Schur σ -groups

Michael Bush Washington and Lee University

August 5, 2013

Motivation

Let K be a number field and let \mathcal{O}_K be the ring of integers of K.

 \mathcal{O}_K is sometimes a UFD (Unique Factorization Domain) and sometimes not.

Embedding Problem

Does there always exist a finite extension L/K such that \mathcal{O}_L is a UFD?

Motivation

Proposition

There exists L/K finite with \mathcal{O}_L a UFD \Leftrightarrow Hilbert class tower of K is finite.

Hilbert class field tower of K

$$K = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n \subseteq \ldots$$

where $K_{n+1}=$ maximal unramified abelian extension of K_n . We have $\operatorname{Gal}(K_{n+1}/K_n)\cong \operatorname{Cl}(K_n)$ for all $n\geq 0$.

Motivation

Hilbert *p*-class field tower of *K*

$$K = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n \subseteq \ldots$$

where $K_{n+1} = \text{maximal unramified } abelian p \text{-extension of } K_n$.

Theorem (Golod-Shafarevich, 1964)

Embedding problem has a negative answer. Gave explicit examples of K with infinite Hilbert p-class tower for a prime p (\Rightarrow infinite Hilbert class tower).

Example

 $\textit{K} = \mathbb{Q}(\sqrt{-2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13})$ has infinite 2-class tower.

Schur σ -groups

Let
$$K^{\infty} = \bigcup_{n \geq 0} K_n$$
 and $G = G_{K,p} = \operatorname{Gal}(K^{\infty}/K)$.

Koch and Venkov (1975): If K is imaginary quadratic and p is an odd prime then G is a Schur σ -group.

Definition

Let G be a pro-p group with generator rank d and relation rank r. G is called a **Schur** σ -**group** if:

- d = r ("balanced presentation").
- $G^{ab} := G/[G, G]$ is a *finite* abelian group.
- There exists an automorphism $\sigma: G \to G$ with $\sigma^2 = 1$ and such that $\overline{\sigma}: G^{ab} \to G^{ab}$ maps $\overline{x} \mapsto \overline{x}^{-1}$.

Michael Bush Schur σ -groups August 5, 2013 5 / 16

Finite Schur σ -groups and towers

Theorem (Koch-Venkov, 1975)

If G is a Schur σ -group (p odd) and $d \ge 3$ then G is infinite.

An imaginary quadratic field with finite p-class tower (p odd) must have associated Galois group G with either d=1 or 2 generators.

If d=1 then G is cyclic and the tower has length 1. It follows that if the tower is finite of length > 1 then d=2.

Finite Schur σ -groups and towers

Despite a long history, very few finite examples are known. Until relatively recently all of the known examples of finite towers had length either 1 or 2.

Example (B, 2003)

The field $K = \mathbb{Q}(\sqrt{-d})$ for d = 445, 1015 and 1595 has 2-class tower of length 3.

Many more examples have subsequently been found by Nover.

The field $K = \mathbb{Q}(\sqrt{-9748})$ has 3-class tower of length 3.

In case you were wondering...

Finite Schur σ -groups with arbitrarily large derived length do exist.

Let $F = F\langle x, y \rangle$ be the free pro-3 group with $\sigma : F \to F$ defined by $x \mapsto x^{-1}$ and $y \mapsto y^{-1}$.

$$G_n = \langle x, y \mid r_n^{-1} \sigma(r_n), t^{-1} \sigma(t) \rangle$$

where $t = yxyx^{-1}y$ and $r_n = x^3y^{-3^n}$ for $n \ge 1$.

Theorem (Bartholdi-B, 2007)

For $n \geq 1$,

Define

- G_n is a finite 3-group of order 3^{3n+2} .
- G_n is nilpotent of class 2n + 1.
- G_n has derived length $\lfloor \log_2(3n+3) \rfloor$.

Invariants of finite Schur σ -groups (d=2, p=3)

A 2-generated 3-group G has 4 subgroups $\{H_i\}_{i=1}^4$ of index 3.

Definition

The **Transfer Target Type (TTT) of** G consists of the 4 groups H_i^{ab} where $H_i^{ab} = H_i/[H_i, H_i]$ is the abelianization of H_i .

Definition

The **Transfer Kernel Type (TKT) of** G consists of the kernels of the transfer (Verlagerung) maps from G^{ab} to H_i^{ab} for i=1 to 4.

If $G = G_{K,3}$ then the TTT and TKT of G are explicitly computable in terms of K and certain low degree extensions (3-class groups and capitulation).

Invariants of finite Schur σ -groups (d=2, p=3)

Theorem (B-Mayer, 2012)

Let G be a Schur σ -group satisfying:

- (i) $G^{ab} \cong [3,3]$
- (ii) $TTT(G) = \{[3, 9]^3, [9, 27]\}, \text{ and }$
- (iii) $TKT(G) = (\overline{H_1}, \overline{H_4}, \overline{H_3}, \overline{H_1})$ where $\overline{H_i}$ denotes the subgroup in G^{ab} corresponding to H_i .

Then G is one of two possible finite 3-groups of order 3^8 . Both have derived length 3.

Corollary

If $G = G_3^{\infty}(K)$ satisfies the conditions above then K has 3-class tower of length exactly 3. e.g. $K = \mathbb{Q}(\sqrt{-9748})$.

The *p*-group generation algorithm

We make use of O'Brien's p-group generation algorithm (1990) to find candidates for certain special quotients of G (and eventually G itself).

This approach was first used by Boston and Leedham-Green (2002) on a slightly different but related problem.

Lower exponent p-central series of G

$$G = P_0(G) \ge P_1(G) \ge P_2(G) \ge \dots$$

where $P_n(G) = P_{n-1}(G)^p[G, P_{n-1}(G)]$ for each $n \ge 1$.

If $P_{n-1}(G) \neq 1$ and $P_n(G) = 1$ then we say G has **p-class n**.

The *p*-group generation algorithm

All *d*-generated *p*-groups can be arranged in a tree with root $(\mathbb{Z}/p\mathbb{Z})^d$ at level 1 and the groups of *p*-class *n* at level *n*.

We define edge relations between groups in successive levels as follows:

Edges between vertices at level n and n-1:

If G has p-class n and H has p-class n-1 then we include an edge $G \to H$ if and only if $G/P_{n-1}(G) \cong H$.

The algorithm provides an effective method for finding the (finitely many) immediate descendants of a given group G and hence enumerating the groups in the tree down to any level.

A sketch of the proof

Theorem (B-Mayer, 2012)

Let G be a Schur σ -group satisfying:

- (i) $G^{ab} \cong [3,3]$
- (ii) $TTT(G) = \{[3, 9]^3, [9, 27]\}$, and
- (iii) $TKT(G) = (\overline{H_1}, \overline{H_4}, \overline{H_3}, \overline{H_1})$ where $\overline{H_i}$ denotes the subgroup in G^{ab} corresponding to H_i .

Then G is one of two possible finite 3-groups of order 3^8 . Both have derived length 3.

We impose the constraints in the theorem to narrow down the search for larger and larger quotients $G/P_c(G)$. This is effective because they involve inherited properties.

Inherited Properties

Example

If G_2 is any descendant of G_1 then G_1 is a quotient of G_2 and so G_1^{ab} is a quotient of G_2^{ab} . If we are looking for groups G with $G^{ab} \cong [3,3]$ and we encounter a group G_1 with $G_1^{ab} \cong [3,9]$ or [3,3,3] (or worse) then we can eliminate G_1 and **all of its descendants** from our search.

Similar statements can be made for the abelianizations H_i^{ab} , the kernels of the transfer maps (once G^{ab} has stabilized), the existence of a σ -automorphism etc.

We also make use of a stabilization result due to Nover.

Example

If G_2 is an immediate descendant of G_1 with $G_2^{ab} \cong G_1^{ab}$ then G_i^{ab} remains fixed for all further descendants G_i of G_2 .

A sketch of the proof (cont'd)

Starting from $G_1 = G/P_1(G) = [3,3]$, we find unique candidates for the quotients $G_c = G/P_c(G)$ for $2 \le c \le 4$ and 2 candidates for G_5 .

There are 0 candidates for G_6 . ie. no groups of 3-class 6 exist whose structure is consistent with the constraints in the theorem.

Key Observation

If G were infinite then there would be p-class c quotients $G/P_c(G)$ consistent with the constraints for all $c \ge 1$. Hence, **G must be finite**.

The constraints are satisfied exactly for the 2 candidates of 3-class 5 so G must be one of those two groups.

Things to do

- Find criteria for finite towers of length \geq 4.
- Find results for other choices of p and/or that are independent of machine computation.
- Nonabelian version of the Cohen-Lenstra heuristics (joint work with Boston and Hajir).

THANKS FOR YOUR ATTENTION!