Orbit coherence in permutation groups

John R. Britnell

Department of Mathematics Imperial College London

j.britnell@imperial.ac.uk

Groups St Andrews 2013

Joint work with Mark Wildon (RHUL)

< ロ > (四 > (臣 > (臣 > 臣)) 臣)

900

Orbit partitions

Let G be a group of permutations of a set Ω .

Definitions

For g ∈ G, write π(g) for the partition of Ω given by the orbits of g.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Write
$$\pi(G) = \{\pi(g) \mid g \in G\}.$$

Orbit partitions

Let G be a group of permutations of a set Ω .

Definitions

For g ∈ G, write π(g) for the partition of Ω given by the orbits of g.

• Write
$$\pi(G) = \{\pi(g) \mid g \in G\}.$$

Example

$$\pi(S_3) = \left\{ \{\{1\}, \{2\}, \{3\}\}, \{\{1,2\}, \{3\}\}, \{\{1,3\}, \{2\}\}, \\ \{\{1\}, \{2,3\}\}, \{\{1,2,3\}\} \right\}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We also say σ is a *coarsening* of ρ , and write $\rho \preccurlyeq \sigma$.

We also say σ is a *coarsening* of ρ , and write $\rho \preccurlyeq \sigma$.

Refinement is a partial order on the set $P(\Omega)$ of partitions of Ω .

We also say σ is a *coarsening* of ρ , and write $\rho \preccurlyeq \sigma$.

Refinement is a partial order on the set $P(\Omega)$ of partitions of Ω . The set $P(\Omega)$ is a lattice under the refinement order.

We also say σ is a *coarsening* of ρ , and write $\rho \preccurlyeq \sigma$.

Refinement is a partial order on the set $P(\Omega)$ of partitions of Ω . The set $P(\Omega)$ is a lattice under the refinement order. Any two partitions ρ and σ have

- a greatest common refinement $\rho \wedge \sigma$ (their *meet*).
- a least common coarsening $\rho \lor \sigma$ (their *join*).

The set $\pi(G)$ is a subset of $P(\Omega)$, and inherits the refinement order.

The set $\pi(G)$ is a subset of $P(\Omega)$, and inherits the refinement order.

The phrase *orbit coherence* refers generically to any interesting order-theoretic properties that $\pi(G)$ may possess.

The set $\pi(G)$ is a subset of $P(\Omega)$, and inherits the refinement order.

The phrase *orbit coherence* refers generically to any interesting order-theoretic properties that $\pi(G)$ may possess.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For instance, $\pi(G)$ may be

► a chain;

The set $\pi(G)$ is a subset of $P(\Omega)$, and inherits the refinement order.

The phrase *orbit coherence* refers generically to any interesting order-theoretic properties that $\pi(G)$ may possess.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For instance, $\pi(G)$ may be

- ► a chain;
- a sublattice of $P(\Omega)$;

The set $\pi(G)$ is a subset of $P(\Omega)$, and inherits the refinement order.

The phrase *orbit coherence* refers generically to any interesting order-theoretic properties that $\pi(G)$ may possess.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For instance, $\pi(G)$ may be

- a chain;
- a sublattice of P(Ω);
- ▶ a lower subsemilattice (*meet-coherence*);
- ► an upper subsemilattice (*join-coherence*).

Theorem If $\pi(G)$ is a chain, then

 there is a prime p such that every cycle of every element of G is of p-power length;

Theorem If $\pi(G)$ is a chain, then

- there is a prime p such that every cycle of every element of G is of p-power length;
- ▶ for each orbit O of G, the permutation group on O induced by the action of G is regular;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

Theorem If $\pi(G)$ is a chain, then

- there is a prime p such that every cycle of every element of G is of p-power length;
- ▶ for each orbit O of G, the permutation group on O induced by the action of G is regular;

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ● ●

▶ if G acts transitively, then it is a subgroup of the Prüfer p-group.

Theorem If $\pi(G)$ is a chain, then

- there is a prime p such that every cycle of every element of G is of p-power length;
- ▶ for each orbit O of G, the permutation group on O induced by the action of G is regular;
- ▶ if G acts transitively, then it is a subgroup of the Prüfer p-group.

An ingredient in the proof of the last part is that a group acting regularly is join-coherent if and only if it is *locally cyclic*.

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples

- Full symmetric groups;
- Bounded support groups, e.g. $FS(\Omega)$;
- Point-stabilizer, set-stabilizers, etc. in $Sym(\Omega)$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples

- Full symmetric groups;
- Bounded support groups, e.g. $FS(\Omega)$;
- Point-stabilizer, set-stabilizers, etc. in $Sym(\Omega)$.

Theorem

Let $g \in \text{Sym}(\Omega)$ and let $G = \text{Cent}_{\text{Sym}(\Omega)}(g)$. Then $\pi(G)$ is a sublattice if and only if g has only finitely many cycles of length k for all k > 1, and only finitely many infinite cycles.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Examples

- Full symmetric groups;
- Bounded support groups, e.g. $FS(\Omega)$;
- Point-stabilizer, set-stabilizers, etc. in $Sym(\Omega)$.

Theorem

Let $g \in \text{Sym}(\Omega)$ and let $G = \text{Cent}_{\text{Sym}(\Omega)}(g)$. Then $\pi(G)$ is a sublattice if and only if g has only finitely many cycles of length k for all k > 1, and only finitely many infinite cycles.

In particular, centralizers in S_n always give sublattices.

Theorem

Let G_1 and G_2 be finite join-coherent permutation groups on Ω_1 and Ω_2 respectively. Then $G_1 \times G_2$ is join-coherent in its action on $\Omega_1 \times \Omega_2$ if and only if G_1 and G_2 have coprime orders.

Theorem

Let G_1 and G_2 be finite join-coherent permutation groups on Ω_1 and Ω_2 respectively. Then $G_1 \times G_2$ is join-coherent in its action on $\Omega_1 \times \Omega_2$ if and only if G_1 and G_2 have coprime orders.

Theorem Let G_1 and G_2 be join-coherent permutation groups on Ω_1 and Ω_2 , where Ω_2 is finite. Then the wreath product $G_1 \wr G_2$ is join-coherent in its action on $\Omega_1 \times \Omega_2$.

Theorem

Let G_1 and G_2 be finite join-coherent permutation groups on Ω_1 and Ω_2 respectively. Then $G_1 \times G_2$ is join-coherent in its action on $\Omega_1 \times \Omega_2$ if and only if G_1 and G_2 have coprime orders.

Theorem

Let G_1 and G_2 be join-coherent permutation groups on Ω_1 and Ω_2 , where Ω_2 is finite. Then the wreath product $G_1 \wr G_2$ is join-coherent in its action on $\Omega_1 \times \Omega_2$.

Corollary

For $i \in \mathbb{N}$ let G_i be a join-coherent permutation group on the finite set Ω_i . Then the profinite wreath product $\dots \wr G_2 \wr G_1$ is join-coherent on $\prod_{i \in \mathbb{N}} \Omega_i$.

A D M 4 E M 4

Primitive join-coherent groups

Let G be a finitely generated transitive permutation group on Ω . If G is join-coherent, then it contains a full cycle.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G be a finitely generated transitive permutation group on Ω . If G is join-coherent, then it contains a full cycle.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem The finite primitive join-coherent groups are

- ► *S_n* in its natural action;
- transitive subgroups of $AGL_1(p)$.

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

Theorem

Let G be a permutation group on n points which normalizes an n-cycle. Let n have prime factorization $\prod_i p_i^{a_i}$. Then G is join-coherent if and only if it is isomorphic to $\prod_i G_i$, where G_i is a transitive permutation group on $p_i^{a_i}$ points, the orders of the groups G_i are mutually coprime, and one of the following holds for each *i*:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Theorem

Let *G* be a permutation group on *n* points which normalizes an *n*-cycle. Let *n* have prime factorization $\prod_i p_i^{a_i}$. Then *G* is join-coherent if and only if it is isomorphic to $\prod_i G_i$, where G_i is a transitive permutation group on $p_i^{a_i}$ points, the orders of the groups G_i are mutually coprime, and one of the following holds for each *i*:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

► G_i is cyclic of order p_i^{a_i},

Theorem

Let G be a permutation group on n points which normalizes an n-cycle. Let n have prime factorization $\prod_i p_i^{a_i}$. Then G is join-coherent if and only if it is isomorphic to $\prod_i G_i$, where G_i is a transitive permutation group on $p_i^{a_i}$ points, the orders of the groups G_i are mutually coprime, and one of the following holds for each *i*:

A D M 4 E M 4

- ► G_i is cyclic of order p_i^{a_i},
- $a_i = 1$ and G_i is a transitive subgroup of $AGL_1(p_i)$,

Theorem

Let G be a permutation group on n points which normalizes an n-cycle. Let n have prime factorization $\prod_i p_i^{a_i}$. Then G is join-coherent if and only if it is isomorphic to $\prod_i G_i$, where G_i is a transitive permutation group on $p_i^{a_i}$ points, the orders of the groups G_i are mutually coprime, and one of the following holds for each *i*:

- G_i is cyclic of order $p_i^{a_i}$,
- $a_i = 1$ and G_i is a transitive subgroup of $AGL_1(p_i)$,
- ► $a_i > 1$ and G_i is the extension of a cyclic group of order $p_i^{a_i}$ by the automorphism $x \mapsto x^r$, where $r = p_i^{a_i-1} + 1$.

A D M A

シック 川 エル・エッ・ 山マ・ トロッ