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Orbit partitions

Let G be a group of permutations of a set Ω.

Definitions

I For g ∈ G , write π(g) for the partition of Ω given by the
orbits of g .

I Write π(G ) = {π(g) | g ∈ G}.

Example

π(S3) =
{ {
{1}, {2}, {3}

}
, {
{

1, 2}, {3}
}
,
{
{1, 3}, {2}

}
,{

{1}, {2, 3}
}
,
{
{1, 2, 3}

} }
.
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The partition lattice

Let ρ and σ be partitions of Ω. Say ρ is a refinement of σ if every
part of σ is a union of parts of ρ.

We also say σ is a coarsening of ρ, and write ρ 4 σ.

Refinement is a partial order on the set P(Ω) of partitions of Ω.

The set P(Ω) is a lattice under the refinement order. Any two
partitions ρ and σ have

I a greatest common refinement ρ ∧ σ (their meet).

I a least common coarsening ρ ∨ σ (their join).



The partition lattice

Let ρ and σ be partitions of Ω. Say ρ is a refinement of σ if every
part of σ is a union of parts of ρ.

We also say σ is a coarsening of ρ, and write ρ 4 σ.

Refinement is a partial order on the set P(Ω) of partitions of Ω.

The set P(Ω) is a lattice under the refinement order. Any two
partitions ρ and σ have

I a greatest common refinement ρ ∧ σ (their meet).

I a least common coarsening ρ ∨ σ (their join).



The partition lattice

Let ρ and σ be partitions of Ω. Say ρ is a refinement of σ if every
part of σ is a union of parts of ρ.

We also say σ is a coarsening of ρ, and write ρ 4 σ.

Refinement is a partial order on the set P(Ω) of partitions of Ω.

The set P(Ω) is a lattice under the refinement order.

Any two
partitions ρ and σ have

I a greatest common refinement ρ ∧ σ (their meet).

I a least common coarsening ρ ∨ σ (their join).



The partition lattice

Let ρ and σ be partitions of Ω. Say ρ is a refinement of σ if every
part of σ is a union of parts of ρ.

We also say σ is a coarsening of ρ, and write ρ 4 σ.

Refinement is a partial order on the set P(Ω) of partitions of Ω.

The set P(Ω) is a lattice under the refinement order. Any two
partitions ρ and σ have

I a greatest common refinement ρ ∧ σ (their meet).

I a least common coarsening ρ ∨ σ (their join).



Coherence properties

The set π(G ) is a subset of P(Ω), and inherits the refinement
order.

The phrase orbit coherence refers generically to any interesting
order-theoretic properties that π(G ) may possess.

For instance, π(G ) may be

I a chain;

I a sublattice of P(Ω);

I a lower subsemilattice (meet-coherence);

I an upper subsemilattice (join-coherence).
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Chains

Theorem
If π(G ) is a chain, then

I there is a prime p such that every cycle of every element of G
is of p-power length;

I for each orbit O of G , the permutation group on O induced
by the action of G is regular;

I if G acts transitively, then it is a subgroup of the Prüfer
p-group.

An ingredient in the proof of the last part is that a group acting
regularly is join-coherent if and only if it is locally cyclic.
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Sublattices

Examples

I Full symmetric groups;

I Bounded support groups, e.g. FS(Ω);

I Point-stabilizer, set-stabilizers, etc. in Sym(Ω).

Theorem
Let g ∈ Sym(Ω) and let G = CentSym(Ω)(g). Then π(G ) is a
sublattice if and only if g has only finitely many cycles of length k
for all k > 1, and only finitely many infinite cycles.

In particular, centralizers in Sn always give sublattices.
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Join-coherence structure theorems

Theorem
Let G1 and G2 be finite join-coherent permutation groups on Ω1

and Ω2 respectively. Then G1 × G2 is join-coherent in its action on
Ω1 × Ω2 if and only if G1 and G2 have coprime orders.

Theorem
Let G1 and G2 be join-coherent permutation groups on Ω1 and Ω2,
where Ω2 is finite. Then the wreath product G1 o G2 is
join-coherent in its action on Ω1 × Ω2.

Corollary

For i ∈ N let Gi be a join-coherent permutation group on the finite
set Ωi . Then the profinite wreath product · · · o G2 o G1 is
join-coherent on

∏
i∈N Ωi .
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Primitive join-coherent groups

Let G be a finitely generated transitive permutation group on Ω. If
G is join-coherent, then it contains a full cycle.

Theorem
The finite primitive join-coherent groups are

I Sn in its natural action;

I transitive subgroups of AGL1(p).
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Groups normalizing a full cycle

Theorem
Let G be a permutation group on n points which normalizes an
n-cycle. Let n have prime factorization

∏
i pai

i . Then G is
join-coherent if and only if it is isomorphic to

∏
i Gi , where Gi is a

transitive permutation group on pai
i points, the orders of the

groups Gi are mutually coprime, and one of the following holds for
each i :

I Gi is cyclic of order pai
i ,

I ai = 1 and Gi is a transitive subgroup of AGL1(pi ),

I ai > 1 and Gi is the extension of a cyclic group of order pai
i by

the automorphism x 7→ x r , where r = pai−1
i + 1.
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