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A few Statistics

We can associate various numbers to a permutation σ of Sym(n).

I inv(σ) = |{(i , j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}|, the inversion
number

I des(σ) = |D(σ)| = |{i ∈ [n] : σ(i) > σ(i + 1)}|, the number
of descents

I exc(σ) = |{(i ∈ [n] : σ(i) > i}|, the excedance

I maj(σ) =
∑

i∈D(σ) i , the major index

There are relationships between these statistics, for example
(Stanley, Enumerative Combinatorics Corollary 4.5.9):

|{σ ∈ Sym(n) : inv(σ) = k}| = |{σ ∈ Sym(n) : maj(σ) = k}|

We look at inversion number. (Joint work with Peter Rowley.)
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Inversions

I The number of inversions is a measure of how ‘disordered’ a
permutation is.

I inv(Id) = 0.

I Highest possible is
(n
2

)
, for

(
1 2 · · · n
n n − 1 · · · 1

)
.

I Elements with inversion number 1 are precisely the
transpositions (12), (23), . . ., (n − 1 n). They generate
Sym(n).
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Inversion Polynomial

We have (eg Stanley, Enumerative Combinatorics)∑
σ∈Sym(n)

t inv(σ) = (1 + t)(1 + t + t2) · · · (1 + t + · · ·+ tn−1).

This is symmetric, unimodal, log-concave, nice.
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Generalisations

We like ‘nice’ sequences. Can we find more? Two generalisations:

I First: Let X be a subset of Sym(n). Define

fSym(n),X (t) =
∑
x∈X

t inv(x).

I Second: Sym(n) is just one example of a Coxeter group.
What is the generalisation of inversion number in that
context?
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Coxeter Groups

I A Coxeter system (W ,R) is a group W with W = 〈R〉, and
the only relations are (rs)mrs = 1 for all r , s ∈ R, such that
mrr = 1 and mrs = msr ≥ 2 when r 6= s.

I Examples: Sym(n) with R = {(12), (23), . . . , (n − 1 n)}
I The dihedral group of order 2m, where R consists of two

reflections whose product has order m.

I Every finite Coxeter group is a direct product of irreducible
Coxeter groups, and these have been classified.
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The Length Function

Let W be a Coxeter group, and w ∈W . Then

`(w) = min{k : w = r1r2 · · · rk , ri ∈ R}.

I For w ∈ Sym(n) (which is a Coxeter group of type An−1) it
can be shown that

`(w) = inv(w).

Length is of fundamental importance in Coxeter groups, essentially
because of its relationship with the root system Φ – the length of
w is the number of positive roots taken negative by w .
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Length Polynomials

For any Coxeter group W , and any subset X of W , we can look at
the polynomial

fW ,X (t) =
∑
x∈X

t`(x).

I If X = W , then fW ,X (t) is known as the Poincaré polynomial
W (t) =

∑
w∈W t`(w). It has been extensively studied. For

example, if W is finite irreducible of rank n, then there are
positive integers e1, . . . , en (the exponents of W ) such that

W (t) =
n∏

i=1

(1 + t + · · ·+ tei ).

For An the exponents are 1, 2, . . . , n.
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What other X are worth looking at?

I All Coxeter groups are generated by involutions (fundamental
reflections).

I Every involution in W is conjugate to an element of a
particular set of involutions which can be read off from the
Coxeter graph in a fairly straightforward way.

I Results are known giving the number of involutions of minimal
and maximal length in a given conjugacy class of involutions.

I In a finite Coxeter group every element is a product of at
most two involutions.

I For Sym(n) the length polynomials for conjugacy classes of
involutions are known, and there are various conjectures about
results for types Bn and Dn.

I For the set of reflections the length polynomial gives the
number of positive roots of given depths in the root poset,
which has been studied. And finally...

I The answers seem nice!
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Groups of Permutations, and the rest

I Groups with a (useful) permutation interpretation of some
kind:

An,Bn,Dn, Ãn, B̃n, C̃n, D̃n.

I The finite Coxeter groups are well known. Having done types
An, Bn and Dn, we then get all the finite Coxeter groups, by
reducing to the irreducible case, sorting types E6, E7, E8, F4,
H3, H4 by brute force, and doing I2(m) in our sleep.
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Conjectures

Various conjectures have been made concerning the unimodality
and/or log-concavity of the coefficients of involution length
polynomials in the classical groups. A sequence (xi )

N
i=1 is unimodal

if for some i we have a1 ≤ · · · ≤ ai−1 ≤ ai ≥ ai+1 ≥ · · · ≥ aN and
log-concave if for all i between 2 and N − 1 we have
x2
i ≥ xi−1xi+1. A log-concave sequence of positive integers is

always unimodal, but not vice versa.

I (Brenti) The coefficients of fSym(n),I(t) are log-concave
(where I is the set of all involutions of Sym(n)).

I (Dukes) Let W be of type A,B or D. Write Ie (respectively
Io) for the set of even length (respectively odd length)
involutions in W . Then the sequences of coefficients of both
fW ,Ie (t) and fW ,Io (t) are symmetric and unimodal.
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An, Bn, Dn

I Bn is the group of permutations w of
{1, 2, . . . , n,−1,−2, . . . ,−n} with the property that

w(−i) = −w(i) for all i . So for example (
−
1
+
2
−
3) means

w(1) = −2, w(−1) = 2, w(2) = 3, w(−2) = −3 and so on.

I An−1 ∼= Sym(n) is the subgroup of Bn consisting of
permutations with a + sign above every number.

I Dn is the subgroup of Bn whose elements have an even
number of sign changes.

I A generating set for Bn is {(
−
1), (

+
1
+
2), . . . , (

+
n − 1

+
n)}.

I A generating set for An−1 is {(
+
1
+
2), . . . , (

+
n − 1

+
n)}.

I A generating set for Dn is {(
−
1
−
2), (

+
1
+
2), . . . , (

+
n − 1

+
n)}.
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Lengths and involutions

I If w ∈ Dn, its length as an element of Dn is likely to be
different from its length as an element of Bn. For example

(
−
1
−
2) has length 1 in Dn but length 3 in Bn. Luckily, if

w ∈ An−1 we have `A(w) = `B(w), and if w ∈ Dn we have
`D(w) = `B(w)−#( minus signs in w).

I With care, we can mostly work in Bn.

I Involutions in W have cycles (
+
i
+
j ), (

−
i
−
j ), (

+
i ) or (

−
i ).
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Plan of Attack

I Consider an involution w of length ` in Wn (where Wn is one
of An−1,Bn or Dn), with m transpositions and e negative
1-cycles.

I The cycle τ involving n could be (
+
n), (

−
n), (

+
k
+
n) or (

−
k
−
n).

I If (
+
n) or (

−
n) then let z = wτ ‘∈’Wn−1.

I Otherwise, let z = (wτ)(n n−1 ···k+1 k). Then z ∈Wn−2.

For example if w = (
−
1
−
3)(
−
2
−
5)(
−
4) in B5, then k = 2, wτ = (

−
1
−
3)(
−
4)

and z = (
−
1
−
2)(
−
3) ∈Wn−2.

Crucially, `(w)− `(z) depends only on k.
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Recursive Formulae

For example, if we write the Pn,m,` for the set of involutions in
An−1 of length ` having m transpositions, it turns out that

Pn,m,` = Pn−1,m,` +
n−1∑
k=1

Pn−2,m−1,`−2(n−k)+1.

Instead of writing fW ,X we write fAn−1,m for X the set of
involutions in An−1 with m transpositions and fW ,m,e for X the set
of involutions in W with m transpositions and e negative 1-cycles.
If e is odd such involutions are not in Dn but we can still calculate
their ‘D-length’.
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Results

Theorem (Hart, Rowley)

I fAn−1,m(t) = fAn−2,m(t) + t(t2n−2−1)
t2−1 fAn−3,m−1(t);

I fBn,m,e(t) =

fBn−1,m,e(t) + t2n−1fBn−1,m,e−1(t) + t(t4n−4−1)
t2−1 fBn−2,m−1,e(t);

I fDn,m,e(t) = fDn−1,m,e(t) + t2n−2fDn−1,m,e−1(t) +
t(1+t2n−4)(t2n−2−1)

t2−1 fDn−2,m−1,e(t).

An result stated by J. Désarménien (1982), cited by Dukes (2007).
Closed formula results in all three cases when n = 2m, giving
symmetric, unimodal sequences. Combining for all m, e gives
results for set of all involutions.
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Addressing the Conjectures

(For brevity, the sequence of nonzero coefficients of fW ,X is called
the length profile of X in W .)

I These are the only examples we know of for even or odd
involution length profiles in finite irreducible Coxeter groups
that are not unimodal:

I Even length involutions in B6.
I Even length involutions in E8, F4, H4 and I2(m), for m even.

In particular, Dukes’ conjecture is partially false. However, we can
refine it.

Conjecture

(i) If X is a conjugacy class of involutions in An or Bn, then the
even/odd length profile of X is unimodal.

(ii) If X is the set of involutions of odd length in a finite Coxeter
group, then the (odd) length profile of X is unimodal.
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What about Ãn etc?

Let Gn be the subgroup of permutations w of Z that satisfy
w(i + n) = w(i) + n, for all i ∈ Z, and

∑n
i=1 w(i) =

(n+1
2

)
. Then

Gn
∼= Ãn−1.

I There are known formulae for calculating length in this
environment.

I We think(!)

fGn,m(t) = fGn−1,m(t) +
t

1− t2
fGn−2,m−1(t).

I Proof:

Sarah Hart Involution Statistics in Coxeter Groups 18/18



What about Ãn etc?
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