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Frobenius and the group determinant

The original approach of Frobenius to the representation theory of finite
groups was in terms of the factorization of the group determinant.

For a finite group G, and commuting indeterminates xg , g ∈ G , the group
determinant is det(xgh−1). This work led Frobenius to define the character
table of a finite group G . Here det(xgh−1) is a product of powers of
irreducible factors, each such factor corresponding to an irreducible
representations and character of G .

Frobenius also defined the k-characters of G , k ≥ 1: here 1-characters are
just the ordinary characters of G and 2-characters were defined by

χ(2)(g , h) = χ(g)χ(h)− χ(gh).
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The group determinant determines the group

Theorem (Formanek and Sibley, Mansfield) The group determinant of G
determines G .

Theorem (Johnson and Hoenke) The 1-,2- and 3-characters of G
determine G .
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Weak Cayley Tables

The Weak Cayley Table of G is (cgh) where cg is a variable for each
conjugacy class.

Fact: det(cgh) is now a product of linear polynomials.

Johnson defined the 2-character table of G .

A weak Cayley table isomorphism is a bijection φ : G → H such that

φ(gh) ∼ φ(g)φ(h) for all g , h ∈ G .

Say G and H have the same weak Cayley Table if there is a weak Cayley
table isomorphism G → H.

This condition implies that G and H have the same character tables.
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Weak Cayley Table results

It is known that for a group G the information in each of the following is
the same:

(1) the weak Cayley table of G ;
(2) the 1- and 2-characters of G ;
(3) the 2-character table of G .

Mattarei: there are non-isomorphic groups G ,H with the same character
table but with G ′/G ′′ 6∼= H ′/H ′′ (or with different derived lengths).

Johnson Mattarei and Sehgal: even with the same weak Cayley table.
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Centralizer rings

Frobenius showed: the centralizer ring Z (CG ) and the character table
determine each other.

Let k ≥ 1. Then Sk acts on G k and G acts on G k by diagonal conjugation.

(g1, g2, . . . , gk)g = (gg
1 , g

g
2 , . . . , g

g
k ).

Notation: X ⊂ G : X̄ =
∑

x∈X x ∈ CG .

Let O1, . . . ,Os be the orbits for the action of 〈Sk ,G 〉 on G k .
Then {O1, . . . ,Os} is a basis for a subring C (k)(G ) of CG k called the
k-S-ring of G .

Point: the k-characters are invariant on the k-S-ring classes Oi .
Example: the 1-S-ring of G is just Z (CG ).
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S-rings

Recall: An S-ring over H is a subring of CH determined by a partition
H = H1 ∪ · · · ∪ Hr of H where
(i) H1 = {1};
(ii) for all i ≤ r there is j ≤ r with H−1

i = Hj ;
(iii) for all i , j ≤ r we have Hi Hj =

∑
k λijkHk where λijk ∈ Z≥0.

We will say that G and H have the same k − S-ring if there is a bijection
φ : G → H that determines an S-ring isomorphism C (k)(G )→ C (k)(H).
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Results on k-S-rings and WCT

The construction G 7→ C (k)(G ) is functorial.

Theorem C (k+1)(G ) determines C (k)(G ).

In fact there is an epimorphism C (k+1)(G )→ C (k)(G ).

Logical independence of two conditions:

Theorem There are groups which have the same weak Cayley table, but
not the same 2-S-rings (e.g. |G | = p3 where p is odd).
There are groups which have the same 2-S-rings but not the same weak
Cayley table (e.g. D8 and Q8).

Corollary The 2-S-ring does not determine the group.
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Results on WCT, k-S-rings and derived length

G (i) - derived series of G

Theorem If there is a bijection φ : G → H that is a weak Cayley table
isomorphism and determines an isomorphism of 2-S-rings, then
φ(G (i)) = H(i). In particular G and H have the same derived lengths and
the same derived series sizes.

Theorem There are non-isomorphic groups of order 29 which have the
same weak Cayley table and the same 2-S-rings. They form a Brauer pair.
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Results on WCT, k-S-rings and derived length

Theorem (1) An FC group G is determined by C (4)(G ).

(2) A group of odd order is determined by C (3)(G ).
(3) If G and H have the same 3-S-rings, then (G ,H) is a Brauer pair.

Theorem Let G be an FC group and suppose that we know each product
xy for all x , y ∈ G that are not conjugate. Then we can determine the
multiplication table of G algorithmically.

Theorem C (2)(G ) determines the sizes of centralizers CG (〈a, b〉).

Theorem (Rode thesis 2012) A finite group is determined by C (3)(G ).
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Results on 3-S-rings

Theorem If C (3)(G ) is commutative, then for all ordered pairs x , y ∈ G
we have one of:
(1) xy = yx ;
(2) x and y are conjugate;
(3) xy = x−1;
(4) y x = y−1.

Hypothesis (*): conclusion of above theorem.
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Results on 3-S-rings

Theorem Hypothesis (*) implies one of
(i) G is abelian;
(ii) G is the generalized dihedral group of an abelian group N of odd
order, i.e. G = N o C2 where C2 is the cyclic group of order 2 and its
generator conjugates elements of N to their inverses;
(iii) G ∼= Q8 × C r

2 .

Classification of groups with C (3)(G ) commutative:

Theorem For G non-abelian this is exactly when G is generalized dihedral
of order 2n, where n is odd.

THE END
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