Schur Indices in GAP

Allen Herman

University of Regina, Canada

Groups St. Andrews 2013 August 3-11, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Wedderburn Decomposition

The *Wedderburn decomposition* of a semisimple group algebra FG is its direct sum decomposition

$$\mathsf{F}G\simeq igoplus_{\chi} \mathsf{M}_{\mathsf{r}_{\chi}}(\mathsf{D}_{\chi})$$

where the components are matrix rings over division algebras D_{χ} that are finite dimensional over F.

The GAP package wedderga (by Broche Cristo, Konovalov, Olteanu, Oliviera, del Río, - later van Gelder, and soon, H.) gives a Wedderburn decomposition of FG, when G is a finite group and F is a field supported by GAP, whose simple components are given in terms of matrix rings over cyclotomic algebras:

Example 1: After gap> LoadPackage("wedderga") ... gap> G:=SmallGroup(48,18);; R:=GroupRing(Rationals,G);; gap> W:=WedderburnDecompositionInfo(R);

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

The GAP package wedderga (by Broche Cristo, Konovalov, Olteanu, Oliviera, del Río, - later van Gelder, and soon, H.) gives a Wedderburn decomposition of FG, when G is a finite group and F is a field supported by GAP, whose simple components are given in terms of matrix rings over cyclotomic algebras:

Example 1: After gap> LoadPackage("wedderga") ...
gap> G:=SmallGroup(48,18);; R:=GroupRing(Rationals,G);;
gap> W:=WedderburnDecompositionInfo(R);
[[1,Rationals],[1,Rationals],[1,Rationals],[1,Rationals],[1,Rationals],[2,Rationals],[1,Rationals,3,[2,2,0]],[2,CF(3)],
[1,Rationals,6,[2,5,0]],[1,NF(8,[1,7]),8,[2,7,4]],
[1,Rationals,12,[[2,5,9],[2,7,6]],[[9]]]]

・ロン ・回 と ・ ヨ と ・ ヨ と

The GAP package wedderga (by Broche Cristo, Konovalov, Olteanu, Oliviera, del Río, - later van Gelder, and soon, H.) gives a Wedderburn decomposition of FG, when G is a finite group and F is a field supported by GAP, whose simple components are given in terms of matrix rings over cyclotomic algebras:

Example 1: After gap> LoadPackage("wedderga") ...
gap> G:=SmallGroup(48,18);; R:=GroupRing(Rationals,G);;
gap> W:=WedderburnDecompositionInfo(R);
[[1,Rationals],[1,Rationals],[1,Rationals],[1,Rationals],[2,Rationals],[1,Rationals,3,[2,2,0]],[2,CF(3)],
[1,Rationals,6,[2,5,0]],[1,NF(8,[1,7]),8,[2,7,4]],
[1,Rationals,12,[[2,5,9],[2,7,6]],[[9]]]]

Problem: How do we isolate the division algebra parts of these simple components? Can we get GAP to do it?

< ロ > < 回 > < 回 > < 回 > < 回 > <

The Schur index

Let $A = FGe_{\chi} = [s, F(\chi), n, \alpha(, \delta)]$ be a simple component of FG corresponding to $\chi \in Irr(G)$. A is a simple algebra, so $A \simeq [r, D]$, for some finite dimensional division algebra D.

The Schur index of D (or A or
$$\chi$$
 over F) is
 $m(D) = m(A) = m_F(\chi) = \sqrt{[D:Z(D)]}.$
It measures the dimension of non-commutative part of D. The
dimension of A over its center $Z(D) = F(\chi)$ is $r^2 m_F(\chi)^2$.

伺 とく ヨ とく

Let A be a simple component of the group algebra FG with $d = \sqrt{[A : Z(A)]}$.

Our problem boils down to:

- calculating the Schur index m of A, and
- describing a division algebra D for which $A \simeq [\frac{d}{m}, D]$.

We can then get the full Wedderburn decomposition doing this for every simple component of FG.

< 同 > < 臣 > < 臣 >

Let A be a simple component of the group algebra FG with $d = \sqrt{[A : Z(A)]}$.

Our problem boils down to:

- calculating the Schur index m of A, and
- describing a division algebra D for which $A \simeq [\frac{d}{m}, D]$.

We can then get the full Wedderburn decomposition doing this for every simple component of FG.

If F is a finite field, m is always 1. So we assume F is an abelian number field and $[F : \mathbb{Q}] < \infty$.

▲冊▶ ▲屋▶ ▲屋≯

Local Schur indices

Fact: If K is an algebraic number field, the Schur index of a central simple K-algebra A is

$$m(A) = L_{\mathcal{P}}^{CM} \{ m(A \otimes_{K} K_{\mathcal{P}}) \},\$$

where $K_{\mathcal{P}}$ denotes the completion of K at the prime \mathcal{P} , and \mathcal{P} runs over the set of all (finite and infinite) primes of K.

Fortunately, if $A = FGe_{\chi}$ is a simple component of FG when F is an abelian number field and G is a finite group, $K = \mathbb{Q}(\chi)$ is an abelian number field, and the local indices $m(A \otimes_K K_{\mathcal{P}})$ agree at primes of K that lie over the same rational prime p. This local index at p can be > 1 only if $p = \infty$ or p divides |G|.

▲冊→ ▲屋→ ▲屋→

Local Schur indices

Fact: If K is an algebraic number field, the Schur index of a central simple K-algebra A is

$$m(A) = L_{\mathcal{P}}^{CM} \{ m(A \otimes_{\mathcal{K}} K_{\mathcal{P}}) \},\$$

where $K_{\mathcal{P}}$ denotes the completion of K at the prime \mathcal{P} , and \mathcal{P} runs over the set of all (finite and infinite) primes of K.

Fortunately, if $A = FGe_{\chi}$ is a simple component of FG when F is an abelian number field and G is a finite group, $K = \mathbb{Q}(\chi)$ is an abelian number field, and the local indices $m(A \otimes_K K_{\mathcal{P}})$ agree at primes of K that lie over the same rational prime p. This local index at p can be > 1 only if $p = \infty$ or p divides |G|.

So to calculate the Schur index m(A) in our situation, we (only) need to calculate the local indices at finitely many rational primes. **Fact:** The list of local indices *almost* determines D up to isomorphism.

wedderga's new Schur index algorithm

Command: SchurIndex(A); SchurIndexByCharacter(F,G,n);

Procedure: Similar to that of MAGMA's SchurIndex(F, chi), which was contributed by Nebe-Unger (2009) and improved for absolute number fields $F = \mathbb{Q}[x]/(f(x))$ by Fieker (2011?).

The important steps (for the local index at p algorithm) are:

(i). explicit Brauer-Witt reductions;

(*ii-a*). Benard's formula for the local index at p when χ lies in a block with cyclic defect group;

(*ii-b*). Riese and Schmid's classification of dyadic Schur groups to compute local index at p in other cases; and

(iii). adjusting the local indices when F is larger than the field of character values.

イロン イヨン イヨン イヨン

wedderga's new Schur index algorithm

Command: SchurIndex(A); SchurIndexByCharacter(F,G,n);

Procedure: Similar to that of MAGMA's SchurIndex(F, chi), which was contributed by Nebe-Unger (2009) and improved for absolute number fields $F = \mathbb{Q}[x]/(f(x))$ by Fieker (2011?).

The important steps (for the local index at p algorithm) are:

(i). explicit Brauer-Witt reductions;

(*ii-a*). Benard's formula for the local index at p when χ lies in a block with cyclic defect group;

(*ii-b*). Riese and Schmid's classification of dyadic Schur groups to compute local index at p in other cases; and

(iii). adjusting the local indices when F is larger than the field of character values.

The code for wedderga's algorithm has been written entirely independently. It computes Schur indices over any abelian number field F and makes use of special case shortcuts.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

wedderga's Schur index algorithm: Cyclic cyclotomic case

Suppose A = [s,F,n,[a,b,c]] is a cyclic cyclotomic algebra.

Case 1: If A is a cyclic cyclotomic algebra, its local indices at ∞ , 2, and odd p are computed using three shortcut algorithms:

- the local index at ∞ is computed directly from the cyclic cyclotomic algebra presentation without using the Frobenius-Schur indicator;

Suppose A = [s,F,n,[a,b,c]] is a cyclic cyclotomic algebra.

Case 1: If A is a cyclic cyclotomic algebra, its local indices at ∞ , 2, and odd p are computed using three shortcut algorithms:

- the local index at ∞ is computed directly from the cyclic cyclotomic algebra presentation without using the Frobenius-Schur indicator;

- the local indices at 2 or an odd prime p are computed directly from the cyclic cyclotomic algebra presentation using methods based on Janusz (PJM78). These require wedderga's new cyclotomic reciprocity functions for $F(\zeta_n)/F$:

```
g:=SplittingDegreeAtP(F,n,p),
```

```
f:=ResidueDegreeAtP(F,n,p), and
```

```
e:=RamificationIndexAtP(F,n,p).
```

(4回) (4回) (4回)

Cyclic cyclotomic examples

```
Example 2: Q_8 and Q_{12} \simeq C_3 \rtimes C_4.
gap> G:=SmallGroup(8,4);; R:=GroupRing(Rationals,G);;
gap> A:=WedderburnDecompositionInfo(R)[5];
[1,Rationals,4,[2,3,2]]
gap> LocalIndicesOfCyclicCyclotomicAlgebra(A);
[[2,2],[infinity,2]]
```

Cyclic cyclotomic examples

```
Example 2: Q_8 and Q_{12} \simeq C_3 \rtimes C_4.
gap> G:=SmallGroup(8,4);; R:=GroupRing(Rationals,G);;
gap> A:=WedderburnDecompositionInfo(R)[5];
[1,Rationals,4,[2,3,2]]
gap> LocalIndicesOfCyclicCyclotomicAlgebra(A);
[[2,2],[infinity,2]]
gap> G:=SmallGroup(12,1);;
R:=GroupRing(Rationals,G);;
gap> A:=WedderburnDecompositionInfo(R)[5];
[1,Rationals,6,[2,5,3]]
gap> LocalIndicesOfCyclicCyclotomicAlgebra(A);
[[3,2],[infinity,2]]
```

・ロト ・回ト ・ヨト ・ヨト - ヨ

Cyclic cyclotomic examples

```
Example 2: Q_8 and Q_{12} \simeq C_3 \rtimes C_4.
gap> G:=SmallGroup(8,4);; R:=GroupRing(Rationals,G);;
gap> A:=WedderburnDecompositionInfo(R)[5];
[1,Rationals,4,[2,3,2]]
gap> LocalIndicesOfCyclicCyclotomicAlgebra(A);
[[2,2],[infinity,2]]
gap> G:=SmallGroup(12,1);;
R:=GroupRing(Rationals,G);;
gap> A:=WedderburnDecompositionInfo(R)[5];
[1,Rationals,6,[2,5,3]]
gap> LocalIndicesOfCyclicCyclotomicAlgebra(A);
[[3,2],[infinity,2]]
gap> CyclotomicAlgebraWithDivAlgPart(A);
[1, rec( Center := Rationals, DivAlg := true,
Local Indices:=[[3,2],[infinity,2]], SchurIndex:=2)]
```

(김희) (종) (종) 등

Schur index algorithm: General case

Case 2: A is a simple component $[s, F, n, \alpha, \delta]$ for which the abelian Galois group of $F(\zeta_n)/F$ requires 2 or more generators. Step 1: Use the presentation of A to produce a defining polycyclic group G_1 (always cyclic-by-abelian) and faithful irreducible character $\chi_1 = Irr(G_1)[s]$, for which $FG_1e_{\chi_1}$ is Morita equivalent to A.

If *F* is real, compute the local index of *A* at ∞ using the Frobenius-Schur indicator of χ_1 : if $\chi_1 = Irr(G)[s]$ then this is Indicator(CharacterTable(G),2)[s].

To compute the local index at a finite prime p: Step 2: Find the maximal p-split subextension K of $F(\zeta_n)/F$. Reduce from A to $A_1 = KG_1e_{\chi_1}$, this has the same local index at p. A_1 is often cyclic cyclotomic, if so use the shortcuts as in Case 1. If A_1 is not cyclic cyclotomic, recalculate its defining group G_2 and character χ_2 , and proceed to Step 3.

Schur index algorithm: Cyclic defect group case

Step 3: Calculate the conjugacy classes of possible defect groups of the *p*-block of G_2 containing $\chi_2 = Irr(G_2)[n]$ using PossibleDefectGroups (G_2, n, p) ;

If the defect group is cyclic, then by a theorem of Benard (AM76):

$$m_{\mathbb{Q},p}(\chi_2) = [\mathbb{F}_p(\chi_2^o,\phi) : \mathbb{F}_p(\chi_2^o)],$$

for any $\phi \in IBr(G_2)$ lying in the same *p*-block as χ_2 .

If ${\it F}$ is larger than the field of character values, a theorem of Yamada shows that

$$m_{F,p}(\chi_2) = m_{\mathbb{Q},p}(\chi_2)/[gcd(m_{\mathbb{Q},p}(\chi_2), e(F/\mathbb{Q}(\chi_2), p)f(F/\mathbb{Q}(\chi_2), p)].$$

If this defect group is not cyclic, we have to do something else.

< 同 > < 臣 > < 臣 >

Suppose the defect group of the block containing χ_2 is not cyclic.

We require two assumptions (which can be removed by the "one prime at a time" approach and a norm reduction [H.,CA95]): (*i*). That the Galois group for A_1 is 2-generated. (*ii*). That (G_2, χ_2) is a terminal Brauer-Witt reduction for *p*.

If these hold, then the local index at p is 1 unless p = 2 and χ_2 is a faithful irreducible character of G_2 .

Step 4: Use Riese and Schmid's classification of dyadic Schur groups. The assumptions imply that $m_{\mathbb{Q},2}(\chi_2) = 2$ if and only if G_2 is a dyadic Schur group, and otherwise it will be 1.

Finally, adjust from $m_{\mathbb{Q},2}(\chi_2)$ to $m_{F,2}(\chi_2)$ using the theorem of Yamada.

・ロン ・回 と ・ 回 と ・ 回 と

Schur index algorithm: Examples

Back to Example 1:

```
gap> G:=SmallGroup(48,18);; F:=Rationals;;
gap> W:=WedderburnDecompositionInfo(GroupRing(F,G));
[[1,Rationals],[1,Rationals],[1,Rationals],[1,Rationals],
[2,Rationals],[1,Rationals,3,[2,2,0]],[2,CF(3)],
[1,Rationals,6,[2,5,0]],[1,NF(8,[1,7]),8,[2,7,4]],
[1,Rationals,12,[[2,5,9],[2,7,6]],[[9]]] ]
```

▲御▶ ▲唐▶ ▲唐▶

Back to Example 1:

```
gap> G:=SmallGroup(48,18);; F:=Rationals;;
gap> W:=WedderburnDecompositionInfo(GroupRing(F,G));
[[1,Rationals],[1,Rationals],[1,Rationals],[1,Rationals],
[2,Rationals], [1,Rationals, 3, [2,2,0]], [2,CF(3)],
[1,Rationals,6,[2,5,0]],[1,NF(8,[1,7]),8,[2,7,4]],
[1,Rationals,12,[[2,5,9],[2,7,6]],[[9]]] ]
gap>
WedderburnDecompositionWithDivAlgParts(GroupRing(F,G));
Γ
[1,Rationals], [1,Rationals], [1,Rationals], [1,Rationals],
[2,Rationals], [2,Rationals], [2,CF(3)], [2,Rationals],
[1,rec(Center:=NF(8,[1,7]), DivAlg:=true,
LocalIndices:=[[infinity,2]], SchurIndex:=2) ],
[2,rec(Center:=Rationals, DivAlg:=true,
LocalIndices:=[[infinity,2],[3,2]], SchurIndex:=2) ];
```

▶ 《臣》《臣》 《臣

Schur index algorithm: Examples

```
Example 3:
gap> G:=SmallGroup(80,15);; F:=Rationals;;
gap> Size(Irr(G));
17
gap> SimpleComponentOfGroupRingByCharacter(F,G,17);
[1, NF(5,[1,4]), 20, [[2,9,15],[2,11,0]], [[15]] ]
gap> K:=PSplitSubextension(NF(5,[1,4]),20,5);
NF(20,[1,9])
```

```
Example 3:
gap> G:=SmallGroup(80,15);; F:=Rationals;;
gap> Size(Irr(G));
17
gap> SimpleComponentOfGroupRingByCharacter(F,G,17);
[1, NF(5,[1,4]), 20, [[2,9,15],[2,11,0]], [[15]]]
gap> K:=PSplitSubextension(NF(5,[1,4]),20,5);
NF(20,[1,9])
gap> SimpleComponentOfGroupRingByCharacter(K,G,17);
[2, NF(20, [1,9]), 20, [2,9,15]]
```

・ 回 と ・ ヨ と ・ ヨ と

```
Example 3:
gap> G:=SmallGroup(80,15);; F:=Rationals;;
gap> Size(Irr(G));
17
gap> SimpleComponentOfGroupRingByCharacter(F,G,17);
[1, NF(5,[1,4]), 20, [[2,9,15],[2,11,0]], [[15]]]
gap> K:=PSplitSubextension(NF(5,[1,4]),20,5);
NF(20,[1,9])
gap> SimpleComponentOfGroupRingByCharacter(K,G,17);
[2, NF(20, [1,9]), 20, [2,9,15]]
gap> LocalIndicesOfCyclicCyclotomicAlgebra(last);
[[5.2]]
```

イロン イ部ン イヨン イヨン 三日

Example 4:

G:=SL(2,11);; F:=Rationals;;

gap> A:=SimpleComponentOfGroupRingByCharacter(F,G,10); [1/2,NF(12,[1,11]),132,[[10,73,0],[2,23,66]],[[0]]]

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 4:

G:=SL(2,11);; F:=Rationals;;

gap> A:=SimpleComponentOfGroupRingByCharacter(F,G,10); [1/2,NF(12,[1,11]),132,[[10,73,0],[2,23,66]],[[0]]]

gap> CyclotomicAlgebraWithDivAlgPart(A); [5,rec(Center:=NF(12,[1,11]),DivAlg:=true, LocalIndices:=[[infinity,2]], SchurIndex:=2)]

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 4:

G:=SL(2,11);; F:=Rationals;;

gap> A:=SimpleComponentOfGroupRingByCharacter(F,G,10); [1/2,NF(12,[1,11]),132,[[10,73,0],[2,23,66]],[[0]]]

```
gap> CyclotomicAlgebraWithDivAlgPart(A);
[5,rec(Center:=NF(12,[1,11]),DivAlg:=true,
LocalIndices:=[[infinity,2]], SchurIndex:=2) ]
```

```
gap> SchurIndexByCharacter(Rationals,G,10);
2
```

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Algorithms for computing local and global Schur indices of generalized quaternion algebras over $\mathbb Q$ - based on the traditional Legendre symbol algorithm.

2. Conversions between cyclic cyclotomic algebras and cyclic algebras - up to Morita equivalence. Schur indices of cyclic algebras can be computed by solving relative norm equations, which can be done using PARI.

3. Decomposition of cyclotomic algebras with 2-generated Galois groups into a tensor product of two cyclic algebras - up to Morita equivalence.

4. Conversions between cyclic algebras and generalized quaternion algebras, whenever possible.

The End...Thank you...See you next year!

Brock International Conference on Groups, Rings, and Group Rings

July 28 to August 1, 2014; Brock University, St. Catharines, Onterr Canada

For further information, go to the Conference homepage at: http://www.fields.utoronto.ca/programs/scientific/14-15/grouprings, Efim Zelmanov Sudarshan Sehgal Donald Passman Cerer Polcino-Milles Angol del Rio

David Riley Sabriele Nebe Senjamin Steir

Jan Okninski Eli Aljedeff

ヘロン 人間 とくほど 人間 と

Organizers: Yuanlin Li (Brock), Allen Herman (Regina) Eric Jespers (Brussels), Wolfgang Kimmerle (Stuttgart) Photo: Niagara Falls