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Which groups have property (o)?

Property (o)

A group G satisfies (o) if it satisfies two conditions:

() G is generated by three involutions a, b, c two of which commute, say
ab = ba;

(i) forallt, se T :=a®ubCu (ab)®u cC the product ts has order at most 6.

G has (0) = G is a quotient of a Coxeter group G(™"P) for m, n, p € [1,6]:
GmnP) .= (a,b,c | &, b?, ¢?, (ab)?, (ac)™, (bc)", (abc)P).

Moreover which of the groups having (o) embed in M, the Monster simple
group, such that a, b, ab and ¢ are mapped to the conjugacy class 2A of M?

() 4/26



Original goal:
@ Classify all Majorana algebras generated by three axes ((aa, ap, ac)) such
that the subalgebra ((aa, ap)) is of type 2A,

() 5/26



Original goal:
@ Classify all Majorana algebras generated by three axes ((aa, ap, ac)) such
that the subalgebra ((aa, ap)) is of type 2A,

@ which of these are subalgebras of Vy, the Monster algebra?

() 5/26



Original goal:

@ Classify all Majorana algebras generated by three axes ((aa, ap, ac)) such
that the subalgebra ((aa, ap)) is of type 2A,
@ which of these are subalgebras of Vy, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of Vi
and of some of its idempotents called 2A-axes.

5/26



Original goal:
@ Classify all Majorana algebras generated by three axes ((aa, ap, ac)) such
that the subalgebra ((aa, ap)) is of type 2A,
@ which of these are subalgebras of Vy, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of Vi
and of some of its idempotents called 2A-axes.
Two distinct objectives:

() 5/26



Original goal:
@ Classify all Majorana algebras generated by three axes ((aa, ap, ac)) such
that the subalgebra ((aa, ap)) is of type 2A,
@ which of these are subalgebras of Vy, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of Vi
and of some of its idempotents called 2A-axes.
Two distinct objectives:

@ describe a class of algebras independently of M,
@ describe subalgebras of V4, using the subgroup structure of M.

() 5/26



Original goal:
@ Classify all Majorana algebras generated by three axes ((aa, ap, ac)) such
that the subalgebra ((aa, ap)) is of type 2A,
@ which of these are subalgebras of Vy, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of Vi
and of some of its idempotents called 2A-axes.
Two distinct objectives:

@ describe a class of algebras independently of M,
@ describe subalgebras of V4, using the subgroup structure of M.

Proposition (Conway, 1984)
There is a bijection 1) between the 2 A-involutions of M and the 2A-axes of V.
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Majorana representation

Definition (Majorana representation)
For a finite group G a Majorana representation is a tuple:

R:(G, T, Xa (7)7 ) ¢, 11/})

We call X a Majorana algebra for G and write X = ((A)) for A := {ai}e7.
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Majorana representation

Definition (Majorana representation)
For a finite group G a Majorana representation is a tuple:

R:(G, T, X, (a): R (rb? 1/})

@ T is a G-invariant set of involutions generating G,
@ (X,(, ),)is an algebra satisfying (M1)and (M2),
@ ¢: G — Aut(X) is a representation of G with kernel Z(G),

@ ¢y: T — Ar sends each t € T to a Majorana axis a; := (&) of X , such
that ¢(t) acts on X as the Majorana involution 7(¢(t));

Vg € G ap = a'9),
@ and lastly we require that ¢)(T) generates X.

We call X a Majorana algebra for G and write X = ((A)) for A := {as}te7.

Example

R =M, 2A, W, (, ),-, %) is a Majorana representation of M with Majorana
algebra Vi.
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For any subgroup H of M generated by a H-invariant set of 2A-involutions,
one can define a Majorana algebra for H which is a subalgebra V.
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For any subgroup H of M generated by a H-invariant set of 2A-involutions,
one can define a Majorana algebra for H which is a subalgebra V.

First look at dihedral subalgebras of V.

Lemma (The 6-transposition property)

Fort, s € 2A the product ts belongs to either of the M conjugacy classes:
1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Theorem (Conway, Norton, 1985)
For any t, s € 2A there are 9 isomorphism types of dihedral subalgebras

((4(1),4(8))) in Vi

Theorem (A. A. Ivanov et al, 2009)

There are exactly 9 dihedral Majorana algebras obtained from the dihedral
groups and they are equal to the dihedral subalgebras of V.
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For Let G be a finite group. If G has a Majorana representation
R=(G, T, X, (,), -, &, v¥) then the involutions in T are 6-transpositions.
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For Let G be a finite group. If G has a Majorana representation
R=(G, T, X, (,), -, &, v¥) then the involutions in T are 6-transpositions.

Let G be a group generated by 3 involutions a, b, ¢ with ab = ba, and define a
Majorana representation of G with:

e T=a%ublu(ab)®ucC
° X = ((¢(a),¥(b),¥(c)));
@ the subalgebra ((y(a), ¥ (b))) has type 2A.

What are the possible groups G? They must satisfy (o).
For which such groups G is X a subalgebras of Viy? The groups G must
embed in M such that a, b, ¢, ab are mapped to 2A-involutions.
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Property (o)

A group G satisfies (o) if it satisfies two conditions:
(i) G is generated by a, b, c, or order dividing 2, two of which commute, say
ab=ba;
(i) forallt, sc T := a®uUb®U (ab)® U cC the product ts has order at most 6.

Theorem (D. 2013)

A group has property (o) if and only if it is a quotient of at least one of the
following 11 finite groups:

1) 2 wr 22 7) 24 Xo A5

2) (S3x83):22 8 2xS

3) 2 D10 9) (24 : (83 X 83)) X 2
4) 2xSs 10) 25:4 Ss

5 Ly(11) 11) (3*:2):(312:2?)

6) (24 o D12) X 2
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Group | Isomorphism Quotient of G™™P)  Centre  Subgroups
Type for (m,n,p) = Order
Gi 2 wr 22 (4,4,4) 2
Gz (33 X 83) . 22 (4,4,6) 2
Gg 24 : D10 (4,5,5) 1
Gy 2 x S5 (4,5,6) 2
Gs Lo(11) (5,5,5) 1
Gg (24 N D12) X 2 (4,6,6) 2
G7 24 Ao A5 (6, 5,5) 1 Gs
Gg 2 x Se (6,6,5) 2 Gg, G4
Gg (24 . (33 X 83)) X 2 (6,6,6) 2
G10 25 ) 85 (6,6,6) 2 G3, G47 Ge
Gi1 | (8*:2):(31%2.22) (6,6,6) 1

() 12/26



e Main theorem
@ Norton’s embeddings

0 13/26



Which of the G;’s embed into M such that a, b, ab, ¢ are mapped to class 2A
of M?

() 14/26



Which of the G;’s embed into M such that a, b, ab, ¢ are mapped to class 2A
of M?
From a result of S. Norton we obtain:

() 14/26



Which of the G;’s embed into M such that a, b, ab, ¢ are mapped to class 2A
of M?

From a result of S. Norton we obtain:

Proposition (Norton, 1985)
Except for Gy and Gy4 all the groups G; 2A-embed into M.

14/26



Which of the G;’s embed into M such that a, b, ab, ¢ are mapped to class 2A
of M?

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for Gy and G4 all the groups G; 2A-embed into M. Moreover the
largest quotients of Gg and Gy1 which 2A-embed into M are:

() 14/26



Which of the G;’s embed into M such that a, b, ab, ¢ are mapped to class 2A
of M?

From a result of S. Norton we obtain:
Proposition (Norton, 1985)

Except for Gy and G4 all the groups G; 2A-embed into M. Moreover the
largest quotients of Gg and Gy1 which 2A-embed into M are:

@ Go/Z(Gg) = 2*:(S3 x S3);

() 14/26



Which of the G;’s embed into M such that a, b, ab, ¢ are mapped to class 2A
of M?

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for Gy and G4 all the groups G; 2A-embed into M. Moreover the
largest quotients of Gg and Gy1 which 2A-embed into M are:

@ Go/Z(Gg) = 2*:(S3 x S3);
o G11/(34 : 2) = 31_+2 : 22 =~ (5(3.,6.6)
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The finite G™™P) groups
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The finite G™™P) groups

We assume 2 < m < n < p <6 wlog.

Theorem (Coxeter 1939, Edjvet 1994)

2 < m < n< p< 6 then the group G\™"P) s finite if and only if

(m,n,p) ¢ {(4,6,6), (5,5,6), (5,6,6), (6,6,6)}.

G(3,5,5) o~ A5, G(3,6,6) o~ 31++2 : 22’ G(5,5,5) — L2(1 1 )

Proposition
If m, n, p are such that :
() 2<m<n<p<6, and
(iy (m,n,p) ¢ {(4,6,6), (5,5,6), (5,6,6), (6,6,6)},
then the group G\™™P) satisfies (o).
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@ Proof

@ The infinite cases (m, n, p) # (6,6, 6)
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Introduce the relation F?1" =1for Ry = a- b® = acbc,
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The presentation for G(™™P) is symmetric in a, b but not in a, b, ab. Hence
need to consider the cases (m,n,p) € S:

S:=1{(4,6,6), (6,6,4), (5,5,6), (6,5,5), (5,6,6), (6,6,5)}.

Proposition (Magma)
For(m,n,p) € S and ry € [1,6] the groups G{™™P- ) are all finite.

It remains to find the isomorphism types of the groups G(™"P"1) and check
whether they satisfy (o).

() 18/26



Assume (m,n,p) e Sand r; € [1,6].
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Assume (m,n,p) e Sand r; € [1,6].
Let us describe the isomorphism types of the groups G(™"P: 1),

Definition
We say that G(™"P: ") does not shrink if the orders of ac, bc and abc are not
smaller than m, n and p respectively.

| 5\

Example
Let G := G(4864),
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Assume (m,n,p) e Sand r; € [1,6].
Let us describe the isomorphism types of the groups G(™"P: 1),
Definition

We say that G(™"P: ") does not shrink if the orders of ac, bc and abc are not
smaller than m, n and p respectively.

Example

| \

Let G := G*884) Magma gives |G| = 192. Let N be the normal closure of
(a). Now G/N = (b, c) = Dy, so that |[N| = 32. We can check that

N = (a,a°, a®, a®°, a®®) =~ 25 so that G = N : H, where action of Hon N
gives Z(G) = (aa®°a®eh) = 2.

Proposition

The groups G{™™P: 1) which do not shrink are as follows:




(o)

Element contradicting (o)

(m,n,p; r) Iso. Type
(4,6,6; 4) 2 x (2% 14, Di2) Y -
(6,6,4; 3) 2%, Diz Y -
(6,6,4; 6) 222x(2*:y, Di2) N ab - a° has order 8
(6,5,5; 5) 24, As Y -
(5,5,6; 3) 2 x As N ab - a° has order 10
=~ (3,5,10)
5,5,6; 6) 2.(2% 1y, As) N ab - a° has order 10
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(m,n,p; ) Iso. Type (o) Element contradicting (o)
(6,6,5; 4) 2x S Y —

(6,6,5; 5) 2 x Lp(11) N ab - a° has order 10
(5,6,6; 5) 2 x Ly(11) N ab - a° has order 10
(5,6,6;6) (2°:3):(2xS) N ab - &° has order 12
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@ Proof

@ The infinite case (m, n,p) = (6,6, 6)
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For (m, n, p) = (6,6,6) we introduce four relations R = 1 :
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For (m, n, p) = (6,6,6) we introduce four relations R = 1 :
Ry = (a-b°)", RE = (ab- &%), RY = (ab-b°)*, Ry = (c- b%?)",
where r; € [1,6] for all /.

G(m.n.p: 11, F2,3,08) . —

(a,bc| &, b?, ¢ (ab)? (ac)™, (bc)", (abe)P, Ry, Ry, Ry, Ry).

Proposition (Magma)

The groups G(™MP: 11> 215:14) gre finite for ry, ra, r3, rs € [1,6].
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Let G := G688 11, 2, 75)
(i) If1 € {n, r, r3} then G is a quotient of the group 22;
(ii) If2 € {n, rz, 13} then G is a quotient of the group Sz x Sz X 2;
(iii) If3 € {n, r2, 13} then G is a quotient of the group D;,;
(iv) If4 € {n, r2, r3} then G is a quotient of the group (2* : (S3 x S3)) x 2;
(v) If{5, 6} C {n, r2, 13} then G is a quotient of the group 22.

All the groups above satisfy (o) .

Only cases left: (r1, 12, r3) equal to (5,5,5) or (6,6,6).
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Proposition

Let(m,n,p) = (6,6,6).
@ for(ry, ra, 13) = (5,5,5) the largest quotient of G(6:8:6: 555 satisfying
(o) is2°:Ss;
@ for(ry, ra, 13) = (6,6,6) the largest quotient of G(6:8.6: 6:6.6) satisfying
(o) is (3*:2): (312 :2?),
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@ for(ry, ra, 13) = (5,5,5) the largest quotient of G(6:8:6: 555 satisfying
(o) is2°:Ss;

@ for(ry, ra, 13) = (6,6,6) the largest quotient of G(6:8.6: 6:6.6) satisfying
(o) is (3*:2): (312 :2?),

What next?

Classify all the Majorana representations of the groups G;, i € [1,11].
For Gs = G(5,5,5) = L,(11) this is done; there is only one.
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Thank you!
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