The 6-transposition quotients of the Coxeter groups $G^{(m,n,p)}$

Sophie Decelle

Imperial College London

Groups St Andrews 2013

Outline

1 Introduction

Property (σ)

Motivation

- Majorana representation
- Dihedral subalgebras

Main theorem

Norton's embeddings

Proof

- The finite cases
- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

Outline

Introduction Property (σ)

2 Motivation

- Majorana representation
- Dihedral subalgebras

Main theorem

Norton's embeddings

Proof

- The finite cases
- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:

 (i) G is generated by three involutions a, b, c two of which commute, say ab = ba ;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

G has $(\sigma) \Rightarrow G$ is a quotient of a Coxeter group $G^{(m,n,p)}$ for $m, n, p \in [1,6]$:

 $G^{(m,n,p)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p \rangle.$

Moreover which of the groups having (σ) embed in M, the Monster simple group, such that *a*, *b*, *ab* and *c* are mapped to the conjugacy class 2*A* of M?

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:

 (i) G is generated by three involutions a, b, c two of which commute, say ab = ba;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

G has $(\sigma) \Rightarrow G$ is a quotient of a Coxeter group $G^{(m,n,p)}$ for $m, n, p \in [1,6]$:

 $G^{(m,n,p)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p \rangle.$

Moreover which of the groups having (σ) embed in M, the Monster simple group, such that *a*, *b*, *ab* and *c* are mapped to the conjugacy class 2*A* of M?

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:

(i) G is generated by three involutions a, b, c two of which commute, say ab = ba;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

G has $(\sigma) \Rightarrow G$ is a quotient of a Coxeter group $G^{(m,n,p)}$ for $m, n, p \in [1,6]$:

 $G^{(m,n,p)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p \rangle.$

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:

(i) G is generated by three involutions a, b, c two of which commute, say ab = ba;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

G has $(\sigma) \Rightarrow G$ is a quotient of a Coxeter group $G^{(m,n,p)}$ for $m, n, p \in [1,6]$:

 $G^{(m,n,p)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p \rangle.$

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:

(i) G is generated by three involutions a, b, c two of which commute, say ab = ba;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

G has $(\sigma) \Rightarrow G$ is a quotient of a Coxeter group $G^{(m,n,p)}$ for $m, n, p \in [1,6]$:

 $G^{(m,n,p)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p \rangle.$

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:

(i) G is generated by three involutions a, b, c two of which commute, say ab = ba;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

G has $(\sigma) \Rightarrow G$ is a quotient of a Coxeter group $G^{(m,n,p)}$ for $m, n, p \in [1,6]$:

$G^{(m,n,p)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p \rangle.$

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:

(i) G is generated by three involutions a, b, c two of which commute, say ab = ba;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

G has $(\sigma) \Rightarrow G$ is a quotient of a Coxeter group $G^{(m,n,p)}$ for $m, n, p \in [1,6]$:

 $G^{(m,n,p)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p \rangle.$

Moreover which of the groups having (σ) embed in \mathbb{M} , the Monster simple group, such that *a*, *b*, *ab* and *c* are mapped to the conjugacy class 2*A* of \mathbb{M} ?

・ロン・(部・・モン・モン・ 早

Motivation

Original goal:

- Classify all Majorana algebras generated by three axes ((*a_a*, *a_b*, *a_c*)) such that the subalgebra ((*a_a*, *a_b*)) is of *type 2A*,
- which of these are subalgebras of $V_{\mathbb{M}}$, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of $V_{\mathbb{M}}$ and of some of its idempotents called 2*A*-axes.

Two distinct objectives:

- $\bullet\,$ describe a class of algebras independently of $\mathbb{M},$
- describe subalgebras of $V_{\mathbb{M}}$ using the subgroup structure of \mathbb{M} .

Proposition (Conway, 1984)

There is a bijection ψ between the 2A-involutions of ${\mathbb M}$ and the 2A-axes of V $_{{\mathbb M}}$.

Motivation

Original goal:

- Classify all Majorana algebras generated by three axes ((*a_a*, *a_b*, *a_c*)) such that the subalgebra ((*a_a*, *a_b*)) is of *type 2A*,
- which of these are subalgebras of $V_{\mathbb{M}}$, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of V_{M} and of some of its idempotents called 2*A*-axes. Two distinct objectives:

- \bullet describe a class of algebras independently of $\mathbb{M},$
- describe subalgebras of $V_{\mathbb{M}}$ using the subgroup structure of \mathbb{M} .

Proposition (Conway, 1984)

There is a bijection ψ between the 2A-involutions of ${\mathbb M}$ and the 2A-axes of V $_{{\mathbb M}}$.

- Classify all Majorana algebras generated by three axes ((*a_a*, *a_b*, *a_c*)) such that the subalgebra ((*a_a*, *a_b*)) is of *type 2A*,
- which of these are subalgebras of $V_{\mathbb{M}}$, the Monster algebra?
- Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of V_{M} and of some of its idempotents called 2*A*-axes.

Two distinct objectives:

- $\bullet\,$ describe a class of algebras independently of $\mathbb{M},$
- describe subalgebras of $V_{\mathbb{M}}$ using the subgroup structure of \mathbb{M} .

Proposition (Conway, 1984)

There is a bijection ψ between the 2A-involutions of ${\mathbb M}$ and the 2A-axes of V $_{{\mathbb M}}$.

- Classify all Majorana algebras generated by three axes ((*a_a*, *a_b*, *a_c*)) such that the subalgebra ((*a_a*, *a_b*)) is of *type 2A*,
- which of these are subalgebras of $V_{\mathbb{M}}$, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of V_{M} and of some of its idempotents called 2*A*-axes. Two distinct objectives:

- describe a class of algebras independently of M,
- describe subalgebras of $V_{\mathbb{M}}$ using the subgroup structure of \mathbb{M} .

Proposition (Conway, 1984)

There is a bijection ψ between the 2A-involutions of ${\mathbb M}$ and the 2A-axes of V $_{{\mathbb M}}$.

- Classify all Majorana algebras generated by three axes ((*a_a*, *a_b*, *a_c*)) such that the subalgebra ((*a_a*, *a_b*)) is of *type 2A*,
- which of these are subalgebras of $V_{\mathbb{M}}$, the Monster algebra?
- Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of V_{M} and of some of its idempotents called 2*A*-axes.

Two distinct objectives:

- describe a class of algebras independently of M,
- describe subalgebras of $V_{\mathbb{M}}$ using the subgroup structure of \mathbb{M} .

Proposition (Conway, 1984)

There is a bijection ψ between the 2A-involutions of ${\mathbb M}$ and the 2A-axes of V $_{{\mathbb M}}.$

- Classify all Majorana algebras generated by three axes ((*a_a*, *a_b*, *a_c*)) such that the subalgebra ((*a_a*, *a_b*)) is of *type 2A*,
- which of these are subalgebras of $V_{\mathbb{M}}$, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of V_{M} and of some of its idempotents called 2*A*-axes.

Two distinct objectives:

- describe a class of algebras independently of M,
- describe subalgebras of $V_{\mathbb{M}}$ using the subgroup structure of \mathbb{M} .

Proposition (Conway, 1984)

There is a bijection ψ between the 2A-involutions of \mathbb{M} and the 2A-axes of $V_{\mathbb{M}}$.

Outline

Introduction Property (σ)

2 Motivation

Majorana representation

Dihedral subalgebras

Main theorer

Norton's embeddings

Proof

- The finite cases
- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

For a finite group G a Majorana representation is a tuple:

 $\mathcal{R} = (\mathbf{G}, \ \mathbf{T}, \ \mathbf{X}, \ (\ ,\), \ \cdot, \ \phi, \ \psi)$

- *T* is a *G*-invariant set of involutions generating *G*,
- $(X, (,), \cdot)$ is an algebra satisfying (**M1**) and (**M2**),
- $\phi : G \rightarrow Aut(X)$ is a representation of G with kernel Z(G),
- $\psi: T \hookrightarrow A_T$ sends each $t \in T$ to a **Majorana axis** $a_t := \psi(t)$ of X, such that $\phi(t)$ acts on X as the **Majorana involution** $\tau(\psi(t))$; $\forall g \in G \ a_{t^g} = a_t^{\phi(g)}$),
- and lastly we require that $\psi(T)$ generates X.

We call X a *Majorana algebra* for G and write $X = \langle \langle A \rangle \rangle$ for $A := \{a_t\}_{t \in T}$.

Example

For a finite group G a Majorana representation is a tuple:

 $\mathcal{R} = (\boldsymbol{G}, \boldsymbol{T}, \boldsymbol{X}, (,), \cdot, \phi, \psi)$

- T is a G-invariant set of involutions generating G,
- $(X, (,), \cdot)$ is an algebra satisfying (*M*1) and (*M*2),
- $\phi : G \rightarrow Aut(X)$ is a representation of G with kernel Z(G),
- $\psi: T \hookrightarrow A_T$ sends each $t \in T$ to a **Majorana axis** $a_t := \psi(t)$ of X, such that $\phi(t)$ acts on X as the **Majorana involution** $\tau(\psi(t))$; $\forall g \in G \ a_{t^g} = a_t^{\phi(g)}$),
- and lastly we require that $\psi(T)$ generates X.

We call X a *Majorana algebra* for G and write $X = \langle \langle A \rangle \rangle$ for $A := \{a_t\}_{t \in T}$.

Example

For a finite group G a Majorana representation is a tuple:

 $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$

- T is a G-invariant set of involutions generating G,
- $(X, (,), \cdot)$ is an algebra satisfying (M1) and (M2),
- $\phi : G \rightarrow Aut(X)$ is a representation of G with kernel Z(G),
- $\psi: T \hookrightarrow A_T$ sends each $t \in T$ to a Majorana axis $a_t := \psi(t)$ of X, such that $\phi(t)$ acts on X as the Majorana involution $\tau(\psi(t))$; $\forall g \in G \ a_{t^g} = a_t^{\phi(g)})$,
- and lastly we require that $\psi(T)$ generates X.

We call X a *Majorana algebra* for G and write $X = \langle \langle A \rangle \rangle$ for $A := \{a_t\}_{t \in T}$.

Example

For a finite group G a Majorana representation is a tuple:

 $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$

- T is a G-invariant set of involutions generating G,
- $(X, (,), \cdot)$ is an algebra satisfying (M1) and (M2),
- $\phi : G \rightarrow Aut(X)$ is a representation of G with kernel Z(G),
- $\psi: T \hookrightarrow A_T$ sends each $t \in T$ to a **Majorana axis** $a_t := \psi(t)$ of X, such that $\phi(t)$ acts on X as the **Majorana involution** $\tau(\psi(t))$; $\forall g \in G \ a_{t^g} = a_t^{\phi(g)}$),
- and lastly we require that $\psi(T)$ generates X.

We call X a *Majorana algebra* for G and write $X = \langle \langle A \rangle \rangle$ for $A := \{a_t\}_{t \in T}$.

Example

For a finite group G a Majorana representation is a tuple:

 $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$

- T is a G-invariant set of involutions generating G,
- $(X, (,), \cdot)$ is an algebra satisfying (M1) and (M2),
- $\phi : G \rightarrow Aut(X)$ is a representation of G with kernel Z(G),
- $\psi: T \hookrightarrow A_T$ sends each $t \in T$ to a Majorana axis $a_t := \psi(t)$ of X, such that $\phi(t)$ acts on X as the Majorana involution $\tau(\psi(t))$; $\forall g \in G \ a_{t^g} = a_t^{\phi(g)})$,
- and lastly we require that $\psi(T)$ generates X.

We call X a *Majorana algebra* for G and write $X = \langle \langle A \rangle \rangle$ for $A := \{a_t\}_{t \in T}$.

Example

For a finite group G a Majorana representation is a tuple:

 $\mathcal{R} = (\boldsymbol{G}, \boldsymbol{T}, \boldsymbol{X}, (,), \cdot, \phi, \psi)$

- T is a G-invariant set of involutions generating G,
- $(X, (,), \cdot)$ is an algebra satisfying **(M1)** and **(M2)**,
- $\phi : G \rightarrow Aut(X)$ is a representation of G with kernel Z(G),
- $\psi: T \hookrightarrow A_T$ sends each $t \in T$ to a Majorana axis $a_t := \psi(t)$ of X, such that $\phi(t)$ acts on X as the Majorana involution $\tau(\psi(t))$; $\forall g \in G \ a_{t^g} = a_t^{\phi(g)})$,
- and lastly we require that $\psi(T)$ generates X.

We call X a *Majorana algebra* for G and write $X = \langle \langle A \rangle \rangle$ for $A := \{a_t\}_{t \in T}$.

Example

For a finite group G a Majorana representation is a tuple:

 $\mathcal{R} = (\boldsymbol{G}, \boldsymbol{T}, \boldsymbol{X}, (,), \cdot, \phi, \psi)$

- T is a G-invariant set of involutions generating G,
- $(X, (,), \cdot)$ is an algebra satisfying **(M1)** and **(M2)**,
- $\phi : G \rightarrow Aut(X)$ is a representation of G with kernel Z(G),
- $\psi: T \hookrightarrow A_T$ sends each $t \in T$ to a Majorana axis $a_t := \psi(t)$ of X, such that $\phi(t)$ acts on X as the Majorana involution $\tau(\psi(t))$; $\forall g \in G \ a_{t^g} = a_t^{\phi(g)})$,
- and lastly we require that $\psi(T)$ generates X.

We call X a *Majorana algebra* for G and write $X = \langle \langle A \rangle \rangle$ for $A := \{a_t\}_{t \in T}$.

Example

Outline

Introduction Property (σ)

2 Motivation

- Majorana representation
- Dihedral subalgebras

Main theorem

Norton's embeddings

Proof

- The finite cases
- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

For any subgroup *H* of \mathbb{M} generated by a *H*-invariant set of 2*A*-involutions, one can define a Majorana algebra for *H* which is a subalgebra $V_{\mathbb{M}}$.

First look at *dihedral subalgebras* of $V_{\rm M}$.

Lemma (The 6-transposition property)

For t, $s \in 2A$ the product ts belongs to either of the \mathbb{M} conjugacy classes: 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Theorem (Conway, Norton, 1985)

For any $t, s \in 2A$ there are 9 isomorphism types of dihedral subalgebras $\langle \langle \psi(t), \psi(s) \rangle \rangle$ in $V_{\mathbb{M}}$.

Theorem (A. A. Ivanov et al, 2009)

For any subgroup *H* of \mathbb{M} generated by a *H*-invariant set of 2*A*-involutions, one can define a Majorana algebra for *H* which is a subalgebra $V_{\mathbb{M}}$.

First look at *dihedral subalgebras* of V_{M} .

Lemma (The 6-transposition property)

For t, $s \in 2A$ the product ts belongs to either of the \mathbb{M} conjugacy classes: 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Theorem (Conway, Norton, 1985)

For any $t, s \in 2A$ there are 9 isomorphism types of dihedral subalgebras $\langle \langle \psi(t), \psi(s) \rangle \rangle$ in $V_{\mathbb{M}}$.

Theorem (A. A. Ivanov et al, 2009)

For any subgroup *H* of \mathbb{M} generated by a *H*-invariant set of 2*A*-involutions, one can define a Majorana algebra for *H* which is a subalgebra $V_{\mathbb{M}}$.

First look at *dihedral subalgebras* of V_{M} .

Lemma (The 6-transposition property)

For t, $s \in 2A$ the product ts belongs to either of the \mathbb{M} conjugacy classes: 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Theorem (Conway, Norton, 1985)

For any $t, s \in 2A$ there are 9 isomorphism types of dihedral subalgebras $\langle \langle \psi(t), \psi(s) \rangle \rangle$ in $V_{\mathbb{M}}$.

Theorem (A. A. Ivanov et al, 2009)

For any subgroup *H* of \mathbb{M} generated by a *H*-invariant set of 2*A*-involutions, one can define a Majorana algebra for *H* which is a subalgebra $V_{\mathbb{M}}$.

First look at *dihedral subalgebras* of V_{M} .

Lemma (The 6-transposition property)

For t, $s \in 2A$ the product ts belongs to either of the \mathbb{M} conjugacy classes: 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Theorem (Conway, Norton, 1985)

For any $t, s \in 2A$ there are 9 isomorphism types of dihedral subalgebras $\langle \langle \psi(t), \psi(s) \rangle \rangle$ in $V_{\mathbb{M}}$.

Theorem (A. A. Ivanov et al, 2009)

For any subgroup *H* of \mathbb{M} generated by a *H*-invariant set of 2*A*-involutions, one can define a Majorana algebra for *H* which is a subalgebra $V_{\mathbb{M}}$.

First look at *dihedral subalgebras* of $V_{\mathbb{M}}$.

Lemma (The 6-transposition property)

For t, $s \in 2A$ the product ts belongs to either of the \mathbb{M} conjugacy classes: 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Theorem (Conway, Norton, 1985)

For any $t, s \in 2A$ there are 9 isomorphism types of dihedral subalgebras $\langle \langle \psi(t), \psi(s) \rangle \rangle$ in $V_{\mathbb{M}}$.

Theorem (A. A. Ivanov et al, 2009)

There are exactly 9 dihedral Majorana algebras obtained from the dihedral groups and they are equal to the dihedral subalgebras of V_{M} .

E

・ロ・・ (日・・ 日・・ 日・・

For Let G be a finite group. If G has a Majorana representation $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$ then the involutions in T are 6-transpositions.

Let *G* be a group generated by 3 involutions *a*, *b*, *c* with ab = ba, and define a Majorana representation of *G* with:

- $T = a^G \cup b^G \cup (ab)^G \cup c^G;$
- $X = \langle \langle \psi(a), \psi(b), \psi(c) \rangle \rangle;$
- the subalgebra $\langle \langle \psi(a), \psi(b) \rangle \rangle$ has type 2*A*.

What are the possible groups *G*? They must satisfy (σ) . For which such groups *G* is *X* a subalgebras of $V_{\mathbb{M}}$? The groups *G* must embed in \mathbb{M} such that *a*, *b*, *c*, *ab* are mapped to 2*A*-involutions.

For Let G be a finite group. If G has a Majorana representation $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$ then the involutions in T are 6-transpositions.

Let *G* be a group generated by 3 involutions *a*, *b*, *c* with ab = ba, and define a Majorana representation of *G* with:

- $T = a^G \cup b^G \cup (ab)^G \cup c^G;$
- $X = \langle \langle \psi(a), \psi(b), \psi(c) \rangle \rangle;$
- the subalgebra $\langle\langle\psi(a),\psi(b)\rangle\rangle$ has type 2*A*.

What are the possible groups *G*? They must satisfy (σ) . For which such groups *G* is *X* a subalgebras of V_{M} ? The groups *G* must embed in M such that *a*, *b*, *c*, *ab* are mapped to 2*A*-involutions.

For Let G be a finite group. If G has a Majorana representation $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$ then the involutions in T are 6-transpositions.

Let *G* be a group generated by 3 involutions *a*, *b*, *c* with ab = ba, and define a Majorana representation of *G* with:

- $T = a^G \cup b^G \cup (ab)^G \cup c^G;$
- $X = \langle \langle \psi(a), \psi(b), \psi(c) \rangle \rangle;$
- the subalgebra $\langle\langle\psi(a),\psi(b)\rangle\rangle$ has type 2*A*.

What are the possible groups *G*? They must satisfy (σ) . For which such groups *G* is *X* a subalgebras of V_{M} ? The groups *G* must embed in M such that *a*, *b*, *c*, *ab* are mapped to 2*A*-involutions.

For Let G be a finite group. If G has a Majorana representation $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$ then the involutions in T are 6-transpositions.

Let *G* be a group generated by 3 involutions *a*, *b*, *c* with ab = ba, and define a Majorana representation of *G* with:

- $T = a^G \cup b^G \cup (ab)^G \cup c^G;$
- $X = \langle \langle \psi(a), \psi(b), \psi(c) \rangle \rangle;$
- the subalgebra $\langle \langle \psi(a), \psi(b) \rangle \rangle$ has type 2A.

What are the possible groups *G*? They must satisfy (σ) .

For which such groups *G* is *X* a subalgebras of $V_{\mathbb{M}}$? The groups *G* must embed in \mathbb{M} such that *a*, *b*, *c*, *ab* are mapped to 2*A*-involutions.

For Let G be a finite group. If G has a Majorana representation $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$ then the involutions in T are 6-transpositions.

Let *G* be a group generated by 3 involutions *a*, *b*, *c* with ab = ba, and define a Majorana representation of *G* with:

- $T = a^G \cup b^G \cup (ab)^G \cup c^G;$
- $X = \langle \langle \psi(a), \psi(b), \psi(c) \rangle \rangle;$
- the subalgebra $\langle \langle \psi(a), \psi(b) \rangle \rangle$ has type 2A.

What are the possible groups *G*? They must satisfy (σ). For which such groups *G* is *X* a subalgebras of $V_{\mathbb{M}}$? The groups *G* must embed in \mathbb{M} such that *a*, *b*, *c*, *ab* are mapped to 2*A*-involutions.

For Let G be a finite group. If G has a Majorana representation $\mathcal{R} = (G, T, X, (,), \cdot, \phi, \psi)$ then the involutions in T are 6-transpositions.

Let *G* be a group generated by 3 involutions *a*, *b*, *c* with ab = ba, and define a Majorana representation of *G* with:

- $T = a^G \cup b^G \cup (ab)^G \cup c^G;$
- $X = \langle \langle \psi(a), \psi(b), \psi(c) \rangle \rangle;$
- the subalgebra $\langle \langle \psi(a), \psi(b) \rangle \rangle$ has type 2A.

What are the possible groups *G*? They must satisfy (σ) . For which such groups *G* is *X* a subalgebras of $V_{\mathbb{M}}$? The groups *G* must embed in \mathbb{M} such that *a*, *b*, *c*, *ab* are mapped to 2*A*-involutions.
A group G satisfies (σ) if it satisfies two conditions:

 (i) G is generated by a, b, c, or order dividing 2, two of which commute, say ab = ba ;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

Theorem (D. 2013)

A group has property (σ) if and only if it is a quotient of at least one of the following 11 finite groups:

A group G satisfies (σ) if it satisfies two conditions:

(i) G is generated by a, b, c, or order dividing 2, two of which commute, say ab = ba;

(ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

Theorem (D. 2013)

A group has property (σ) if and only if it is a quotient of at least one of the following 11 finite groups:

A group G satisfies (σ) if it satisfies two conditions:

- (i) G is generated by a, b, c, or order dividing 2, two of which commute, say ab = ba;
- (ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

Theorem (D. 2013)

A group has property (σ) if and only if it is a quotient of at least one of the following 11 finite groups:

<ロ> <同> <同> < 同> < 同> < 同> <

A group G satisfies (σ) if it satisfies two conditions:

- (i) G is generated by a, b, c, or order dividing 2, two of which commute, say ab = ba;
- (ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

Theorem (D. 2013)

A group has property (σ) if and only if it is a quotient of at least one of the following 11 finite groups:

A group G satisfies (σ) if it satisfies two conditions:

- (i) G is generated by a, b, c, or order dividing 2, two of which commute, say ab = ba;
- (ii) for all $t, s \in T := a^G \cup b^G \cup (ab)^G \cup c^G$ the product ts has order at most 6.

Theorem (D. 2013)

A group has property (σ) if and only if it is a quotient of at least one of the following 11 finite groups:

Group	Isomorphism Type	Quotient of $G^{(m,n,p)}$ for $(m, n, p) =$	Centre Order	Subgroups
G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9	$2 wr 2^{2} (S_{3} \times S_{3}) : 2^{2} 2^{4} : D_{10} 2 \times S_{5} L_{2}(11) (2^{4} :_{\phi_{1}} D_{12}) \times 2 2^{4} :_{\lambda_{2}} A_{5} 2 \times S_{6} (2^{4} : (S_{3} \times S_{3})) \times 2$	(4, 4, 4) (4, 4, 6) (4, 5, 5) (4, 5, 6) (5, 5, 5) (4, 6, 6) (6, 5, 5) (6, 6, 5) (6, 6, 6)	2 2 1 2 1 2 1 2 2	$egin{array}{c} G_3 \ G_2, \ G_4 \end{array}$
G_{10} G_{11}	$2^{5}:_{\phi} S_{5}$ $(3^{4}:2):(3^{1+2}_{+}:2^{2})$	(6, 6, 6) (6, 6, 6)	2 1	$G_3,\ G_4,\ G_6$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Outline

Introduction

Property (σ)

2 Motivation

- Majorana representation
- Dihedral subalgebras

Main theorem

Norton's embeddings

Proof

- The finite cases
- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for G_9 and G_{11} all the groups G_i 2A-embed into \mathbb{M} . Moreover the largest quotients of G_9 and G_{11} which 2A-embed into \mathbb{M} are:

•
$$G_9/Z(G_9) \cong 2^4 : (S_3 \times S_3);$$

•
$$G_{11}/(3^4:2) \cong 3^{1+2}_+: 2^2 \cong G^{(3,6,6)}_+$$
.

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for G_9 and G_{11} all the groups G_i 2A-embed into \mathbb{M} . Moreover the largest quotients of G_9 and G_{11} which 2A-embed into \mathbb{M} are:

•
$$G_9/Z(G_9) \cong 2^4 : (S_3 \times S_3);$$

•
$$G_{11}/(3^4:2) \cong 3^{1+2}_+: 2^2 \cong G^{(3,6,6)}_+$$

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for G_9 *and* G_{11} *all the groups* G_i 2*A-embed into* \mathbb{M} *. Moreover the largest quotients of* G_9 *and* G_{11} *which* 2*A-embed into* \mathbb{M} *are:*

- $G_9/Z(G_9) \cong 2^4 : (S_3 \times S_3);$
- $G_{11}/(3^4:2) \cong 3^{1+2}_+: 2^2 \cong G^{(3,6,6)}.$

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for G_9 and G_{11} all the groups G_i 2A-embed into \mathbb{M} . Moreover the largest quotients of G_9 and G_{11} which 2A-embed into \mathbb{M} are:

- $G_9/Z(G_9) \cong 2^4 : (S_3 \times S_3);$
- $G_{11}/(3^4:2) \cong 3^{1+2}_+: 2^2 \cong G^{(3,6,6)}.$

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for G_9 and G_{11} all the groups G_i 2A-embed into \mathbb{M} . Moreover the largest quotients of G_9 and G_{11} which 2A-embed into \mathbb{M} are:

•
$$G_9/Z(G_9) \cong 2^4 : (S_3 \times S_3);$$

• $G_{11}/(3^4:2) \cong 3^{1+2}_+: 2^2 \cong G^{(3,6,6)}.$

From a result of S. Norton we obtain:

Proposition (Norton, 1985)

Except for G_9 and G_{11} all the groups G_i 2A-embed into \mathbb{M} . Moreover the largest quotients of G_9 and G_{11} which 2A-embed into \mathbb{M} are:

•
$$G_9/Z(G_9) \cong 2^4 : (S_3 \times S_3);$$

•
$$G_{11}/(3^4:2) \cong 3^{1+2}_+: 2^2 \cong G^{(3,6,6)}_+$$

Outline

Introduction

Property (σ)

2 Motivation

- Majorana representation
- Dihedral subalgebras

Main theorer

Norton's embeddings

Proof

The finite cases

- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

We assume $2 \le m \le n \le p \le 6$ wlog.

Theorem (Coxeter 1939, Edjvet 1994)

 $2 \le m \le n \le p \le 6$ then the group $G^{(m,n,p)}$ is finite if and only if

 $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\}.$

Example

 $G^{(3,5,5)} \cong A_5, \ G^{(3,6,6)} \cong 3^{1+2}_+ : 2^2, \ G^{(5,5,5)} = L_2(11).$

Proposition

If m, n, p are such that : (i) $2 \le m \le n \le n \le 6$ and

(ii) $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\}$

then the group $G^{(m,n,p)}$ satisfies (σ) .

We assume $2 \le m \le n \le p \le 6$ wlog.

Theorem (Coxeter 1939, Edjvet 1994)

 $2 \le m \le n \le p \le 6$ then the group $G^{(m,n,p)}$ is finite if and only if

 $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\}.$

Example

 $G^{(3,5,5)} \cong A_5, \ G^{(3,6,6)} \cong 3^{1+2}_+ : 2^2, \ G^{(5,5,5)} = L_2(11).$

Proposition

If m, n, p are such that :

(i) $2 \le m \le n \le p \le 6$, and

(ii) $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\},\$

then the group $G^{(m,n,p)}$ satisfies (σ) .

We assume $2 \le m \le n \le p \le 6$ wlog.

Theorem (Coxeter 1939, Edjvet 1994)

 $2 \le m \le n \le p \le 6$ then the group $G^{(m,n,p)}$ is finite if and only if

 $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\}.$

Example

$$G^{(3,5,5)} \cong A_5, \ G^{(3,6,6)} \cong 3^{1+2}_+ : 2^2, \ G^{(5,5,5)} = L_2(11).$$

Proposition

If m, n, p are such that :

(i) $2 \le m \le n \le p \le 6$, and

(ii) $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\},\$

then the group $G^{(m,n,p)}$ satisfies (σ) .

We assume $2 \le m \le n \le p \le 6$ wlog.

Theorem (Coxeter 1939, Edjvet 1994)

 $2 \le m \le n \le p \le 6$ then the group $G^{(m,n,p)}$ is finite if and only if

 $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\}.$

Example

$$G^{(3,5,5)}\cong A_5, \ G^{(3,6,6)}\cong 3^{1+2}_+:2^2, \ G^{(5,5,5)}=L_2(11).$$

Proposition

If m, n, p are such that :

(i) $2 \le m \le n \le p \le 6$, and

(ii) $(m, n, p) \notin \{(4, 6, 6), (5, 5, 6), (5, 6, 6), (6, 6, 6)\},\$

then the group $G^{(m,n,p)}$ satisfies (σ) .

Outline

Introduction

Property (σ)

2 Motivation

- Majorana representation
- Dihedral subalgebras

Main theoren

Norton's embeddings

Proof

- The finite cases
- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

 $G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$

The presentation for $G^{(m,n,p:r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{ (4,6,6), \ (6,6,4), \ (5,5,6), \ (6,5,5), \ (5,6,6), \ (6,6,5) \}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

 $G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$

The presentation for $G^{(m,n,p:r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{(4,6,6), (6,6,4), (5,5,6), (6,5,5), (5,6,6), (6,6,5)\}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

$$G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$$

The presentation for $G^{(m,n,p:r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{(4,6,6), \ (6,6,4), \ (5,5,6), \ (6,5,5), \ (5,6,6), \ (6,6,5)\}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

 $G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$

The presentation for $G^{(m,n,p;r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{ (4,6,6), \ (6,6,4), \ (5,5,6), \ (6,5,5), \ (5,6,6), \ (6,6,5) \}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

 $G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$

The presentation for $G^{(m,n,p;r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{ (4,6,6), \ (6,6,4), \ (5,5,6), \ (6,5,5), \ (5,6,6), \ (6,6,5) \}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

 $G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$

The presentation for $G^{(m,n,p;r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{(4,6,6), \ (6,6,4), \ (5,5,6), \ (6,5,5), \ (5,6,6), \ (6,6,5)\}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト … 臣

 $G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$

The presentation for $G^{(m,n,p;r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{(4,6,6), \ (6,6,4), \ (5,5,6), \ (6,5,5), \ (5,6,6), \ (6,6,5)\}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

 $G^{(m,n,p; r_1)} := \langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, (acbc)^{r_1} \rangle.$

The presentation for $G^{(m,n,p;r_1)}$ is symmetric in a, b but not in a, b, ab. Hence need to consider the cases $(m, n, p) \in S$:

 $\mathcal{S} := \{(4,6,6), \ (6,6,4), \ (5,5,6), \ (6,5,5), \ (5,6,6), \ (6,6,5)\}.$

Proposition (Magma)

For $(m, n, p) \in S$ and $r_1 \in [1, 6]$ the groups $G^{(m, n, p: r_1)}$ are all finite.

It remains to find the isomorphism types of the groups $G^{(m,n,p:r_1)}$ and check whether they satisfy (σ) .

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへの

Let us describe the isomorphism types of the groups $G^{(m,n,p; r_1)}$.

Definition

We say that $G^{(m,n,p; r_1)}$ does not *shrink* if the orders of *ac*, *bc* and *abc* are not smaller than *m*, *n* and *p* respectively.

Example

Let $G := G^{(4,6,6;4)}$. Magma gives |G| = 192. Let *N* be the normal closure of $\langle a \rangle$. Now $G/N = \langle b, c \rangle \cong D_{12}$ so that |N| = 32. We can check that $N = \langle a, a^c, a^{cb}, a^{cbc}, a^{cbcb} \rangle \cong 2^5$, so that G = N : H, where action of *H* on *N* gives $Z(G) = \langle aa^{cbc}a^{cbcb} \rangle \cong 2$.

Proposition

The groups $G^{(m,n,p:r_1)}$ which do not shrink are as follows:

Let us describe the isomorphism types of the groups $G^{(m,n,p: r_1)}$.

Definition

We say that $G^{(m,n,p: r_1)}$ does not *shrink* if the orders of *ac*, *bc* and *abc* are not smaller than *m*, *n* and *p* respectively.

Example

Let $G := G^{(4,6,6;4)}$. Magma gives |G| = 192. Let N be the normal closure of $\langle a \rangle$. Now $G/N = \langle b, c \rangle \cong D_{12}$ so that |N| = 32. We can check that $N = \langle a, a^c, a^{cb}, a^{cbc}, a^{cbcb} \rangle \cong 2^5$, so that G = N : H, where action of H on N gives $Z(G) = \langle aa^{cbc}a^{cbcb} \rangle \cong 2$.

Proposition

The groups $G^{(m,n,p:r_1)}$ which do not shrink are as follows:

Let us describe the isomorphism types of the groups $G^{(m,n,p: r_1)}$.

Definition

We say that $G^{(m,n,p: r_1)}$ does not *shrink* if the orders of *ac*, *bc* and *abc* are not smaller than *m*, *n* and *p* respectively.

Example

Let $G := G^{(4,6,6;4)}$. Magma gives |G| = 192. Let *N* be the normal closure of $\langle a \rangle$. Now $G/N = \langle b, c \rangle \cong D_{12}$ so that |N| = 32. We can check that $N = \langle a, a^c, a^{cb}, a^{cbc}, a^{cbcb} \rangle \cong 2^5$, so that G = N : H, where action of *H* on *N* gives $Z(G) = \langle aa^{cbc}a^{cbcb} \rangle \cong 2$.

Proposition

The groups $G^{(m,n,p:r_1)}$ which do not shrink are as follows:

Let us describe the isomorphism types of the groups $G^{(m,n,p:r_1)}$.

Definition

We say that $G^{(m,n,p: r_1)}$ does not *shrink* if the orders of *ac*, *bc* and *abc* are not smaller than *m*, *n* and *p* respectively.

Example

Let $G := G^{(4,6,6;4)}$. Magma gives |G| = 192. Let N be the normal closure of $\langle a \rangle$. Now $G/N = \langle b, c \rangle \cong D_{12}$ so that |N| = 32. We can check that $N = \langle a, a^c, a^{cb}, a^{cbc}, a^{cbcb} \rangle \cong 2^5$, so that G = N : H, where action of H on N gives $Z(G) = \langle aa^{cbc}a^{cbcb} \rangle \cong 2$.

Proposition

The groups $G^{(m,n,p:r_1)}$ which do not shrink are as follows:

$(m, n, p; r_1)$	Iso. Type	(σ)	Element contradicting (σ)
(4,6,6; 4)	$2 \times (2^4 :_{\phi_1} D_{12})$	Y	_
(6, 6, 4; 3)	$2^4:_{\phi_1}D_{12}$	Y	_
(6, 6, 4; 6)	$2^2.2 imes (2^4:_{\phi_1} D_{12})$	Ν	$ab \cdot a^c$ has order 8
(6, 5, 5; 5)	$2^4:_{\lambda_2}A_5$	Y	_
(5, 5, 6; 3) $\approx (3, 5, 10)$	$2 imes A_5$	N	$ab \cdot a^c$ has order 10
(5,5,6;6)	$2.(2^4:_{\lambda_2}A_5)$	Ν	$ab \cdot a^c$ has order 10

$(m, n, p; r_1)$	Iso. Type	(σ)	Element contradicting (σ)
(6, 6, 5; 4)	$2 imes S_6$	Y	_
(6, 6, 5; 5)	$2 \times L_2(11)$	Ν	<i>ab</i> · <i>a^c</i> has order 10
(5, 6, 6; 5)	$2 \times L_2(11)$	Ν	$ab \cdot a^c$ has order 10
(5, 6, 6; 6)	$(2^3:3):(2 \times S_6)$	Ν	$ab \cdot a^c$ has order 12

Outline

Introduction

Property (σ)

2 Motivation

- Majorana representation
- Dihedral subalgebras

Main theorem

Norton's embeddings

Proof

- The finite cases
- The infinite cases $(m, n, p) \neq (6, 6, 6)$
- The infinite case (*m*, *n*, *p*) = (6, 6, 6)

For (m, n, p) = (6, 6, 6) we introduce four relations $R_i^{r_i} = 1$:

 $R_1^{r_1} = (a \cdot b^c)^{r_1}, \ R_2^{r_2} = (ab \cdot a^c)^{r_2}, \ R_3^{r_3} = (ab \cdot b^c)^{r_3}, \ R_4^{r_4} = (c \cdot b^{ca})^{r_4},$ where $r_i \in [1, 6]$ for all i.

 $G^{(m,n,p: r_1, r_2,r_3,r_4)} :=$

 $\langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, R_1^{r_1}, R_2^{r_2}, R_3^{r_3}, R_4^{r_4} \rangle$

Proposition (Magma)

The groups $G^{(m,n,p:\ r_1,\ r_2,r_3,r_4)}$ are finite for $r_1, r_2, r_3, r_4 \in [1,6]$.

For (m, n, p) = (6, 6, 6) we introduce four relations $R_i^{r_i} = 1$:

$$R_1^{r_1} = (a \cdot b^c)^{r_1}, \ R_2^{r_2} = (ab \cdot a^c)^{r_2}, \ R_3^{r_3} = (ab \cdot b^c)^{r_3}, \ R_4^{r_4} = (c \cdot b^{ca})^{r_4},$$

where $r_i \in [1, 6]$ for all *i*.

 $G^{(m,n,p:r_1,r_2,r_3,r_4)} :=$

 $\langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, R_1^{r_1}, R_2^{r_2}, R_3^{r_3}, R_4^{r_4} \rangle$

Proposition (Magma)

The groups $G^{(m,n,p: r_1, r_2,r_3,r_4)}$ are finite for $r_1, r_2, r_3, r_4 \in [1,6]$.
For (m, n, p) = (6, 6, 6) we introduce four relations $R_i^{r_i} = 1$:

$$R_1^{r_1} = (a \cdot b^c)^{r_1}, \ R_2^{r_2} = (ab \cdot a^c)^{r_2}, \ R_3^{r_3} = (ab \cdot b^c)^{r_3}, \ R_4^{r_4} = (c \cdot b^{ca})^{r_4},$$

where $r_i \in [1, 6]$ for all *i*.

 $G^{(m,n,p:r_1,r_2,r_3,r_4)} :=$

 $\langle a, b, c \mid a^2, b^2, c^2, (ab)^2, (ac)^m, (bc)^n, (abc)^p, R_1^{r_1}, R_2^{r_2}, R_3^{r_3}, R_4^{r_4} \rangle$

Proposition (Magma)

The groups $G^{(m,n,p: r_1, r_2,r_3,r_4)}$ are finite for $r_1, r_2, r_3, r_4 \in [1,6]$.

For (m, n, p) = (6, 6, 6) we introduce four relations $R_i^{r_i} = 1$:

$$R_1^{r_1} = (a \cdot b^c)^{r_1}, \ R_2^{r_2} = (ab \cdot a^c)^{r_2}, \ R_3^{r_3} = (ab \cdot b^c)^{r_3}, \ R_4^{r_4} = (c \cdot b^{ca})^{r_4},$$

where $r_i \in [1, 6]$ for all *i*.

 $\begin{array}{c} G^{(m,n,p:\ r_1,\ r_2,r_3,r_4)}:=\\ \langle a,b,c\mid a^2,\ b^2,\ c^2,\ (ab)^2,\ (ac)^m,\ (bc)^n,\ (abc)^p,\ R_1^{r_1},\ R_2^{r_2},\ R_3^{r_3},\ R_4^{r_4}\rangle. \end{array}$

Proposition (Magma)

The groups $G^{(m,n,p: r_1, r_2,r_3,r_4)}$ are finite for $r_1, r_2, r_3, r_4 \in [1,6]$.

Let $G := G^{(6,6,6; r_1, r_2, r_3)}$.

(i) If $1 \in \{r_1, r_2, r_3\}$ then G is a quotient of the group 2^2 ;

(ii) If $2 \in \{r_1, r_2, r_3\}$ then G is a quotient of the group $S_3 \times S_3 \times 2$;

(iii) If $3 \in \{r_1, r_2, r_3\}$ then G is a quotient of the group D_{12} ;

(iv) If $4 \in \{r_1, r_2, r_3\}$ then G is a quotient of the group $(2^4 : (S_3 \times S_3)) \times 2;$

(v) If $\{5, 6\} \subseteq \{r_1, r_2, r_3\}$ then G is a quotient of the group 2^2 .

Lemma

All the groups above satisfy (σ) .

Remark

Only cases left: (r_1, r_2, r_3) equal to (5, 5, 5) or (6, 6, 6).

Let(m, n, p) = (6, 6, 6).

- for (r₁, r₂, r₃) = (5, 5, 5) the largest quotient of G^(6,6,6; 5,5,5) satisfying (σ) is 2⁵: S₅;
- for (r₁, r₂, r₃) = (6,6,6) the largest quotient of G^(6,6,6; 6,6,6) satisfying (σ) is (3⁴ : 2) : (3¹⁺²₊ : 2²).

What next?

Classify all the Majorana representations of the groups G_i , $i \in [1, 11]$. For $G_5 \cong G(5, 5, 5) \cong L_2(11)$ this is done; there is only one.

Let(m, n, p) = (6, 6, 6).

- for (r₁, r₂, r₃) = (5, 5, 5) the largest quotient of G^(6,6,6; 5,5,5) satisfying (σ) is 2⁵: S₅;
- for (r₁, r₂, r₃) = (6,6,6) the largest quotient of G^(6,6,6; 6,6,6) satisfying (σ) is (3⁴ : 2) : (3¹⁺²₊ : 2²).

What next?

Classify all the Majorana representations of the groups G_i , $i \in [1, 11]$. For $G_5 \cong G(5, 5, 5) \cong L_2(11)$ this is done; there is only one.

Let(m, n, p) = (6, 6, 6).

- for (r₁, r₂, r₃) = (5, 5, 5) the largest quotient of G^(6,6,6; 5,5,5) satisfying (σ) is 2⁵: S₅;
- for (r₁, r₂, r₃) = (6,6,6) the largest quotient of G^(6,6,6; 6,6,6) satisfying (σ) is (3⁴ : 2) : (3¹⁺²₊ : 2²).

What next?

Classify all the Majorana representations of the groups G_i , $i \in [1, 11]$. For $G_5 \cong G(5, 5, 5) \cong L_2(11)$ this is done; there is only one.

Let(m, n, p) = (6, 6, 6).

- for (r₁, r₂, r₃) = (5, 5, 5) the largest quotient of G^(6,6,6; 5,5,5) satisfying (σ) is 2⁵: S₅;
- for (r₁, r₂, r₃) = (6,6,6) the largest quotient of G^(6,6,6; 6,6,6) satisfying (σ) is (3⁴ : 2) : (3¹⁺²₊ : 2²).

What next?

Classify all the Majorana representations of the groups G_i , $i \in [1, 11]$. For $G_5 \cong G^{(5,5,5)} \cong L_2(11)$ this is done; there is only one.

Let(m, n, p) = (6, 6, 6).

- for (r₁, r₂, r₃) = (5, 5, 5) the largest quotient of G^(6,6,6; 5,5,5) satisfying (σ) is 2⁵: S₅;
- for (r₁, r₂, r₃) = (6,6,6) the largest quotient of G^(6,6,6; 6,6,6) satisfying (σ) is (3⁴ : 2) : (3¹⁺²₊ : 2²).

What next?

Classify all the Majorana representations of the groups G_i , $i \in [1, 11]$. For $G_5 \cong G^{(5,5,5)} \cong L_2(11)$ this is done; there is only one. Thank you!

26 / 26