Recent advances in computing with infinite linear groups

Alla Detinko (joint work with Dane Flannery)

National University of Ireland, Galway

St Andrews, 3rd-11th August 2013

1. Preliminaries: computing with finitely generated linear groups

1. Preliminaries: computing with finitely generated linear groups

1.1 Set up

Given a finite set S of invertible matrices of degree n over a field F, consider the group $G = \langle S \rangle \subseteq GL(n,F)$. Then $G \subseteq GL(n,R) \subseteq GL(n,F)$ for a finitely generated integral domain $R \subseteq F$ determined by entries of matrices in $S \cup S^{-1}$.

1. Preliminaries: computing with finitely generated linear groups

1.1 Set up

Given a finite set S of invertible matrices of degree n over a field F, consider the group $G = \langle S \rangle \subseteq GL(n,F)$. Then $G \subseteq GL(n,R) \subseteq GL(n,F)$ for a finitely generated integral domain $R \subseteq F$ determined by entries of matrices in $S \cup S^{-1}$.

Given an ideal $\rho \subset R$, define the congruence homomorphism $\varphi_{\rho}: GL(n,R) \to GL(n,R/\rho)$. The kernel $ker\varphi_{\rho}(G) := G_{\rho}$ is a congruence subgroup of G.

1.2 Properties of a finitely generated linear group G

(i) G is residually finite, and is approximated by matrix groups of degree n over finite fields (Mal'cev).

1.2 Properties of a finitely generated linear group G

- (i) G is residually finite, and is approximated by matrix groups of degree n over finite fields (Mal'cev).
- (ii) There exist ideals $\rho \subset R$ such that G_{ρ} is torsion-free (charF = 0), and G_{ρ} is unipotent-by-abelian if G is solvable-by-finite (Selberg-Wehrfritz).

1.2 Properties of a finitely generated linear group G

- (i) G is residually finite, and is approximated by matrix groups of degree n over finite fields (Mal'cev).
- (ii) There exist ideals $\rho \subset R$ such that G_{ρ} is torsion-free (charF = 0), and G_{ρ} is unipotent-by-abelian if G is solvable-by-finite (Selberg-Wehrfritz).

Method developed (computational analogue of method of finite approximation).

1.2 Properties of a finitely generated linear group G

- (i) G is residually finite, and is approximated by matrix groups of degree n over finite fields (Mal'cev).
- (ii) There exist ideals $\rho \subset R$ such that G_{ρ} is torsion-free (charF = 0), and G_{ρ} is unipotent-by-abelian if G is solvable-by-finite (Selberg-Wehrfritz).

Method developed (computational analogue of method of finite approximation).

Implementation of congruence homomorphism techniques

- providing reduction to subgroups of $GL(n, \mathbb{F}_q)$ (by (i))
- with the kernel G_{ρ} satisfying (ii).

1.3 Problems solved

Using the above method we solved the following problems (over a broad range of domains).

1.3 Problems solved

Using the above method we solved the following problems (over a broad range of domains).

• IsFinite: testing finiteness of G, and investigation of structure of G if G is finite.

1.3 Problems solved

Using the above method we solved the following problems (over a broad range of domains).

- IsFinite: testing finiteness of G, and investigation of structure of G if G is finite.
- IsSolvableByFinite: computational analogue of the Tits alternative.

1.3 Problems solved

Using the above method we solved the following problems (over a broad range of domains).

- IsFinite: testing finiteness of *G*, and investigation of structure of *G* if *G* is finite.
- IsSolvableByFinite: computational analogue of the Tits alternative.
- Further properties: IsAbelianByFinite, IsNilpotentByFinite, IsSolvable etc., along with structural investigation of the groups.

1.3 Problems solved

Using the above method we solved the following problems (over a broad range of domains).

- IsFinite: testing finiteness of G, and investigation of structure of G if G is finite.
- IsSolvableByFinite: computational analogue of the Tits alternative.
- Further properties: IsAbelianByFinite, IsNilpotentByFinite, IsSolvable etc., along with structural investigation of the groups.

Feature of the method: test related properties of G_{ρ} without computing G_{ρ} .

1.4 Further development

1.4 Further development

The Tits Alternative: A finitely generated subgroup of GL(n, F) is either solvable-by-finite, or contains a free non-abelian subgroup (J. Tits, 1972).

1.4 Further development

The Tits Alternative: A finitely generated subgroup of GL(n, F) is either solvable-by-finite, or contains a free non-abelian subgroup (J. Tits, 1972).

Approach to further computing: consider two different classes separately.

1.4 Further development

The Tits Alternative: A finitely generated subgroup of GL(n, F) is either solvable-by-finite, or contains a free non-abelian subgroup (J. Tits, 1972).

Approach to further computing: consider two different classes separately.

Obstacles for computing with solvable-by-finite groups G (cf. related classes of groups, e.g., polycyclic-by-finite groups).

1.4 Further development

The Tits Alternative: A finitely generated subgroup of GL(n, F) is either solvable-by-finite, or contains a free non-abelian subgroup (J. Tits, 1972).

Approach to further computing: consider two different classes separately.

Obstacles for computing with solvable-by-finite groups G (cf. related classes of groups, e.g., polycyclic-by-finite groups).

• G may not be finitely presentable.

1.4 Further development

The Tits Alternative: A finitely generated subgroup of GL(n, F) is either solvable-by-finite, or contains a free non-abelian subgroup (J. Tits, 1972).

Approach to further computing: consider two different classes separately.

Obstacles for computing with solvable-by-finite groups G (cf. related classes of groups, e.g., polycyclic-by-finite groups).

- G may not be finitely presentable.
- Subgroups of G may not be finitely generated.

1.4 Further development

The Tits Alternative: A finitely generated subgroup of GL(n, F) is either solvable-by-finite, or contains a free non-abelian subgroup (J. Tits, 1972).

Approach to further computing: consider two different classes separately.

Obstacles for computing with solvable-by-finite groups G (cf. related classes of groups, e.g., polycyclic-by-finite groups).

- G may not be finitely presentable.
- Subgroups of G may not be finitely generated.
- Lack of methods for computing with SF linear groups: e.g., standard algorithms based on computing normal closure may not terminate.

2. Linear groups of finite rank

2. Linear groups of finite rank

A group G has finite Prüfer rank rk(G) if each finitely generated subgroup of G can be generated by rk(G) elements, and rk(G) is the least such integer.

2. Linear groups of finite rank

A group G has finite Prüfer rank rk(G) if each finitely generated subgroup of G can be generated by rk(G) elements, and rk(G) is the least such integer.

• How strong is this restriction?

2. Linear groups of finite rank

A group G has finite Prüfer rank rk(G) if each finitely generated subgroup of G can be generated by rk(G) elements, and rk(G) is the least such integer.

- How strong is this restriction?
- Why groups of finite rank, i.e., what are computational advantages of such groups?

2. Linear groups of finite rank

A group G has *finite Prüfer rank* rk(G) if each finitely generated subgroup of G can be generated by rk(G) elements, and rk(G) is the least such integer.

- How strong is this restriction?
- Why groups of finite rank, i.e., what are computational advantages of such groups?

2.1 What are linear groups of finite rank?

Theorem. If $G\subseteq GL(n,F)$ has finite Prüfer rank then G is solvable-by-finite.

2. Linear groups of finite rank

A group G has *finite Prüfer rank* rk(G) if each finitely generated subgroup of G can be generated by rk(G) elements, and rk(G) is the least such integer.

- How strong is this restriction?
- Why groups of finite rank, i.e., what are computational advantages of such groups?

2.1 What are linear groups of finite rank?

Theorem. If $G \subseteq GL(n, F)$ has finite Prüfer rank then G is solvable-by-finite.

Proposition. A finitely generated subgroup G of GL(n,F) has finite Prüfer rank if it is solvable-by-finite and \mathbb{Q} -linear.

Further properties.

A group G has *finite torsion-free rank* if it has a (subnormal) series of finite length whose factors are either infinite cyclic or periodic. The number h(G) of infinite cyclic factors is the *torsion-free rank* of G.

Further properties.

A group G has *finite torsion-free rank* if it has a (subnormal) series of finite length whose factors are either infinite cyclic or periodic. The number h(G) of infinite cyclic factors is the *torsion-free rank* of G.

Proposition. Let G be a finitely generated subgroup of $GL(n,\mathbb{Q})$. Then the following are equivalent.

- G is solvable-by-finite.
- G is of finite Prüfer rank.
- G is of finite torsion-free rank.

2.2. Structure of finitely generated linear groups of finite rank

2.2. Structure of finitely generated linear groups of finite rank

2.2.1 Polyrational groups

A group is *polyrational* if it has a series of finite length with each factor isomorphic to a subgroup of the additive group \mathbb{Q}^+ .

2.2. Structure of finitely generated linear groups of finite rank

2.2.1 Polyrational groups

A group is *polyrational* if it has a series of finite length with each factor isomorphic to a subgroup of the additive group \mathbb{Q}^+ .

Proposition. A finitely generated subgroup G of GL(n,F) has finite Prüfer rank if and only if G is polyrational-by-finite.

In this case $h(G) \le rk(G)$, and h(G) = rk(G) if G is polyrational.

2.2.2 Unipotent radicals

2.2.2 Unipotent radicals

Given $G \subseteq GL(n, F)$, denote by G_u the *unipotent radical* of G, i.e., the maximal unipotent normal subgroup of G.

2.2.2 Unipotent radicals

Given $G \subseteq GL(n, F)$, denote by G_u the *unipotent radical* of G, i.e., the maximal unipotent normal subgroup of G.

Lemma. If $G \subseteq GL(n, F)$ is finitely generated solvable-by-finite then G/G_u is a finitely generated abelian-by-finite completely reducible group.

2.2.2 Unipotent radicals

Given $G \subseteq GL(n, F)$, denote by G_u the *unipotent radical* of G, i.e., the maximal unipotent normal subgroup of G.

Lemma. If $G \subseteq GL(n, F)$ is finitely generated solvable-by-finite then G/G_u is a finitely generated abelian-by-finite completely reducible group.

Remark. G_u is not necessarily finitely generated.

2.2.2 Unipotent radicals

Given $G \subseteq GL(n, F)$, denote by G_u the *unipotent radical* of G, i.e., the maximal unipotent normal subgroup of G.

Lemma. If $G \subseteq GL(n,F)$ is finitely generated solvable-by-finite then G/G_u is a finitely generated abelian-by-finite completely reducible group.

Remark. G_u is not necessarily finitely generated.

Proposition. Let $G \subseteq GL(n,\mathbb{Q})$ be finitely generated solvable-by-finite. Then there exists a finitely generated subgroup H of G_u such that $G_u = \langle H \rangle^G$ and $h(H) = h(G_u) = rk(G_u)$.

2.2.2 Unipotent radicals

Given $G \subseteq GL(n, F)$, denote by G_u the *unipotent radical* of G, i.e., the maximal unipotent normal subgroup of G.

Lemma. If $G \subseteq GL(n, F)$ is finitely generated solvable-by-finite then G/G_u is a finitely generated abelian-by-finite completely reducible group.

Remark. G_u is not necessarily finitely generated.

Proposition. Let $G \subseteq GL(n,\mathbb{Q})$ be finitely generated solvable-by-finite. Then there exists a finitely generated subgroup H of G_u such that $G_u = \langle H \rangle^G$ and $h(H) = h(G_u) = rk(G_u)$.

- G_u is polyrational, and H is poly- \mathbb{Z} .
- G_u is the isolator of H in G_u , i.e., for each $g \in G_u$ there exists $m \in \mathbb{Z}$ such that $g^m \in H$.

3. Computing ranks

Set up: Given a finitely generated group $G \leq GL(n, \mathbb{P}), |\mathbb{P} : \mathbb{Q}| < \infty$.

3. Computing ranks

Set up: Given a finitely generated group $G \leq GL(n, \mathbb{P}), |\mathbb{P} : \mathbb{Q}| < \infty$.

Method. All algorithms are based on congruence homomorphism techniques, i.e., selection of a maximal ideal $\rho \subset R \subset \mathbb{P}$ such that G_{ρ} is torsion-free (and unipotent-by-abelian if G is solvable-by-finite), and construction of $\varphi_{\rho}(G) \subset GL(n, \mathbb{F}_q), \mathbb{F}_q \cong R/\rho$.

3. Computing ranks

Set up: Given a finitely generated group $G \leq GL(n, \mathbb{P}), |\mathbb{P} : \mathbb{Q}| < \infty$.

Method. All algorithms are based on congruence homomorphism techniques, i.e., selection of a maximal ideal $\rho \subset R \subset \mathbb{P}$ such that G_{ρ} is torsion-free (and unipotent-by-abelian if G is solvable-by-finite), and construction of $\varphi_{\rho}(G) \subset GL(n,\mathbb{F}_q)$, $\mathbb{F}_q \cong R/\rho$.

3.1. First steps

3. Computing ranks

Set up: Given a finitely generated group $G \leq GL(n, \mathbb{P}), |\mathbb{P} : \mathbb{Q}| < \infty$.

Method. All algorithms are based on congruence homomorphism techniques, i.e., selection of a maximal ideal $\rho \subset R \subset \mathbb{P}$ such that G_{ρ} is torsion-free (and unipotent-by-abelian if G is solvable-by-finite), and construction of $\varphi_{\rho}(G) \subset GL(n,\mathbb{F}_q)$, $\mathbb{F}_q \cong R/\rho$.

3.1. First steps

We can test whether G is of finite rank.

3. Computing ranks

Set up: Given a finitely generated group $G \leq GL(n, \mathbb{P}), |\mathbb{P} : \mathbb{Q}| < \infty$.

Method. All algorithms are based on congruence homomorphism techniques, i.e., selection of a maximal ideal $\rho \subset R \subset \mathbb{P}$ such that G_{ρ} is torsion-free (and unipotent-by-abelian if G is solvable-by-finite), and construction of $\varphi_{\rho}(G) \subset GL(n,\mathbb{F}_q), \mathbb{F}_q \cong R/\rho$.

3.1. First steps

We can test whether G is of finite rank.

IsOfFiniteRank: returns true if rk(G) is finite (i.e., h(G) is finite); otherwise returns false.

3.2 Reduction to completely reducible case

3.2 Reduction to completely reducible case

(i) CompletelyReduciblePart: constructs a completely reducible part $\pi(G)$ of a finitely generated solvable-by-finite subgroup G of GL(n,F), i.e., a generating set of the completely reducible abelian-by-finite group $\pi(G) \cong G/G_u$.

Method: computing in enveloping algebra of G_a .

3.2 Reduction to completely reducible case

(i) CompletelyReduciblePart: constructs a completely reducible part $\pi(G)$ of a finitely generated solvable-by-finite subgroup G of GL(n,F), i.e., a generating set of the completely reducible abelian-by-finite group $\pi(G) \cong G/G_u$.

Method: computing in enveloping algebra of G_{ρ} .

(ii) RankCR: for a finitely generated completely reducible solvable-by-finite group G returns $h(G)=h(G_\rho)$; here G_ρ is completely reducible finitely generated abelian.

RankOfUnipotentRad

- Construct a finitely generated $H \leq G_u$ such that $h(H) = h(G_u)$, $G_u = \langle H \rangle^G$ (via a presentation of $\pi(G)$, and normal subgroup generators method).
- 2 Return h(H).

3.4 General case

Compute two main structural components:

RankOfUnipotentRad

- Construct a finitely generated $H \leq G_u$ such that $h(H) = h(G_u)$, $G_u = \langle H \rangle^G$ (via a presentation of $\pi(G)$, and normal subgroup generators method).
- 2 Return h(H).

3.4 General case

Compute two main structural components:

• Completely reducible part $\pi(G)$ of G.

RankOfUnipotentRad

- Construct a finitely generated $H \leq G_u$ such that $h(H) = h(G_u)$, $G_u = \langle H \rangle^G$ (via a presentation of $\pi(G)$, and normal subgroup generators method).
- 2 Return h(H).

3.4 General case

Compute two main structural components:

- Completely reducible part $\pi(G)$ of G.
- **2** $H < G_u$ as in (3.2).

RankOfUnipotentRad

- Construct a finitely generated $H \leq G_u$ such that $h(H) = h(G_u)$, $G_u = \langle H \rangle^G$ (via a presentation of $\pi(G)$, and normal subgroup generators method).
- 2 Return h(H).

3.4 General case

Compute two main structural components:

- **①** Completely reducible part $\pi(G)$ of G.
- **2** $H \leq G_u$ as in (3.2).
 - Then
- **3** Apply the formula $h(G) = h(G/G_u) + h(G_u)$ as $G_u \triangleleft G$.

4. Applications: subgroups of finite index

4. Applications: subgroups of finite index

4.1 Ranks and subgroups of finite index

4. Applications: subgroups of finite index

4.1 Ranks and subgroups of finite index

Theorem (D. Robinson, 2012). Let H be a subgroup of a finitely generated solvable FAR group G. Then |G:H| is finite if and only if h(H)=h(G).

4. Applications: subgroups of finite index

4.1 Ranks and subgroups of finite index

Theorem (D. Robinson, 2012). Let H be a subgroup of a finitely generated solvable FAR group G. Then |G:H| is finite if and only if h(H) = h(G).

Remark. Here solvable FAR group means that G has finite abelian ranks.

4. Applications: subgroups of finite index

4.1 Ranks and subgroups of finite index

Theorem (D. Robinson, 2012). Let H be a subgroup of a finitely generated solvable FAR group G. Then |G:H| is finite if and only if h(H) = h(G).

Remark. Here solvable FAR group means that G has finite abelian ranks.

Corollary. Let $H \leq G \leq GL(n,F)$ where G is finitely generated and of finite Prüfer rank. Then |G:H| is finite if and only if h(H) = h(G).

4. Applications: subgroups of finite index

4.1 Ranks and subgroups of finite index

Theorem (D. Robinson, 2012). Let H be a subgroup of a finitely generated solvable FAR group G. Then |G:H| is finite if and only if h(H) = h(G).

Remark. Here solvable FAR group means that G has finite abelian ranks.

Corollary. Let $H \leq G \leq GL(n,F)$ where G is finitely generated and of finite Prüfer rank. Then |G:H| is finite if and only if h(H)=h(G).

IsofFiniteIndex (S_1, S_2) : for finite subsets S_1, S_2 of $GL(n, \mathbb{P})$ such that $G = \langle S_1 \rangle$ is solvable-by-finite and $H = \langle S_2 \rangle \leq G$ returns true if and only if h(G) = h(H).

5. Example: arithmeticity of solvable linear groups

5. Example: arithmeticity of solvable linear groups

Notation. Given $K \leq GL(n,\mathbb{C})$ and a subring $R \leq \mathbb{C}$, denote $K \cap GL(n,R)$ by K_R .

Definition. Let G be an algebraic group defined over \mathbb{Q} . A subgroup H of $G_{\mathbb{Q}}$ is said to be *arithmetic* if H is commensurable with $G_{\mathbb{Z}}$, i.e. $H_{\mathbb{Z}}$ has finite index in both H and $G_{\mathbb{Z}}$.

5. Example: arithmeticity of solvable linear groups

Notation. Given $K \leq GL(n, \mathbb{C})$ and a subring $R \leq \mathbb{C}$, denote $K \cap GL(n, R)$ by K_R .

Definition. Let G be an algebraic group defined over \mathbb{Q} . A subgroup H of $G_{\mathbb{Q}}$ is said to be *arithmetic* if H is commensurable with $G_{\mathbb{Z}}$, i.e. $H_{\mathbb{Z}}$ has finite index in both H and $G_{\mathbb{Z}}$.

Problem. Given a finitely generated subgroup H of $G_{\mathbb{Q}}$, is H arithmetic (in G)?

Solution. Is Arithmetic Solvable (S, G).

For a solvable algebraic group G and a finite subset S of $G_{\mathbb{Q}}$ returns true if $H = \langle S \rangle$ is arithmetic; false otherwise.

Solution. Is Arithmetic Solvable (S, G).

For a solvable algebraic group G and a finite subset S of $G_{\mathbb{Q}}$ returns true if $H = \langle S \rangle$ is arithmetic; false otherwise.

Main steps:

• GeneratingArithmetic(G): returns a generating set of a finite index subgroup of $G_{\mathbb{Z}}$ (de Graaf, 2013).

Solution. Is Arithmetic Solvable (S,G).

For a solvable algebraic group G and a finite subset S of $G_{\mathbb{Q}}$ returns true if $H = \langle S \rangle$ is arithmetic; false otherwise.

Main steps:

- GeneratingArithmetic(G): returns a generating set of a finite index subgroup of $G_{\mathbb{Z}}$ (de Graaf, 2013).
- IsIntegralSF(H): tests whether H is integral.

Solution. Is Arithmetic Solvable (S, G).

For a solvable algebraic group G and a finite subset S of $G_{\mathbb{Q}}$ returns true if $H=\langle S \rangle$ is arithmetic; false otherwise.

Main steps:

- GeneratingArithmetic(G): returns a generating set of a finite index subgroup of $G_{\mathbb{Z}}$ (de Graaf, 2013).
- IsIntegralSF(H): tests whether H is integral.
- Computing ranks of $G_{\mathbb{Z}}$ and $H = \langle S \rangle$.

6. Conclusion: implementation

Implementation of algorithms in MAGMA:

- For SF linear groups (Eamonn O'Brien, 2012);
- For arithmetic subgroups of solvable algebraic groups (Willem de Graaf, 2013).