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Conjugacy class sizes

Notation

Let G be a finite group and x ∈ G . We denote by

xG = {xg : g ∈ G}

the conjugacy class of x in G and by

cs(G )= {|xG | : x ∈ G}.

It is well-known that there exists a strong relation between cs(G )
and the structure of G .

Theorem (N. Itô, 1953)

If |cs(G )| = 2, then G = P × A with P a p-subgroup, for some
prime p, and A ⊆ Z(G ).
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If |cs(G )| = 2, then G = P × A with P a p-subgroup, for some
prime p, and A ⊆ Z(G ).
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Conjugacy class sizes of p-regular elements

Notation

Let p be a prime number and G be a finite group.

An element x ∈ G is said to be a p-regular element (or a
p′-element) if the order o(x) is not divisible by p.

We can consider the set

csp′(G )= {|xG | : x is a p-regular element of G}.

Some questions:

What can be said about the structure of G from csp′(G )?

If H is a p-complement of G , which is the relation between
csp′(G ) and cs(H)?
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Lemma

Let H be a p-complement of a finite group G. Let x ∈ H.
(i) Then |xG |p′ divides |xH |.

(ii) If |xG | is a p′-number, then |xH | = |xG |.
(iii) If H E G , then |xH | = |xG |p′ .

Question:

In general, is |xH | a divisor of |xG |?

This question is false.

Example:

The symmetric group H = S4 is a Hall {2, 3}-subgroup of the
symmetric group G = S5 (that is, a 5-complement of S5). The
sets of class sizes are

cs(H)= {1, 3, 6, 8} and csp′(G )= {1, 10, 15, 20, 30}.

Let x = (1, 2, 3) ∈ H, the class size |xH | = 8 and to |xG | = 20.
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Maŕıa José Felipe The influence of p-regular class sizes on normal subgroups



Lemma

Let H be a p-complement of a finite group G. Let x ∈ H.
(i) Then |xG |p′ divides |xH |.
(ii) If |xG | is a p′-number, then |xH | = |xG |.
(iii) If H E G , then |xH | = |xG |p′ .

Question:

In general, is |xH | a divisor of |xG |?

This question is false.

Example:

The symmetric group H = S4 is a Hall {2, 3}-subgroup of the
symmetric group G = S5 (that is, a 5-complement of S5). The
sets of class sizes are

cs(H)= {1, 3, 6, 8} and csp′(G )= {1, 10, 15, 20, 30}.

Let x = (1, 2, 3) ∈ H, the class size |xH | = 8 and to |xG | = 20.
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Maŕıa José Felipe The influence of p-regular class sizes on normal subgroups



Lemma

Let H be a p-complement of a finite group G. Let x ∈ H.
(i) Then |xG |p′ divides |xH |.
(ii) If |xG | is a p′-number, then |xH | = |xG |.
(iii) If H E G , then |xH | = |xG |p′ .

Question:

In general, is |xH | a divisor of |xG |?

This question is false.

Example:

The symmetric group H = S4 is a Hall {2, 3}-subgroup of the
symmetric group G = S5 (that is, a 5-complement of S5). The
sets of class sizes are

cs(H)= {1, 3, 6, 8} and csp′(G )= {1, 10, 15, 20, 30}.

Let x = (1, 2, 3) ∈ H, the class size |xH | = 8 and to |xG | = 20.
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Question:

In general, is |cs(H)| ≤ |csp′(G )|?

This question neither is true.

Example:

The quaternion group Q8 acts on T = [Z5 × Z5]Z3.

We consider G = [T ]Q8 (SmallGroup(600, 57) in GAP).

Let H = [Z5 × Z5]Q8 be a 3-complement of G . We have

cs(H) = {1, 2, 4, 10, 50};

cs(G ) = csp′(G ) = {1, 6, 30, 50}.

Therefore, there is not relation between |cs(H)| and |csp′(G )|.
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Structure of p-complements and p-regular class sizes

New topic:

Some recent results have indicated that the structure of G and its
p-complements are closely related to the set csp′(G ).

But studying this relation seems a difficult problem, even when G
is a p-solvable group.

Theorem (A. Camina,1974)

If |csp′(G )| = 2,then G is solvable.

Theorem (E.Alemany-A.Beltrán-M.J.Felipe, 2009)

Let H be a p-complement of G . If |csp′(G )| = 2, then either H is
abelian or H = Q × A with Q ∈ Sylq(G ) for q 6= p and then
G = PQ × A, with P ∈ Sylp(G ) and A ⊆ Z(G ).
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Structure of normal subgroups and G -classes

Notation

Let N be a normal subgroup of G . Then

N = ∪x∈NxG

Let x ∈ N. The class xG is called a G -class of N. We denote by

csG (N) = {|xG | : x ∈ N} ⊆ cs(G ).

It can be seen that there is no relation between the cardinalities
|csG (N)| and |cs(N)|.

Another new topic:

Recent results have put forward that there exists a strong relation
between csG (N) and the structure of N.
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The influence of p-regular class sizes on normal subgroups

Theorem 1 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let G be a finite p-solvable group and N be a normal subgroup
of G . Suppose that N has two p-regular G-class sizes for some
prime p. Then N has nilpotent p-complements.

Question:

Can the hypothesis of p-solvability of G be eliminated?

Theorem 2 (Akhlaghi-Beltrán-Felipe, 2013):

If N is a solvable normal subgroup of a group G with two G -class
sizes of p-regular elements, then N has nilpotent p-complements.

Question:

We wonder if a normal subgroup of G having two p-regular
G -class sizes is solvable.
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The influence of p-regular class sizes on normal subgroups

Theorem A (Akhlaghi-Beltrán-Felipe, 2013):

If N is a normal subgroup of G with two G-class sizes of p-regular
elements, then N is solvable.

Corollary B (Akhlaghi-Beltrán-Felipe, 2013):

If N is a normal subgroup of a group G with two G -class sizes of
p-regular elements, then either N has abelian p-complements or
N = RP × A, where P is a Sylow p-subgroup, R is a Sylow
r-subgroup for r 6= p and A ⊆ Z(G ).

Corollary C (Alemany-Beltrán-Felipe, 2011):

Let N be a normal subgroup of a finite group G such that
|csG (N)| = 2. Then either N is abelian or N = R × A, where R is
a Sylow r-subgroup of N for some prime r and A is central in G.
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Preliminary results of the proof of Theorem A

The prime graph

Let G be a finite group. The prime graph Γ(G ) of G is defined as
follows. The vertices of Γ(G ) are the primes dividing the order of
G and two distinct vertices r and s are joined by an edge if there is
an element in G of order rs.

The prime graph Γ(G ) is a tree if any two primes are connected by
exactly one simple path and it is a forest if it is a disjoint union of
trees.

Theorem 3 (M.S. Lucido, 2002)

Let G be a finite non-abelian simple group. If Γ(G ) is a forest then
G is one of the following simple groups: A5, A6, A7, A8, M11, M22,
PSL4(3), B2(3), G2(3), U4(3), U5(2),2F4(2)′, or belongs to one of
the families: PSL2(q), PSL3(q), PSU3(q), Sz(q2) with q2 = 2f or
q = 2f

2
with f an odd prime, and Ree(3f ), with f an odd prime.
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Maŕıa José Felipe The influence of p-regular class sizes on normal subgroups



Preliminary results of the proof of Theorem A

Theorem 4 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let N be a normal subgroup of a group G which has two p-regular
G -class sizes for some prime p. Then either N has abelian
p-complements or all p-regular elements of N/(N ∩ Z(G )) have
prime power order.

As a consequence, either N has abelian p-complements or the
prime graph Γ(N/(N ∩ Z(G ))) is a forest:

q

p l

r t s k
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Sketch of the proof of Theorem A.

(1) We argue by minimal counterexample.

(2) By Theorem 4, we assume that N/(N ∩ Z(G )) does not have
any p-regular element whose order is divisible by two primes and
the prime graph Γ(N/(N ∩ Z(G ))) is a forest.
(3) It is easy to prove that |N/(N ∩ Z(G ))|p′ divides |N ∩ Z(G )|
by using the class equation.
(4) Let N/K be a chief factor of G such that N ∩ Z(G ) ⊆ K .
By minimality of N, we obtain that K is a solvable subgroup.
By Theorem 2, we have K has nilpotent p-complements and, as a
consequence, the order of K/(N ∩ Z(G )) is divisible by at most
two primes {p, r}.
(5) By (2), the chief factor N/K does not have any p-regular
element whose order is divisible by two primes and necessarily
N/K ∼= S , with S a simple group whose prime graph is a forest.
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Maŕıa José Felipe The influence of p-regular class sizes on normal subgroups



Sketch of the proof of Theorem A.

(1) We argue by minimal counterexample.
(2) By Theorem 4, we assume that N/(N ∩ Z(G )) does not have
any p-regular element whose order is divisible by two primes and
the prime graph Γ(N/(N ∩ Z(G ))) is a forest.
(3) It is easy to prove that |N/(N ∩ Z(G ))|p′ divides |N ∩ Z(G )|
by using the class equation.
(4) Let N/K be a chief factor of G such that N ∩ Z(G ) ⊆ K .

By minimality of N, we obtain that K is a solvable subgroup.
By Theorem 2, we have K has nilpotent p-complements and, as a
consequence, the order of K/(N ∩ Z(G )) is divisible by at most
two primes {p, r}.
(5) By (2), the chief factor N/K does not have any p-regular
element whose order is divisible by two primes and necessarily
N/K ∼= S , with S a simple group whose prime graph is a forest.
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Sketch of the proof of Theorem A.

(6) It is not difficult to show

(N ∩ Z(G )){r ,p}′ ∼= K/O{r ,p}(N) = Z(N/O{r ,p}(N));

N/O{r ,p}(N)

Z(N/O{r ,p}(N))
∼= N/K ∼= S .

Hence, N/O{r ,p}(N) is a quasi-simple group and |N ∩ Z(G ))|{r ,p}′
divides |M(S)|, where M(S) is the Schur multiplier of S .
(7) By (3), we have |N/O{r ,p}(N)|{r ,p}′ divides |M(S)|.
(8) Therefore, we obtain that |S | divides |M(S)|pαqβ, for some α
and β.
(9) Finally, we can check that this property is not possible for the
simple groups listed by M.S. Lucido. The most complicated cases
are PSL2(q), PSL3(q), PSU3(q). 2
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