Involution Statistics in Coxeter Groups

Sarah Hart

Department of Economics, Mathematics and Statistics Birkbeck, University of London

August 2013

Sarah Hart

A few Statistics

We can associate various numbers to a permutation σ of Sym(n).

• $inv(\sigma) = |\{(i,j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}|$, the inversion number

A few Statistics

We can associate various numbers to a permutation σ of Sym(n).

- $inv(\sigma) = |\{(i,j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}|$, the inversion number
- des $(\sigma) = |D(\sigma)| = |\{i \in [n] : \sigma(i) > \sigma(i+1)\}|$, the number of descents
- $exc(\sigma) = |\{(i \in [n] : \sigma(i) > i\}|, \text{ the excedance} \}$
- $\operatorname{maj}(\sigma) = \sum_{i \in D(\sigma)} i$, the major index

We can associate various numbers to a permutation σ of Sym(n).

- $inv(\sigma) = |\{(i,j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}|$, the inversion number
- des $(\sigma) = |D(\sigma)| = |\{i \in [n] : \sigma(i) > \sigma(i+1)\}|$, the number of descents
- $exc(\sigma) = |\{(i \in [n] : \sigma(i) > i\}|, \text{ the excedance} \}$
- $\operatorname{maj}(\sigma) = \sum_{i \in D(\sigma)} i$, the major index

There are relationships between these statistics, for example (Stanley, Enumerative Combinatorics Corollary 4.5.9):

$$|\{\sigma \in \operatorname{Sym}(n) : \operatorname{inv}(\sigma) = k\}| = |\{\sigma \in \operatorname{Sym}(n) : \operatorname{maj}(\sigma) = k\}|$$

We look at inversion number. (Joint work with Peter Rowley.)

- The number of inversions is a measure of how 'disordered' a permutation is.
- inv(Id) = 0.

• Highest possible is
$$\binom{n}{2}$$
, for $\begin{pmatrix} 1 & 2 & \cdots & n \\ n & n-1 & \cdots & 1 \end{pmatrix}$.

► Elements with inversion number 1 are precisely the transpositions (12), (23), ..., (n - 1 n). They generate Sym(n).

- The number of inversions is a measure of how 'disordered' a permutation is.
- inv(Id) = 0.

• Highest possible is
$$\binom{n}{2}$$
, for $\begin{pmatrix} 1 & 2 & \cdots & n \\ n & n-1 & \cdots & 1 \end{pmatrix}$.

► Elements with inversion number 1 are precisely the transpositions (12), (23), ..., (n - 1 n). They generate Sym(n).

We have (eg Stanley, Enumerative Combinatorics)

$$\sum_{\sigma\in\operatorname{Sym}(n)}t^{\operatorname{inv}(\sigma)}=(1+t)(1+t+t^2)\cdots(1+t+\cdots+t^{n-1}).$$

This is symmetric, unimodal, log-concave, nice.

Sarah Hart

We like 'nice' sequences. Can we find more? Two generalisations:

We like 'nice' sequences. Can we find more? Two generalisations:

First: Let X be a subset of Sym(n). Define

$$f_{\mathrm{Sym}(n),X}(t) = \sum_{x \in X} t^{\mathrm{inv}(x)}.$$

We like 'nice' sequences. Can we find more? Two generalisations:

First: Let X be a subset of Sym(n). Define

$$f_{\mathrm{Sym}(n),X}(t) = \sum_{x \in X} t^{\mathrm{inv}(x)}.$$

Second: Sym(n) is just one example of a Coxeter group. What is the generalisation of inversion number in that context? A Coxeter system (W, R) is a group W with W = ⟨R⟩, and the only relations are (rs)^{m_{rs}} = 1 for all r, s ∈ R, such that m_{rr} = 1 and m_{rs} = m_{sr} ≥ 2 when r ≠ s.

- A Coxeter system (W, R) is a group W with W = ⟨R⟩, and the only relations are (rs)^{m_{rs}} = 1 for all r, s ∈ R, such that m_{rr} = 1 and m_{rs} = m_{sr} ≥ 2 when r ≠ s.
- Examples: Sym(n) with $R = \{(12), (23), \dots, (n-1 n)\}$
- ► The dihedral group of order 2*m*, where *R* consists of two reflections whose product has order *m*.
- Every finite Coxeter group is a direct product of irreducible Coxeter groups, and these have been classified.

Let W be a Coxeter group, and $w \in W$. Then

$$\ell(w) = \min\{k : w = r_1 r_2 \cdots r_k, r_i \in R\}.$$

For w ∈ Sym(n) (which is a Coxeter group of type A_{n-1}) it can be shown that

$$\ell(w) = \operatorname{inv}(w).$$

Length is of fundamental importance in Coxeter groups, essentially because of its relationship with the root system Φ – the length of w is the number of positive roots taken negative by w.

Length Polynomials

For any Coxeter group W, and any subset X of W, we can look at the polynomial

$$f_{W,X}(t) = \sum_{x \in X} t^{\ell(x)}.$$

For any Coxeter group W, and any subset X of W, we can look at the polynomial

$$f_{W,X}(t) = \sum_{x \in X} t^{\ell(x)}.$$

If X = W, then f_{W,X}(t) is known as the Poincaré polynomial W(t) = ∑_{w∈W} t^{ℓ(w)}. It has been extensively studied. For example, if W is finite irreducible of rank n, then there are positive integers e₁,..., e_n (the exponents of W) such that

$$W(t) = \prod_{i=1}^n (1+t+\cdots+t^{e_i}).$$

For A_n the exponents are $1, 2, \ldots, n$.

Sarah Hart

 All Coxeter groups are generated by involutions (fundamental reflections).

- All Coxeter groups are generated by involutions (fundamental reflections).
- Every involution in W is conjugate to an element of a particular set of involutions which can be read off from the Coxeter graph in a fairly straightforward way.

- All Coxeter groups are generated by involutions (fundamental reflections).
- Every involution in W is conjugate to an element of a particular set of involutions which can be read off from the Coxeter graph in a fairly straightforward way.
- Results are known giving the number of involutions of minimal and maximal length in a given conjugacy class of involutions.

- All Coxeter groups are generated by involutions (fundamental reflections).
- Every involution in W is conjugate to an element of a particular set of involutions which can be read off from the Coxeter graph in a fairly straightforward way.
- Results are known giving the number of involutions of minimal and maximal length in a given conjugacy class of involutions.
- In a finite Coxeter group every element is a product of at most two involutions.

- All Coxeter groups are generated by involutions (fundamental reflections).
- Every involution in W is conjugate to an element of a particular set of involutions which can be read off from the Coxeter graph in a fairly straightforward way.
- Results are known giving the number of involutions of minimal and maximal length in a given conjugacy class of involutions.
- In a finite Coxeter group every element is a product of at most two involutions.
- ► For Sym(n) the length polynomials for conjugacy classes of involutions are known, and there are various conjectures about results for types B_n and D_n.

- All Coxeter groups are generated by involutions (fundamental reflections).
- Every involution in W is conjugate to an element of a particular set of involutions which can be read off from the Coxeter graph in a fairly straightforward way.
- Results are known giving the number of involutions of minimal and maximal length in a given conjugacy class of involutions.
- In a finite Coxeter group every element is a product of at most two involutions.
- ► For Sym(n) the length polynomials for conjugacy classes of involutions are known, and there are various conjectures about results for types B_n and D_n.
- ► For the set of reflections the length polynomial gives the number of positive roots of given depths in the root poset, which has been studied. And finally...

- All Coxeter groups are generated by involutions (fundamental reflections).
- Every involution in W is conjugate to an element of a particular set of involutions which can be read off from the Coxeter graph in a fairly straightforward way.
- Results are known giving the number of involutions of minimal and maximal length in a given conjugacy class of involutions.
- In a finite Coxeter group every element is a product of at most two involutions.
- ► For Sym(n) the length polynomials for conjugacy classes of involutions are known, and there are various conjectures about results for types B_n and D_n.
- ► For the set of reflections the length polynomial gives the number of positive roots of given depths in the root poset, which has been studied. And finally...
- The answers seem nice!

Groups of Permutations, and the rest

Groups with a (useful) permutation interpretation of some kind:

$$A_n, B_n, D_n, \tilde{A}_n, \tilde{B}_n, \tilde{C}_n, \tilde{D}_n.$$

► The finite Coxeter groups are well known. Having done types A_n, B_n and D_n, we then get all the finite Coxeter groups, by reducing to the irreducible case, sorting types E₆, E₇, E₈, F₄, H₃, H₄ by brute force, and doing I₂(m) in our sleep.

Conjectures

Various conjectures have been made concerning the unimodality and/or log-concavity of the coefficients of involution length polynomials in the classical groups. A sequence $(x_i)_{i=1}^N$ is unimodal if for some *i* we have $a_1 \leq \cdots \leq a_{i-1} \leq a_i \geq a_{i+1} \geq \cdots \geq a_N$ and log-concave if for all *i* between 2 and N - 1 we have $x_i^2 \geq x_{i-1}x_{i+1}$. A log-concave sequence of positive integers is always unimodal, but not vice versa.

- (Brenti) The coefficients of f_{Sym(n),I}(t) are log-concave (where I is the set of all involutions of Sym(n)).
- ► (Dukes) Let W be of type A, B or D. Write I_e (respectively I_o) for the set of even length (respectively odd length) involutions in W. Then the sequences of coefficients of both f_{W,I_e}(t) and f_{W,I_o}(t) are symmetric and unimodal.

▶ B_n is the group of permutations w of {1,2,...,n,-1,-2,...,-n} with the property that w(-i) = -w(i) for all i. So for example (123) means w(1) = -2, w(-1) = 2, w(2) = 3, w(-2) = -3 and so on.

- ▶ B_n is the group of permutations w of $\{1, 2, ..., n, -1, -2, ..., -n\}$ with the property that w(-i) = -w(i) for all i. So for example $\begin{pmatrix} -+-\\ 123 \end{pmatrix}$ means w(1) = -2, w(-1) = 2, w(2) = 3, w(-2) = -3 and so on.
- A_{n-1} ≃ Sym(n) is the subgroup of B_n consisting of permutations with a + sign above every number.

- ▶ B_n is the group of permutations w of {1,2,...,n,-1,-2,...,-n} with the property that w(-i) = -w(i) for all i. So for example (123) means w(1) = -2, w(-1) = 2, w(2) = 3, w(-2) = -3 and so on.
- A_{n-1} ≃ Sym(n) is the subgroup of B_n consisting of permutations with a + sign above every number.
- ► D_n is the subgroup of B_n whose elements have an even number of sign changes.

- ▶ B_n is the group of permutations w of $\{1, 2, ..., n, -1, -2, ..., -n\}$ with the property that w(-i) = -w(i) for all i. So for example $\begin{pmatrix} -+-\\ 123 \end{pmatrix}$ means w(1) = -2, w(-1) = 2, w(2) = 3, w(-2) = -3 and so on.
- ► A_{n-1} ≅ Sym(n) is the subgroup of B_n consisting of permutations with a + sign above every number.
- ► D_n is the subgroup of B_n whose elements have an even number of sign changes.
- A generating set for B_n is $\{(\overline{1}), (\overline{12}), \ldots, (n-1, n)\}$.
- A generating set for A_{n-1} is $\{\begin{pmatrix} ++\\ 12 \end{pmatrix}, \dots, \begin{pmatrix} n+\\ n \end{pmatrix}\}$.
- A generating set for D_n is $\{(12), (12), \dots, (n-1n)\}$.

- ▶ If $w \in D_n$, its length as an element of D_n is likely to be different from its length as an element of B_n . For example $(\overline{12})$ has length 1 in D_n but length 3 in B_n . Luckily, if $w \in A_{n-1}$ we have $\ell_A(w) = \ell_B(w)$, and if $w \in D_n$ we have $\ell_D(w) = \ell_B(w) - \#($ minus signs in w).
- With care, we can mostly work in B_n .

- ▶ If $w \in D_n$, its length as an element of D_n is likely to be different from its length as an element of B_n . For example $(\overline{12})$ has length 1 in D_n but length 3 in B_n . Luckily, if $w \in A_{n-1}$ we have $\ell_A(w) = \ell_B(w)$, and if $w \in D_n$ we have $\ell_D(w) = \ell_B(w) - \#($ minus signs in w).
- With care, we can mostly work in B_n .
- ▶ Involutions in W have cycles $\begin{pmatrix} ++\\ i j \end{pmatrix}$, $\begin{pmatrix} --\\ i j \end{pmatrix}$, $\begin{pmatrix} +\\ i \end{pmatrix}$ or $\begin{pmatrix} -\\ i \end{pmatrix}$.

Sarah Hart

- Consider an involution w of length ℓ in W_n (where W_n is one of A_{n-1}, B_n or D_n), with m transpositions and e negative 1-cycles.
- The cycle τ involving *n* could be $(\stackrel{+}{n})$, $(\stackrel{-}{n})$, $(\stackrel{+}{kn})$ or $(\stackrel{-}{kn})$.
- If $\binom{+}{n}$ or (\overline{n}) then let $z = w\tau' \in W_{n-1}$.
- Otherwise, let $z = (w\tau)^{(n \ n-1 \ \cdots \ k+1 \ k)}$. Then $z \in W_{n-2}$.

- ► Consider an involution w of length l in W_n (where W_n is one of A_{n-1}, B_n or D_n), with m transpositions and e negative 1-cycles.
- The cycle τ involving *n* could be $(\stackrel{+}{n})$, $(\stackrel{-}{n})$, $(\stackrel{+}{kn})$ or $(\stackrel{-}{kn})$.

▶ If
$$(\overset{+}{n})$$
 or $(\overset{-}{n})$ then let $z = w\tau$ '∈' W_{n-1} .

• Otherwise, let $z = (w\tau)^{(n \ n-1 \ \cdots \ k+1 \ k)}$. Then $z \in W_{n-2}$.

For example if $w = (\overline{13})(\overline{25})(\overline{4})$ in B_5 , then k = 2, $w\tau = (\overline{13})(\overline{4})$ and $z = (\overline{12})(\overline{3}) \in W_{n-2}$. Crucially, $\ell(w) - \ell(z)$ depends only on k. For example, if we write the $P_{n,m,\ell}$ for the set of involutions in A_{n-1} of length ℓ having *m* transpositions, it turns out that

$$P_{n,m,\ell} = P_{n-1,m,\ell} + \sum_{k=1}^{n-1} P_{n-2,m-1,\ell-2(n-k)+1}.$$

Sarah Hart

For example, if we write the $P_{n,m,\ell}$ for the set of involutions in A_{n-1} of length ℓ having *m* transpositions, it turns out that

$$P_{n,m,\ell} = P_{n-1,m,\ell} + \sum_{k=1}^{n-1} P_{n-2,m-1,\ell-2(n-k)+1}.$$

Instead of writing $f_{W,X}$ we write $f_{A_{n-1},m}$ for X the set of involutions in A_{n-1} with m transpositions and $f_{W,m,e}$ for X the set of involutions in W with m transpositions and e negative 1-cycles. If e is odd such involutions are not in D_n but we can still calculate their 'D-length'.

Results

Theorem (Hart, Rowley)

•
$$f_{A_{n-1},m}(t) = f_{A_{n-2},m}(t) + \frac{t(t^{2n-2}-1)}{t^2-1} f_{A_{n-3},m-1}(t);$$

Sarah Hart

Results

Theorem (Hart, Rowley)

•
$$f_{A_{n-1},m}(t) = f_{A_{n-2},m}(t) + \frac{t(t^{2n-2}-1)}{t^{2}-1}f_{A_{n-3},m-1}(t);$$

• $f_{B_{n},m,e}(t) = f_{B_{n-1},m,e}(t) + t^{2n-1}f_{B_{n-1},m,e-1}(t) + \frac{t(t^{4n-4}-1)}{t^{2}-1}f_{B_{n-2},m-1,e}(t);$

Results

Theorem (Hart, Rowley)

•
$$f_{A_{n-1},m}(t) = f_{A_{n-2},m}(t) + \frac{t(t^{2n-2}-1)}{t^2-1} f_{A_{n-3},m-1}(t);$$

• $f_{B_n,m,e}(t) = f_{B_{n-1},m,e}(t) + t^{2n-1} f_{B_{n-1},m,e-1}(t) + \frac{t(t^{4n-4}-1)}{t^2-1} f_{B_{n-2},m-1,e}(t);$
• $f_{D_n,m,e}(t) = f_{D_{n-1},m,e}(t) + t^{2n-2} f_{D_{n-1},m,e-1}(t) + \frac{t(1+t^{2n-4})(t^{2n-2}-1)}{t^2-1} f_{D_{n-2},m-1,e}(t).$

 A_n result stated by J. Désarménien (1982), cited by Dukes (2007). Closed formula results in all three cases when n = 2m, giving symmetric, unimodal sequences. Combining for all m, e gives results for set of all involutions.

Sarah Hart

Addressing the Conjectures

(For brevity, the sequence of nonzero coefficients of $f_{W,X}$ is called the length profile of X in W.)

- These are the only examples we know of for even or odd involution length profiles in finite irreducible Coxeter groups that are not unimodal:
 - Even length involutions in B_6 .
 - Even length involutions in E_8 , F_4 , H_4 and $I_2(m)$, for m even.

In particular, Dukes' conjecture is partially false. However, we can refine it.

Conjecture

- (i) If X is a conjugacy class of involutions in A_n or B_n, then the even/odd length profile of X is unimodal.
- (ii) If X is the set of involutions of odd length in a finite Coxeter group, then the (odd) length profile of X is unimodal.

Let G_n be the subgroup of permutations w of \mathbb{Z} that satisfy w(i+n) = w(i) + n, for all $i \in \mathbb{Z}$, and $\sum_{i=1}^{n} w(i) = \binom{n+1}{2}$. Then $G_n \cong \tilde{A}_{n-1}$.

There are known formulae for calculating length in this environment.

Let G_n be the subgroup of permutations w of \mathbb{Z} that satisfy w(i + n) = w(i) + n, for all $i \in \mathbb{Z}$, and $\sum_{i=1}^{n} w(i) = \binom{n+1}{2}$. Then $G_n \cong \tilde{A}_{n-1}$.

- There are known formulae for calculating length in this environment.
- ► We think(!)

$$f_{G_{n,m}}(t) = f_{G_{n-1},m}(t) + \frac{t}{1-t^2}f_{G_{n-2},m-1}(t).$$

Let G_n be the subgroup of permutations w of \mathbb{Z} that satisfy w(i + n) = w(i) + n, for all $i \in \mathbb{Z}$, and $\sum_{i=1}^{n} w(i) = \binom{n+1}{2}$. Then $G_n \cong \tilde{A}_{n-1}$.

- There are known formulae for calculating length in this environment.
- ► We think(!)

$$f_{G_{n,m}}(t) = f_{G_{n-1},m}(t) + \frac{t}{1-t^2}f_{G_{n-2},m-1}(t).$$

