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Which groups have property (σ)?

Property (σ)

A group G satisfies (σ) if it satisfies two conditions:
(i) G is generated by three involutions a, b, c two of which commute, say

ab = ba ;
(ii) for all t , s ∈ T := aG ∪ bG ∪ (ab)G ∪ cG the product ts has order at most 6.

G has (σ)⇒ G is a quotient of a Coxeter group G(m,n,p) for m, n, p ∈ [1,6]:

G(m,n,p) := 〈a,b, c | a2, b2, c2, (ab)2, (ac)m, (bc)n, (abc)p〉.

Moreover which of the groups having (σ) embed in M, the Monster simple
group, such that a,b,ab and c are mapped to the conjugacy class 2A of M?
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Motivation

Original goal:
Classify all Majorana algebras generated by three axes 〈〈aa,ab,ac〉〉 such
that the subalgebra 〈〈aa,ab〉〉 is of type 2A,
which of these are subalgebras of VM, the Monster algebra?

Majorana theory: axiomatisation by A. A. Ivanov of 7 of the properties of VM
and of some of its idempotents called 2A-axes.
Two distinct objectives:

describe a class of algebras independently of M,
describe subalgebras of VM using the subgroup structure of M.

Proposition (Conway, 1984)
There is a bijection ψ between the 2A-involutions ofM and the 2A-axes of VM.
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Majorana representation

Definition (Majorana representation)
For a finite group G a Majorana representation is a tuple:

R = (G, T , X , ( , ), ·, φ, ψ)

T is a G-invariant set of involutions generating G,
(X , ( , ), ·) is an algebra satisfying (M1)and (M2),
φ : G→ Aut(X ) is a representation of G with kernel Z (G),
ψ : T ↪→ AT sends each t ∈ T to a Majorana axis at := ψ(t) of X , such
that φ(t) acts on X as the Majorana involution τ(ψ(t));
∀g ∈ G atg = aφ(g)t ),
and lastly we require that ψ(T ) generates X .

We call X a Majorana algebra for G and write X = 〈〈A〉〉 for A := {at}t∈T .

Example
R = (M,2A,VM, ( , ), ·, ψ) is a Majorana representation of M with Majorana
algebra VM.
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Example
For any subgroup H of M generated by a H-invariant set of 2A-involutions,
one can define a Majorana algebra for H which is a subalgebra VM.

First look at dihedral subalgebras of VM.

Lemma (The 6-transposition property)
For t , s ∈ 2A the product ts belongs to either of the M conjugacy classes:
1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

Theorem (Conway, Norton, 1985)
For any t , s ∈ 2A there are 9 isomorphism types of dihedral subalgebras
〈〈ψ(t), ψ(s)〉〉 in VM.

Theorem (A. A. Ivanov et al, 2009)
There are exactly 9 dihedral Majorana algebras obtained from the dihedral
groups and they are equal to the dihedral subalgebras of VM.
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Corollary
For Let G be a finite group. If G has a Majorana representation
R = (G, T , X , ( , ), ·, φ, ψ) then the involutions in T are 6-transpositions.

Let G be a group generated by 3 involutions a,b, c with ab = ba, and define a
Majorana representation of G with:

T = aG ∪ bG ∪ (ab)G ∪ cG;
X = 〈〈ψ(a), ψ(b), ψ(c)〉〉;
the subalgebra 〈〈ψ(a), ψ(b)〉〉 has type 2A.

What are the possible groups G? They must satisfy (σ).
For which such groups G is X a subalgebras of VM? The groups G must
embed in M such that a,b, c,ab are mapped to 2A-involutions.
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Property (σ)

A group G satisfies (σ) if it satisfies two conditions:
(i) G is generated by a, b, c, or order dividing 2, two of which commute, say

ab = ba ;
(ii) for all t , s ∈ T := aG ∪ bG ∪ (ab)G ∪ cG the product ts has order at most 6.

Theorem (D. 2013)
A group has property (σ) if and only if it is a quotient of at least one of the
following 11 finite groups:

1) 2 wr 22 7) 24 :λ2 A5
2) (S3 × S3) : 22 8) 2× S6
3) 24 : D10 9)

(
24 : (S3 × S3)

)
× 2

4) 2× S5 10) 25 :φ S5

5) L2(11) 11) (34 : 2) : (31+2
+ : 22)

6) (24 :φ1 D12)× 2
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Group Isomorphism Quotient of G(m,n,p) Centre Subgroups
Type for (m,n,p) = Order

G1 2 wr 22 (4,4,4) 2
G2 (S3 × S3) : 22 (4,4,6) 2
G3 24 : D10 (4,5,5) 1
G4 2× S5 (4,5,6) 2
G5 L2(11) (5,5,5) 1
G6 (24 :φ1 D12)× 2 (4,6,6) 2
G7 24 :λ2 A5 (6,5,5) 1 G3
G8 2× S6 (6,6,5) 2 G2, G4
G9

(
24 : (S3 × S3)

)
× 2 (6,6,6) 2

G10 25 :φ S5 (6,6,6) 2 G3, G4, G6

G11 (34 : 2) : (31+2
+ : 22) (6,6,6) 1
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Which of the Gi ’s embed intoM such that a, b, ab, c are mapped to class 2A
ofM?
From a result of S. Norton we obtain:

Proposition (Norton, 1985)
Except for G9 and G11 all the groups Gi 2A-embed intoM. Moreover the
largest quotients of G9 and G11 which 2A-embed intoM are:

G9/Z (G9) ∼= 24 : (S3 × S3);
G11/(34 : 2) ∼= 31+2

+ : 22 ∼= G(3,6,6).
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The finite G(m,n,p) groups

We assume 2 ≤ m ≤ n ≤ p ≤ 6 wlog.

Theorem (Coxeter 1939, Edjvet 1994)
2 ≤ m ≤ n ≤ p ≤ 6 then the group G(m,n,p) is finite if and only if

(m,n,p) /∈ {(4,6,6), (5,5,6), (5,6,6), (6,6,6)}.

Example
G(3,5,5) ∼= A5, G(3,6,6) ∼= 31+2

+ : 22, G(5,5,5) = L2(11).

Proposition
If m,n,p are such that :

(i) 2 ≤ m ≤ n ≤ p ≤ 6, and
(ii) (m,n,p) /∈ {(4,6,6), (5,5,6), (5,6,6), (6,6,6)},

then the group G(m,n,p) satisfies (σ).
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Introduce the relation Rr1
1 = 1 for R1 = a · bc = acbc, where r1 ∈ [1,6].

Denote G(m,n,p:r1) the quotient of G(m,n,p) by the normal closure of Rr1
1 ;

G(m,n,p; r1) := 〈a,b, c | a2, b2, c2, (ab)2, (ac)m, (bc)n, (abc)p, (acbc)r1〉.

The presentation for G(m,n,p:r1) is symmetric in a,b but not in a, b, ab. Hence
need to consider the cases (m,n,p) ∈ S:

S := {(4,6,6), (6,6,4), (5,5,6), (6,5,5), (5,6,6), (6,6,5)}.

Proposition (Magma)
For (m,n,p) ∈ S and r1 ∈ [1,6] the groups G(m,n,p: r1) are all finite.

It remains to find the isomorphism types of the groups G(m,n,p:r1) and check
whether they satisfy (σ).
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Assume (m,n,p) ∈ S and r1 ∈ [1,6].
Let us describe the isomorphism types of the groups G(m,n,p: r1).

Definition
We say that G(m,n,p: r1) does not shrink if the orders of ac, bc and abc are not
smaller than m, n and p respectively.

Example
Let G := G(4,6,6;4). Magma gives |G| = 192. Let N be the normal closure of
〈a〉. Now G/N = 〈b, c〉 ∼= D12 so that |N| = 32. We can check that
N = 〈a,ac ,acb,acbc ,acbcb〉 ∼= 25, so that G = N : H, where action of H on N
gives Z (G) = 〈aacbcacbcb〉 ∼= 2.

Proposition
The groups G(m,n,p: r1) which do not shrink are as follows:
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(m, n, p; r1) Iso. Type (σ) Element contradicting (σ)

(4, 6, 6; 4) 2 × (24 :φ1 D12) Y −

(6, 6, 4; 3) 24 :φ1 D12 Y −

(6, 6, 4; 6) 22.2 × (24 :φ1 D12) N ab · ac has order 8

(6, 5, 5; 5) 24 :λ2 A5 Y −

(5, 5, 6; 3) 2 × A5 N ab · ac has order 10
∼= (3, 5, 10)
(5, 5, 6; 6) 2.(24 :λ2 A5) N ab · ac has order 10
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(m, n, p; r1) Iso. Type (σ) Element contradicting (σ)

(6, 6, 5; 4) 2 × S6 Y −

(6, 6, 5; 5) 2 × L2(11) N ab · ac has order 10

(5, 6, 6; 5) 2 × L2(11) N ab · ac has order 10

(5, 6, 6; 6) (23 : 3) : (2 × S6) N ab · ac has order 12
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For (m,n,p) = (6,6,6) we introduce four relations Rri
i = 1 :

Rr1
1 = (a · bc)r1 , Rr2

2 = (ab · ac)r2 , Rr3
3 = (ab · bc)r3 , Rr4

4 = (c · bca)r4 ,

where ri ∈ [1,6] for all i .

G(m,n,p: r1, r2,r3,r4) :=
〈a,b, c | a2, b2, c2, (ab)2, (ac)m, (bc)n, (abc)p, Rr1

1 , Rr2
2 , Rr3

3 , Rr4
4 〉.

Proposition (Magma)
The groups G(m,n,p: r1, r2,r3,r4) are finite for r1, r2, r3, r4 ∈ [1,6].
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Proposition
Let G := G(6,6,6; r1, r2, r3).
(i) If 1 ∈ {r1, r2, r3} then G is a quotient of the group 22;
(ii) If 2 ∈ {r1, r2, r3} then G is a quotient of the group S3 × S3 × 2;
(iii) If 3 ∈ {r1, r2, r3} then G is a quotient of the group D12;
(iv) If 4 ∈ {r1, r2, r3} then G is a quotient of the group

(
24 : (S3 × S3)

)
× 2;

(v) If {5, 6} ⊆ {r1, r2, r3} then G is a quotient of the group 22.

Lemma
All the groups above satisfy (σ) .

Remark
Only cases left: (r1, r2, r3) equal to (5,5,5) or (6,6,6).
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Proposition
Let (m,n,p) = (6,6,6).

for (r1, r2, r3) = (5,5,5) the largest quotient of G(6,6,6; 5,5,5) satisfying
(σ) is 25 : S5;
for (r1, r2, r3) = (6,6,6) the largest quotient of G(6,6,6; 6,6,6) satisfying
(σ) is (34 : 2) : (31+2

+ : 22).

What next?
Classify all the Majorana representations of the groups Gi , i ∈ [1,11].
For G5 ∼= G(5,5,5) ∼= L2(11) this is done; there is only one.
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Thank you!

() 26 / 26


	Introduction
	Property () 

	Motivation
	Majorana representation
	Dihedral subalgebras

	Main theorem
	Norton's embeddings

	Proof
	The finite cases
	The infinite cases (m,n,p)=(6,6,6)
	The infinite case (m,n,p) = (6,6,6)


