María José Felipe

Universidad Politécnica de Valencia (Spain)

Groups St Andrews 2013

in collaboration with Zeinab Akhlaghi and Antonio Beltrán

Conjugacy class sizes

Notation

Let G be a finite group and $x \in G$. We denote by

$$x^G = \{x^g : g \in G\}$$

the conjugacy class of x in G and by

$$\operatorname{cs}(G) = \{|x^G| : x \in G\}.$$

Conjugacy class sizes

Notation

Let G be a finite group and $x \in G$. We denote by

$$x^G = \{x^g : g \in G\}$$

the conjugacy class of x in G and by

$$cs(G) = \{|x^G| : x \in G\}.$$

It is well-known that there exists a strong relation between cs(G) and the structure of G.

Conjugacy class sizes

Notation

Let G be a finite group and $x \in G$. We denote by

$$x^G = \{x^g : g \in G\}$$

the conjugacy class of x in G and by

$$cs(G) = \{|x^G| : x \in G\}.$$

It is well-known that there exists a strong relation between cs(G) and the structure of G.

Theorem (N. Itô, 1953)

If |cs(G)| = 2, then $G = P \times A$ with P a p-subgroup, for some prime p, and $A \subseteq \mathbf{Z}(G)$.

Conjugacy class sizes of p-regular elements

Notation

Let p be a prime number and G be a finite group.

An element $x \in G$ is said to be a p-regular element (or a p'-element) if the order o(x) is not divisible by p.

We can consider the set

$$cs_{p'}(G) = \{|x^G| : x \text{ is a } p\text{-regular element of } G\}.$$

Conjugacy class sizes of *p*-regular elements

Notation

Let p be a prime number and G be a finite group.

An element $x \in G$ is said to be a *p*-regular element (or a p'-element) if the order o(x) is not divisible by p.

We can consider the set

$$cs_{p'}(G) = \{|x^G| : x \text{ is a } p\text{-regular element of } G\}.$$

Some questions:

• What can be said about the structure of G from $cs_{p'}(G)$?

Conjugacy class sizes of p-regular elements

Notation

Let p be a prime number and G be a finite group.

An element $x \in G$ is said to be a *p*-regular element (or a p'-element) if the order o(x) is not divisible by p.

We can consider the set

$$cs_{p'}(G) = \{|x^G| : x \text{ is a } p\text{-regular element of } G\}.$$

Some questions:

- What can be said about the structure of G from $cs_{p'}(G)$?
- If H is a p-complement of G, which is the relation between $cs_{p'}(G)$ and cs(H)?

Let H be a p-complement of a finite group G. Let $x \in H$.

(i) Then $|x^G|_{p'}$ divides $|x^H|$.

Let H be a p-complement of a finite group G. Let $x \in H$.

- (i) Then $|x^G|_{p'}$ divides $|x^H|$.
- (ii) If $|x^G|$ is a p'-number, then $|x^H| = |x^G|$.

Let H be a p-complement of a finite group G. Let $x \in H$.

- (i) Then $|x^G|_{p'}$ divides $|x^H|$.
- (ii) If $|x^G|$ is a p'-number, then $|x^H| = |x^G|$.
- (iii) If $H \subseteq G$, then $|x^H| = |x^G|_{p'}$.

Let H be a p-complement of a finite group G. Let $x \in H$.

- (i) Then $|x^G|_{p'}$ divides $|x^H|$.
- (ii) If $|x^G|$ is a p'-number, then $|x^H| = |x^G|$.
- (iii) If $H \subseteq G$, then $|x^H| = |x^G|_{p'}$.

Question:

• In general, is $|x^H|$ a divisor of $|x^G|$?

Let H be a p-complement of a finite group G. Let $x \in H$.

- (i) Then $|x^G|_{p'}$ divides $|x^H|$.
- (ii) If $|x^G|$ is a p'-number, then $|x^H| = |x^G|$.
- (iii) If $H \subseteq G$, then $|x^H| = |x^G|_{p'}$.

Question:

• In general, is $|x^H|$ a divisor of $|x^G|$?

This question is false.

Let H be a p-complement of a finite group G. Let $x \in H$.

- (i) Then $|x^G|_{p'}$ divides $|x^H|$.
- (ii) If $|x^G|$ is a p'-number, then $|x^H| = |x^G|$.
- (iii) If $H \subseteq G$, then $|x^H| = |x^G|_{p'}$.

Question:

• In general, is $|x^H|$ a divisor of $|x^G|$?

This question is false.

Example:

The symmetric group $H = S_4$ is a Hall $\{2,3\}$ -subgroup of the symmetric group $G = S_5$ (that is, a 5-complement of S_5). The sets of class sizes are

$$cs(H) = \{1, 3, 6, 8\}$$
 and $cs_{p'}(G) = \{1, 10, 15, 20, 30\}.$

Let $x = (1, 2, 3) \in H$, the class size $|x^H| = 8$ and to $|x^G| = 20$.

• In general, is $|cs(H)| \leq |cs_{p'}(G)|$?

• In general, is $|cs(H)| \leq |cs_{p'}(G)|$?

This question neither is true.

• In general, is $|cs(H)| \leq |cs_{p'}(G)|$?

This question neither is true.

Example:

The quaternion group Q_8 acts on $T = [\mathbb{Z}_5 \times \mathbb{Z}_5]\mathbb{Z}_3$.

We consider $G = [T]Q_8$ (SmallGroup(600, 57) in GAP).

Let $H = [\mathbb{Z}_5 \times \mathbb{Z}_5]Q_8$ be a 3-complement of G. We have

$$cs(H) = \{1, 2, 4, 10, 50\};$$

$$cs(G) = cs_{p'}(G) = \{1, 6, 30, 50\}.$$

• In general, is $|cs(H)| \leq |cs_{p'}(G)|$?

This question neither is true.

Example:

The quaternion group Q_8 acts on $T = [\mathbb{Z}_5 \times \mathbb{Z}_5]\mathbb{Z}_3$.

We consider $G = [T]Q_8$ (SmallGroup(600, 57) in GAP).

Let $H = [\mathbb{Z}_5 \times \mathbb{Z}_5]Q_8$ be a 3-complement of G. We have

$$cs(H) = \{1, 2, 4, 10, 50\};$$

$$cs(G) = cs_{p'}(G) = \{1, 6, 30, 50\}.$$

Therefore, there is not relation between |cs(H)| and $|cs_{p'}(G)|$.

New topic:

Some recent results have indicated that the structure of G and its p-complements are closely related to the set $cs_{p'}(G)$.

New topic:

Some recent results have indicated that the structure of G and its p-complements are closely related to the set $cs_{p'}(G)$.

But studying this relation seems a difficult problem, even when G is a p-solvable group.

New topic:

Some recent results have indicated that the structure of G and its p-complements are closely related to the set $cs_{p'}(G)$.

But studying this relation seems a difficult problem, even when G is a p-solvable group.

Theorem (A. Camina, 1974)

If $|cs_{p'}(G)| = 2$, then G is solvable.

New topic:

Some recent results have indicated that the structure of G and its p-complements are closely related to the set $cs_{p'}(G)$.

But studying this relation seems a difficult problem, even when G is a p-solvable group.

Theorem (A. Camina, 1974)

If $|cs_{p'}(G)| = 2$, then G is solvable.

Theorem (E.Alemany-A.Beltrán-M.J.Felipe, 2009)

Let H be a p-complement of G. If $|cs_{p'}(G)| = 2$, then either H is abelian or $H = Q \times A$ with $Q \in Syl_q(G)$ for $q \neq p$ and then $G = PQ \times A$, with $P \in Syl_p(G)$ and $A \subseteq \mathbf{Z}(G)$.

Structure of normal subgroups and G-classes

Structure of normal subgroups and $\emph{G} ext{-classes}$

Notation

Let N be a normal subgroup of G. Then

$$N = \cup_{x \in N} x^G$$

Let $x \in N$. The class x^G is called a G-class of N. We denote by

$$cs_G(N) = \{|x^G| : x \in N\} \subseteq cs(G).$$

Structure of normal subgroups and G-classes

Notation

Let N be a normal subgroup of G. Then

$$N = \cup_{x \in N} x^G$$

Let $x \in \mathbb{N}$. The class x^G is called a G-class of \mathbb{N} . We denote by

$$cs_G(N) = \{|x^G| : x \in N\} \subseteq cs(G).$$

It can be seen that there is no relation between the cardinalities $|cs_G(N)|$ and |cs(N)|.

Structure of normal subgroups and G-classes

Notation

Let N be a normal subgroup of G. Then

$$N = \cup_{x \in N} x^G$$

Let $x \in N$. The class x^G is called a G-class of N. We denote by

$$cs_G(N) = \{|x^G| : x \in N\} \subseteq cs(G).$$

It can be seen that there is no relation between the cardinalities $|cs_G(N)|$ and |cs(N)|.

Another new topic:

Recent results have put forward that there exists a strong relation between $cs_G(N)$ and the structure of N.

Theorem 1 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let G be a **finite** p-**solvable group** and N be a normal subgroup of G. Suppose that N has two p-regular G-class sizes for some prime p. Then N has nilpotent p-complements.

Theorem 1 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let G be a **finite** p-solvable group and N be a normal subgroup of G. Suppose that N has two p-regular G-class sizes for some prime p. Then N has nilpotent p-complements.

Question:

• Can the hypothesis of *p*-solvability of *G* be eliminated?

Theorem 1 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let G be a **finite** p-solvable group and N be a normal subgroup of G. Suppose that N has two p-regular G-class sizes for some prime p. Then N has nilpotent p-complements.

Question:

• Can the hypothesis of p-solvability of G be eliminated?

Theorem 2 (Akhlaghi-Beltrán-Felipe, 2013):

If N is a **solvable** normal subgroup of a group G with two G-class sizes of p-regular elements, then N has nilpotent p-complements.

Theorem 1 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let G be a **finite** p-solvable group and N be a normal subgroup of G. Suppose that N has two p-regular G-class sizes for some prime p. Then N has nilpotent p-complements.

Question:

• Can the hypothesis of *p*-solvability of *G* be eliminated?

Theorem 2 (Akhlaghi-Beltrán-Felipe, 2013):

If N is a **solvable** normal subgroup of a group G with two G-class sizes of p-regular elements, then N has nilpotent p-complements.

Question:

 We wonder if a normal subgroup of G having two p-regular G-class sizes is solvable.

Theorem A (Akhlaghi-Beltrán-Felipe, 2013):

If N is a normal subgroup of G with two G-class sizes of p-regular elements, then N is solvable.

Theorem A (Akhlaghi-Beltrán-Felipe, 2013):

If N is a normal subgroup of G with two G-class sizes of p-regular elements, then N is solvable.

Corollary B (Akhlaghi-Beltrán-Felipe, 2013):

If N is a normal subgroup of a group G with two G-class sizes of p-regular elements, then either N has abelian p-complements or $N = RP \times A$, where P is a Sylow p-subgroup, R is a Sylow r-subgroup for $r \neq p$ and $A \subseteq \mathbf{Z}(G)$.

Theorem A (Akhlaghi-Beltrán-Felipe, 2013):

If N is a normal subgroup of G with two G-class sizes of p-regular elements, then N is solvable.

Corollary B (Akhlaghi-Beltrán-Felipe, 2013):

If N is a normal subgroup of a group G with two G-class sizes of p-regular elements, then either N has abelian p-complements or $N = RP \times A$, where P is a Sylow p-subgroup, R is a Sylow r-subgroup for $r \neq p$ and $A \subseteq \mathbf{Z}(G)$.

Corollary C (Alemany-Beltrán-Felipe, 2011):

Let N be a normal subgroup of a finite group G such that $|cs_G(N)|=2$. Then either N is abelian or $N=R\times A$, where R is a Sylow r-subgroup of N for some prime r and A is central in G.

Preliminary results of the proof of Theorem A

The prime graph

Let G be a finite group. The **prime graph** $\Gamma(G)$ of G is defined as follows. The vertices of $\Gamma(G)$ are the primes dividing the order of G and two distinct vertices r and s are joined by an edge if there is an element in G of order rs.

Preliminary results of the proof of Theorem A

The prime graph

Let G be a finite group. The **prime graph** $\Gamma(G)$ of G is defined as follows. The vertices of $\Gamma(G)$ are the primes dividing the order of G and two distinct vertices r and s are joined by an edge if there is an element in G of order rs.

The prime graph $\Gamma(G)$ is a **tree** if any two primes are connected by exactly one simple path and it is a **forest** if it is a disjoint union of trees.

Theorem 3 (M.S. Lucido, 2002)

Let G be a finite non-abelian simple group. If $\Gamma(G)$ is a forest then G is one of the following simple groups: A_5 , A_6 , A_7 , A_8 , M_{11} , M_{22} , $PSL_4(3)$, $B_2(3)$, $G_2(3)$, $U_4(3)$, $U_5(2)$, $^2F_4(2)$, or belongs to one of the families: $PSL_2(q)$, $PSL_3(q)$, $PSU_3(q)$, $Sz(q^2)$ with $q^2=2^f$ or $q=2^{f^2}$ with f an odd prime, and $Ree(3^f)$, with f an odd prime.

Preliminary results of the proof of Theorem A

Theorem 4 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let N be a normal subgroup of a group G which has two p-regular G-class sizes for some prime p. Then either N has abelian p-complements or all p-regular elements of $N/(N\cap \mathbf{Z}(G))$ have prime power order.

Preliminary results of the proof of Theorem A

Theorem 4 (Akhlaghi-Beltrán-Felipe-Khatami, 2011):

Let N be a normal subgroup of a group G which has two p-regular G-class sizes for some prime p. Then either N has abelian p-complements or all p-regular elements of $N/(N\cap \mathbf{Z}(G))$ have prime power order.

As a consequence, either N has abelian p-complements or the prime graph $\Gamma(N/(N\cap \mathbf{Z}(G)))$ is a forest:

(1) We argue by minimal counterexample.

- (1) We argue by minimal counterexample.
- (2) By Theorem 4, we assume that $N/(N \cap \mathbf{Z}(G))$ does not have any p-regular element whose order is divisible by two primes and the prime graph $\Gamma(N/(N \cap \mathbf{Z}(G)))$ is a forest.

- (1) We argue by minimal counterexample.
- (2) By Theorem 4, we assume that $N/(N \cap \mathbf{Z}(G))$ does not have any p-regular element whose order is divisible by two primes and the prime graph $\Gamma(N/(N \cap \mathbf{Z}(G)))$ is a forest.
- (3) It is easy to prove that $|N/(N \cap \mathbf{Z}(G))|_{p'}$ divides $|N \cap \mathbf{Z}(G)|$ by using the class equation.

- (1) We argue by minimal counterexample.
- (2) By Theorem 4, we assume that $N/(N \cap \mathbf{Z}(G))$ does not have any p-regular element whose order is divisible by two primes and the prime graph $\Gamma(N/(N \cap \mathbf{Z}(G)))$ is a forest.
- (3) It is easy to prove that $|N/(N \cap \mathbf{Z}(G))|_{p'}$ divides $|N \cap \mathbf{Z}(G)|$ by using the class equation.
- (4) Let N/K be a chief factor of G such that $N \cap \mathbf{Z}(G) \subseteq K$.

- (1) We argue by minimal counterexample.
- (2) By Theorem 4, we assume that $N/(N \cap \mathbf{Z}(G))$ does not have any p-regular element whose order is divisible by two primes and the prime graph $\Gamma(N/(N \cap \mathbf{Z}(G)))$ is a forest.
- (3) It is easy to prove that $|N/(N \cap \mathbf{Z}(G))|_{p'}$ divides $|N \cap \mathbf{Z}(G)|$ by using the class equation.
- (4) Let N/K be a chief factor of G such that $N \cap \mathbf{Z}(G) \subseteq K$. By minimality of N, we obtain that K is a solvable subgroup.

- (1) We argue by minimal counterexample.
- (2) By Theorem 4, we assume that $N/(N \cap \mathbf{Z}(G))$ does not have any p-regular element whose order is divisible by two primes and the prime graph $\Gamma(N/(N \cap \mathbf{Z}(G)))$ is a forest.
- (3) It is easy to prove that $|N/(N \cap \mathbf{Z}(G))|_{p'}$ divides $|N \cap \mathbf{Z}(G)|$ by using the class equation.
- (4) Let N/K be a chief factor of G such that $N \cap \mathbf{Z}(G) \subseteq K$. By minimality of N, we obtain that K is a solvable subgroup. By Theorem 2, we have K has nilpotent p-complements and, as a consequence, the order of $K/(N \cap \mathbf{Z}(G))$ is divisible by at most two primes $\{p, r\}$.

- (1) We argue by minimal counterexample.
- (2) By Theorem 4, we assume that $N/(N \cap \mathbf{Z}(G))$ does not have any p-regular element whose order is divisible by two primes and the prime graph $\Gamma(N/(N \cap \mathbf{Z}(G)))$ is a forest.
- (3) It is easy to prove that $|N/(N \cap \mathbf{Z}(G))|_{p'}$ divides $|N \cap \mathbf{Z}(G)|$ by using the class equation.
- (4) Let N/K be a chief factor of G such that $N \cap \mathbf{Z}(G) \subseteq K$. By minimality of N, we obtain that K is a solvable subgroup. By Theorem 2, we have K has nilpotent p-complements and, as a consequence, the order of $K/(N \cap \mathbf{Z}(G))$ is divisible by at most two primes $\{p, r\}$.
- (5) By (2), the chief factor N/K does not have any p-regular element whose order is divisible by two primes and necessarily $N/K \cong S$, with S a simple group whose prime graph is a forest.

(6) It is not difficult to show

$$(N \cap \mathbf{Z}(G))_{\{r,p\}'} \cong K/\mathbf{O}_{\{r,p\}}(N) = \mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N));$$

$$\frac{N/\mathbf{O}_{\{r,p\}}(N)}{\mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N))} \cong N/K \cong S.$$

(6) It is not difficult to show

$$(N \cap \mathbf{Z}(G))_{\{r,p\}'} \cong K/\mathbf{O}_{\{r,p\}}(N) = \mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N));$$

$$\frac{N/\mathbf{O}_{\{r,p\}}(N)}{\mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N))} \cong N/K \cong S.$$

(6) It is not difficult to show

$$(N \cap \mathbf{Z}(G))_{\{r,p\}'} \cong K/\mathbf{O}_{\{r,p\}}(N) = \mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N));$$

$$\frac{N/\mathbf{O}_{\{r,p\}}(N)}{\mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N))} \cong N/K \cong S.$$

(7) By (3), we have
$$|N/\mathbf{O}_{\{r,p\}}(N)|_{\{r,p\}'}$$
 divides $|M(S)|$.

(6) It is not difficult to show

$$(N \cap \mathbf{Z}(G))_{\{r,p\}'} \cong K/\mathbf{O}_{\{r,p\}}(N) = \mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N));$$

$$\frac{N/\mathbf{O}_{\{r,p\}}(N)}{\mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N))} \cong N/K \cong S.$$

- (7) By (3), we have $|N/\mathbf{O}_{\{r,p\}}(N)|_{\{r,p\}'}$ divides |M(S)|.
- (8) Therefore, we obtain that |S| divides $|M(S)|p^{\alpha}q^{\beta}$, for some α and β .

(6) It is not difficult to show

$$(N \cap \mathbf{Z}(G))_{\{r,p\}'} \cong K/\mathbf{O}_{\{r,p\}}(N) = \mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N));$$

$$\frac{N/\mathbf{O}_{\{r,p\}}(N)}{\mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N))} \cong N/K \cong S.$$

- (7) By (3), we have $|N/\mathbf{O}_{\{r,p\}}(N)|_{\{r,p\}'}$ divides |M(S)|.
- (8) Therefore, we obtain that |S| divides $|M(S)|p^{\alpha}q^{\beta}$, for some α and β .
- (9) Finally, we can check that this property is not possible for the simple groups listed by M.S. Lucido.

(6) It is not difficult to show

$$(N \cap Z(G))_{\{r,p\}'} \cong K/O_{\{r,p\}}(N) = Z(N/O_{\{r,p\}}(N));$$

$$\frac{N/\mathbf{O}_{\{r,p\}}(N)}{\mathbf{Z}(N/\mathbf{O}_{\{r,p\}}(N))} \cong N/K \cong S.$$

- (7) By (3), we have $|N/\mathbf{O}_{\{r,p\}}(N)|_{\{r,p\}'}$ divides |M(S)|.
- (8) Therefore, we obtain that |S| divides $|M(S)|p^{\alpha}q^{\beta}$, for some α and β .
- (9) Finally, we can check that this property is not possible for the simple groups listed by M.S. Lucido. The most complicated cases are $PSL_2(q)$, $PSL_3(q)$, $PSU_3(q)$. \square

References:

- Z. Akhlaghi, A. Beltrán A and M.J. Felipe, The influence of p-regular class sizes on normal subgroups, to appear J. Group Theory.
- Z. Akhlaghi, A. Beltrán, M.J. Felipe, M. Khatami, Normal subgroups and *p*-regular *G*-class sizes. J. Algebra **336** (2011), 236-241.
- E. Alemany, A. Beltrán and M.J. Felipe, Nilpotency of normal subgroups having two *G*-class sizes. Proc. Amer. Math. Soc. **139** (2011), 2663-2669.

Thank you very much for your attention!