Representations Arising from an Action on D-neighborhoods of Cayley Graphs

Justin Hughes Colorado State University

August 2013

Justin Hughes Colorado State University Representations Arising from an Action on D-neighborhoods of

イロト イヨト イヨト イヨト

Outline

The Objects: Cayley Graphs, Neighborhood Complexes, etc. The Objects: Results Group Action on the Neighborhood Complexes References

The Objects: Cayley Graphs, Neighborhood Complexes, etc.

The Objects: Results

Group Action on the Neighborhood Complexes

References

<ロ> (日) (日) (日) (日) (日)

Cayley Graphs and Neighborhood Complexes

▶ (Directed) Cayley graph: $ab \iff \exists g_i \in \{g_1, ..., g_n\}$ such that $g_i \cdot a = b$.

Cayley Graphs and Neighborhood Complexes

▶ (Directed) Cayley graph: $ab \iff \exists g_i \in \{g_1, ..., g_n\}$ such that $g_i \cdot a = b$.

Irredundant generating set is a set of generators for a group with the property that no proper subset of the generators will generate the group.

(ロ) (同) (E) (E) (E)

Cayley Graphs and Neighborhood Complexes

▶ (Directed) Cayley graph: $ab \iff \exists g_i \in \{g_1, ..., g_n\}$ such that $g_i \cdot a = b$.

- Irredundant generating set is a set of generators for a group with the property that no proper subset of the generators will generate the group.
- ► Distance set $D \in \{\{a_1, a_2, ..., a_n\} | a_i \in \mathbb{Z}_{\geq 0}\}$
- $N_D(x) = \{x_i | x_i \in V \text{ such that } d(x, x_i) \in D\}$
- ► Neighborhood complex: Simplicial complex with N_D(x) ∀x ∈ G as faces.

Cayley Graphs and Neighborhood Complexes

▶ (Directed) Cayley graph: $ab \iff \exists g_i \in \{g_1, ..., g_n\}$ such that $g_i \cdot a = b$.

- Irredundant generating set is a set of generators for a group with the property that no proper subset of the generators will generate the group.
- ▶ Distance set $D \in \{\{a_1, a_2, ..., a_n\} | a_i \in \mathbb{Z}_{\geq 0}\}$
- $N_D(x) = \{x_i | x_i \in V \text{ such that } d(x, x_i) \in D\}$
- ► Neighborhood complex: Simplicial complex with N_D(x) ∀x ∈ G as faces.
- $D = \{0, 1\}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Chain Complexes and Homology

Let Δ denote a simplicial complex and $F_i(\Delta)$ denote the faces of dimension *i*.

Reduced Chain Complex:

$$0 \longrightarrow \mathbb{K}^{|F_n(\Delta)|} \xrightarrow{\partial_n} \dots \xrightarrow{\partial_2} \mathbb{K}^{|F_1(\Delta)|} \xrightarrow{\partial_1} \mathbb{K}^{|F_0(\Delta)|} \xrightarrow{\partial_0} \mathbb{K} \longrightarrow 0$$

$$\blacktriangleright \ \partial_i(e_\alpha) = \sum_{j \in \alpha} \operatorname{sgn}(j, \alpha) e_{\alpha \setminus j}$$

イロト イポト イヨト イヨト

Chain Complexes and Homology

Let Δ denote a simplicial complex and $F_i(\Delta)$ denote the faces of dimension *i*.

Reduced Chain Complex:

$$0 \longrightarrow \mathbb{K}^{|F_n(\Delta)|} \xrightarrow{\partial_n} \dots \xrightarrow{\partial_2} \mathbb{K}^{|F_1(\Delta)|} \xrightarrow{\partial_1} \mathbb{K}^{|F_0(\Delta)|} \xrightarrow{\partial_0} \mathbb{K} \longrightarrow 0$$

$$\blacktriangleright \ \partial_i(e_\alpha) = \sum_{j \in \alpha} \operatorname{sgn}(j, \alpha) e_{\alpha \smallsetminus j}$$

• $\widetilde{H}_i(\Delta; \mathbb{K})$, is the vector space ker $(\partial_i)/\text{im}(\partial_{i+1})$

・ロン ・回と ・ヨン ・ヨン

Neighborhoods Sharing an Edge

Theorem

Let $S = \{g_1, ..., g_n\}$ be an irredundant generating set for a group G. Denote the Cayley graph for G and S by Cayley (G, S). Suppose there is an 1-simplex $\varepsilon \in N_{\{0,1\}}(x) \cap N_{\{0,1\}}(y)$ where $N_{\{0,1\}}(x)$ and $N_{\{0,1\}}(y)$ are distinct neighborhoods. Then either $\varepsilon = F_1(x, g_i \cdot x) = F_1(y, g_i \cdot y)$ and $|g_i| = 2$ or $\varepsilon = F_1(g_i \cdot x, g_j \cdot x) = F_1(g_j \cdot y, g_i \cdot y)$ and $|g_ig_j^{-1}| = 2$.

イロト イポト イラト イラト 一日

Neighborhoods Sharing an Edge

Theorem

Let $S = \{g_1, ..., g_n\}$ be an irredundant generating set for a group G. Denote the Cayley graph for G and S by Cayley (G, S). Suppose there is an 1-simplex $\varepsilon \in N_{\{0,1\}}(x) \cap N_{\{0,1\}}(y)$ where $N_{\{0,1\}}(x)$ and $N_{\{0,1\}}(y)$ are distinct neighborhoods. Then either $\varepsilon = F_1(x, g_i \cdot x) = F_1(y, g_i \cdot y)$ and $|g_i| = 2$ or $\varepsilon = F_1(g_i \cdot x, g_j \cdot x) = F_1(g_j \cdot y, g_i \cdot y)$ and $|g_ig_j^{-1}| = 2$. Corollary

Define
$$\alpha = |\{g \in S | |g| = 2\}|$$
 and
 $\beta = \left|\left\{g_i g_j^{-1} | g_i, g_j \in S, \left|g_i g_j^{-1}\right| = 2, \text{ and } i < j\right\}\right|.$ Then

$$|F_1(\Delta)| = \left(\binom{n+1}{2} - \frac{1}{2}(\alpha + \beta)\right)|G|$$

Representations Arising from an Action on D-neighborhoods of

$H_n = 0$ for n Generators

Theorem

Let S be a irredundant generating set of size n for G. Then $\widetilde{H_n}(N_{\{0,1\}}(Cayley(G,S))) = 0$ except when

1.
$$n = 1$$
 in which case G is cyclic and thus $\widetilde{H_1} = \mathbb{K}$, or

2. n = 2 and G is the Klein 4-group in which $\widetilde{H}_2 = \mathbb{K}$.

・ロン ・回と ・ヨン ・ヨン

Group Action

G acting on Cayley graph induces:

• σ_i is a matrix of $0, \pm 1$

・ロン ・回と ・ヨン・

3

Group Action

G acting on Cayley graph induces:

- σ_i is a matrix of $0, \pm 1$
- Let α be a word in F_i(Δ), e_α be the corresponding basis vector in K^{|F_i(Δ)|} and ρ the permutation on the labeling. Then σ_i(e_α) = sgn(α)e_{ρ(α)}

Note: $sgn(\alpha)$ is defined to be the parity of the permutation which restores the elements of α to ascending order.

Representation Theory Review

Definition

A homomorphism from a group G to general linear group $GL_n(\mathbb{K})$ over \mathbb{K} of some degree n is a matrix representation of G of degree

n.

Definition

An irreducible representation is a representation with no nontrivial invariant subspaces.

Definition

Regular representation is the permutation representation on cosets of the trivial group or in other words group multiplication.

イロト イポト イヨト イヨト

Representation Theory Review

Definition

A homomorphism from a group G to general linear group $GL_n(\mathbb{K})$ over \mathbb{K} of some degree n is a matrix representation of G of degree

n.

Definition

An irreducible representation is a representation with no nontrivial invariant subspaces.

Definition

Regular representation is the permutation representation on cosets of the trivial group or in other words group multiplication.

Theorem

The regular representation contains every irreducible representation *i* times where *i* is the degree of the irreducible representation.

▲御→ ★注→ ★注→ 「注」

The Action with $G = \langle g_1, g_2 \rangle$

The action of G on the Cayley graph induces an action on the chain complex and therefore on $F_i(\Delta)$ for $0 \le i \le 2$.

The action on $F_0(\Delta)$ and $F_2(\Delta)$ gives the regular representation.

Focus on action of G on
$$F_1(\Delta)$$
.
Orbits:
 $E_{g_1} \doteq \{F_1(v, g_1 \cdot v) | v \in V(Cayley(G, \{g_1, g_2\}))\}$
 $E_{g_2} \doteq \{F_1(v, g_2 \cdot v) | v \in V(Cayley(G, \{g_1, g_2\}))\}$
 $E_{g_1g_2^{-1}} \doteq \{F_1(g_1 \cdot v, g_2 \cdot v) | v \in V(Cayley(G, \{g_1, g_2\}))\}$

Description of Action on F_1

Theorem

Let $\{g_1, g_2\}$ be an irredundant generating set for a group G. Define the set $\mathcal{G} = \{g_1, g_2, g_1g_2^{-1}\}$. The representation given by the group action on the set of edges, $F_1(\Delta)$, consists of

- one copy of the regular representation for each element in G which is not order two
- a half of the regular representation for each element in G which has order two.

イロト イポト イラト イラト 一日

Description of Action on F_1

Theorem

Let $\{g_1, g_2\}$ be an irredundant generating set for a group G. Define the set $\mathcal{G} = \{g_1, g_2, g_1g_2^{-1}\}$. The representation given by the group action on the set of edges, $F_1(\Delta)$, consists of

- one copy of the regular representation for each element in G which is not order two
- ► a half of the regular representation for each element in G which has order two.

Moreover for $a \in G$ of order two, the constituents of a half of the regular representation are given using the formula:

$$\left(\chi,\rho\uparrow^{G}\right) = \left(\chi\downarrow_{\langle a\rangle},\rho\right) = \frac{1}{|\langle a\rangle|} \sum_{x\in\langle a\rangle} \chi(x)\overline{\rho(x)} = \frac{1}{2} \left(\chi(1) - \chi(a)\right)$$

Representations Arising from an Action on D-neighborhoods of

Working towards the Description of Action on F_1

Lemma $\{F_1(v, g_i \cdot v), F_1(g_i \cdot v, v)\}$ defines a block system for E_{g_i} if $|g_i| = 2$.

(日) (同) (E) (E) (E)

Working towards the Description of Action on F_1

Lemma

 $\{F_1(v, g_i \cdot v), F_1(g_i \cdot v, v)\}$ defines a block system for E_{g_i} if $|g_i| = 2$.

Lemma

 $Stab_{G}\left(\left\{F_{1}\left(1,g_{i}\cdot1
ight),F_{1}\left(g_{i}\cdot1,1
ight)
ight\}
ight)=\left\langle g_{i}
ight
angle ext{ if }\left|g_{i}
ight|=2.$

Working towards the Description of Action on F_1

Lemma

 $\{F_1(v, g_i \cdot v), F_1(g_i \cdot v, v)\}$ defines a block system for E_{g_i} if $|g_i| = 2$.

Lemma

$$Stab_{G}\left(\left\{F_{1}\left(1,g_{i}\cdot1
ight),F_{1}\left(g_{i}\cdot1,1
ight)
ight\}
ight)=\left\langle g_{i}
ight
angle \,\,if\left|g_{i}
ight|=2.$$

Lemma

 $\{F_1(g_i \cdot v, g_j \cdot v), F_1(g_j \cdot v, g_i \cdot v)\} \text{ defines a block system for } E_{g_i g_j^{-1}} \text{ if } \left|g_i g_j^{-1}\right| = 2.$

Lemma

$$Stab_{G}\left(\left\{F_{1}\left(g_{i}\cdot 1,g_{j}\cdot 1\right),F_{1}\left(g_{j}\cdot 1,g_{i}\cdot 1\right)\right\}\right)=\left\langle g_{i}g_{j}^{-1}\right\rangle \text{ if }$$
$$\left|g_{i}g_{j}^{-1}\right|=2.$$

∢ ≣ ▶

Description of Action on F_1

Theorem

Let $\{g_1, g_2\}$ be an irredundant generating set for a group G. Define the set $\mathcal{G} = \{g_1, g_2, g_1g_2^{-1}\}$. The representation given by the group action on the set of edges, $F_1(\Delta)$, consists of

- one copy of the regular representation for each element in G which is not order two
- ► a half of the regular representation for each element in G which has order two.

Moreover for $a \in G$ of order two, the constituents of a half of the regular representation are given using the formula:

$$\left(\chi,\rho\uparrow^{G}\right) = \left(\chi\downarrow_{\langle a\rangle},\rho\right) = \frac{1}{|\langle a\rangle|} \sum_{x\in\langle a\rangle} \chi(x)\overline{\rho(x)} = \frac{1}{2} \left(\chi(1) - \chi(a)\right)$$

Representations Arising from an Action on D-neighborhoods of

Example: Symmetric Group on Four Points

 $\langle g_1 \doteq (1,2), g_2 \doteq (1,2,3,4) \rangle = S_4$

$$\left(\chi,\rho\uparrow^{\mathsf{G}}\right) = \left(\chi\downarrow_{\langle \mathsf{a}\rangle},\rho\right) = \frac{1}{|\langle \mathsf{a}\rangle|}\sum_{x\in\langle \mathsf{a}\rangle}\chi(x)\overline{\rho(x)} = \frac{1}{2}\left(\chi(1)-\chi(\mathsf{a})\right)$$

	1A	2A	3A	2B	4A
χ_1	1	1	1	1	1
χ_2	1	1	1	-1	-1
χ_{3}	2	2	-1	0	0
χ_4	3	-1	0	-1	1
χ_5	3	-1	0	1	-1

Table: Character Table for S_4 .

イロン イヨン イヨン イヨン

Example: Symmetric Group on Four Points

 $\langle g_1 \doteq (1,2), g_2 \doteq (1,2,3,4) \rangle = S_4$

$$\left(\chi,\rho\uparrow^{\mathsf{G}}\right) = \left(\chi\downarrow_{\langle \mathsf{a}\rangle},\rho\right) = \frac{1}{|\langle \mathsf{a}\rangle|}\sum_{x\in\langle \mathsf{a}\rangle}\chi(x)\overline{\rho(x)} = \frac{1}{2}\left(\chi(1)-\chi(\mathsf{a})\right)$$

	1A	2A	3A	2B	4A		
χ_1	1	1	1	1	1	Copies of	irreducible rep.
χ_2	1	1	1	-1	-1	2	χ_1
χ3	2	2	-1	0	0	3	χ_2
χ_4	3	-1	0	-1	1	5	χ_{3}
χ_5	3	-1	0	1	-1	8	χ_4

Table: Character Table for S_4 .7 χ_5 Note that g_1 in the conjugacy class labeled 2B in the above table.

Organizational Structure

Meets are relations: im $(\partial_{i+1}) + H_i = \ker(\partial_i)$ and $\ker(\partial_i) + \operatorname{im}(\partial_i) = W_i$

Apply Organizational Structure

Justin Hughes Colorado State University

Representations Arising from an Action on D-neighborhoods of

Organizational Structure Implies...

Corollary

Let $\{g_1, g_2\}$ be an irredundant generating set for a group G. Let C be the collection of irreducible representations given by the action on the set of edges $F_1(\Delta)$. Then the irreducible representations given by the action of G on

- ▶ ker(∂₁) is C minus one regular representation of G plus the trivial representation of G
- ► H₁ is C minus two copies of the regular representation of G plus the trivial representation of G.

(日) (同) (E) (E) (E)

Back to Symmetric Group Example

By Corollary 4.10 we can complete the following table of counts of irreducible representations.

- ▶ ker (∂₁) is C minus one regular representation of G plus the trivial representation of G
- ► H₁ is C minus two copies of the regular representation of G plus the trivial representation of G.

irred rep	Degree	$\operatorname{im}(\partial_2)$	$ker\left(\partial_{1}\right)$	$\ker{(\partial_1)}/{\operatorname{im}}(\partial_2)$	$F_1(\Delta) = C$
χ1	1	1	2	1	2
χ2	1	1	2	1	3
χ3	2	2	3	1	5
χ4	3	3	5	2	8
χ_5	3	3	4	1	7

Justin Hughes Colorado State University

< □ → < @ > < ≧ > < ≧ → ≧ → ি</p>
Representations Arising from an Action on D-neighborhoods of

More than Two of Generators

Theorem

Let $S = \{g_1, g_2, ..., g_n\}$ be an irredundant generating set for a group G. Define the set $\mathcal{G} = S \cup \{g_i g_j^{-1} | g_i, g_j \in S \text{ and } i < j\}$. The representation given by the group action on $F_1(\Delta)$ consists of

- one copy of the regular representation for each element in G which is not order two
- a half of the regular representation for each element in G which has order two.

Moreover for $a \in G$ of order two, the constituents of a half of the regular representation are given using the formula:

$$\left(\chi,\rho\uparrow^{G}\right) = \left(\chi\downarrow_{\langle a\rangle},\rho\right) = \frac{1}{|\langle a\rangle|} \sum_{x\in\langle a\rangle} \chi(x)\overline{\rho(x)} = \frac{1}{2} \left(\chi(1) - \chi(a)\right)$$

- The GAP Group, *Gap groups, algorithms, and programming, version 4.6.2*, 2013.
- K. Lux and H. Pahlings, *Representations of groups*, first ed., Cambridge University Press, 2010.
- E. Miller and B. Sturmfels, *Combinatorial commutative algebra*, first ed., Springer, 2005.
- The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A135278.

・ロン ・回 と ・ ヨ と ・ ヨ と

Thank you.

Questions?

Justin Hughes Colorado State University Representations Arising from an Action on D-neighborhoods of

・ロト ・回ト ・ヨト ・ヨト

æ