dense subgroup of G(Q). Then the
reduction mod p map G(Z)→ G(Z/pZ) is surjective in restriction
to Γ if the prime p is large enough and the associated Cayley
graphs form a family of expanders.

One can also consider reduction modulo a square-free or even
arbitrary integer n (instead of the prime p). One has:

Theorem (Bourgain-Varju)

Suppose S 6 SLd(Z) is a finite symmetric set generating a
Zariski-dense subgroup, then the Cayley graphs Gn of SLd(Z/nZ)
with respect to S form a family of expanders as n ∈ N grows.
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The Bourgain-Gamburd method

The lower bound on λ1 in the Bourgain-Gamburd method is
achieved by proving the fast equidistribution of the random walk.
This is done in three stages:

1 Initial stage (n 6 c1 log |G |). One needs to prove exponential
non-concentration of µ∗n on proper subgroups H, i.e.:

sup
H�G

µ∗n(H) 6
1

|G |δ

2 Middle stage (c1 log |G | 6 n 6 c2 log |G |). One needs to prove
sub-exponential decay of µ∗n, i.e. the following `2-flattening

µ∗2n(1) 6 (µ∗n(1))1+ε

(this step uses the classification of approximate groups)
3 Final stage (n > c2 log |G |). From µ∗n(1) 6 1

|G |1−δ , one uses

“quasirandomness” (i.e. good lower bounds on the dimension
of irreducible reps. of G ) to get the spectral gap.
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More applications: the Lubotzky-Meiri group sieve method

Let Γ be a finitely generated group. Say that g ∈ Γ is a proper
power if ∃m > 2 and h ∈ Γ such that

g = hm.

Let Γm denote the set of m-powers, and Γ>2 := ∪m>2Γm the set of
proper powers.

How large can the set of proper powers Γ>2 be ?

It depends on the group. For example:

if Γ is finite, then Γ>2 = Γ,

if Γ is a f.g. infinite torsion p-group (e.g. a Golod-Shafarevich
group), then Γ = Γm if gcd(p,m) = 1,

Malcev showed that if Γ is nilpotent, then for every m > 1,
Γm contains a finite index subgroup of Γ.
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More applications: the Lubotzky-Meiri group sieve method

In 1996, Hrushovski-Kropholler-Lubotzky-Shalev proved that if Γ is
linear and non virtually solvable, then for all finite n > 2, Γ is not a
finite union of translates of ∪26m6nΓm.

Thanks to the recent progress on approximate groups and
expanders we now know:

Theorem (Lubotzky-Meiri 2012)

If Γ is linear and non virtually solvable, then Γ is not a finite union
of translates of Γ>2. In fact Γ>2 is exponentially small, meaning
that if µ is the uniform probability measure on a generating set of
Γ, then

µn(Γ>2)

decays to 0 exponentially fast as n→ +∞.
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The group sieve method

For simplicity assume that Γ 6 SLd(Z) is Zariski-dense.

Lemma

Every proper algebraic subvariety V of SLd is exponentially small,
i.e. µn(V) decays exponentially fast.

Proof: reduce mod p and use the super-strong-approximation
theorem (i.e. that Γ mod p are expanders hence µn has fast
equidistribution).

Lemma (group sieve)

Let Γ = 〈S〉 as above and Γp := Γ ∩ ker(SLd(Z)→ SLd(Z/pZ).
Let Z ⊂ Γ be such that there is c > 0 such that for some
increasing sequence of primes pj with pj 6 jC ,

|Z Γpj/Γpj | < (1− c)|Γ/Γpj |.

Then Z is exponentially small, i.e. µn(Z ) decays exponentially fast.
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The group sieve method

The proof of the group sieve lemma relies on the following
elementary fact from probability theory:

Lemma (2nd moment method)

Let A1, . . . ,AL be events such that for some c > 0

P(Aj) < 1− c and

∀j , j ′, |P(Aj ∩ Aj ′)− P(Aj)P(Aj ′)| < ∆,

Then

P(∩Lj=1Aj) 6
1

c
(

1

L
+ ∆)
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