Commuting probability and commutator relations

Urban Jezernik

joint with Primož Moravec

Institute of Mathematics, Physics, and Mechanics University of Ljubljana, Slovenia

Groups St Andrews 2013

Commuting probability

Let G be a *finite* group. The probability that a randomly chosen pair of elements of G commute is called the **commuting probability** of G.

$$cp(G) = \frac{|\{(x,y) \in G \times G \mid [x,y] = 1\}|}{|G|^2}$$

•
$$cp(G) = k(G)/|G|$$

Erdös, Turán 1968

Commuting probability

Let G be a *finite* group. The probability that a randomly chosen pair of elements of G commute is called the **commuting probability** of G.

$$cp(G) = \frac{|\{(x,y) \in G \times G \mid [x,y] = 1\}|}{|G|^2}$$

•
$$cp(G) = k(G)/|G|$$

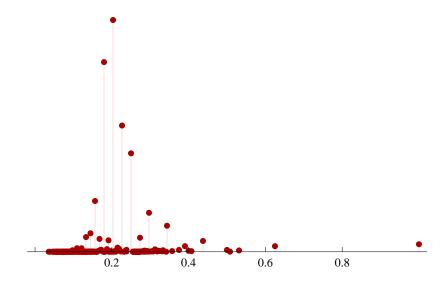
Erdös, Turán 1968

Outlook

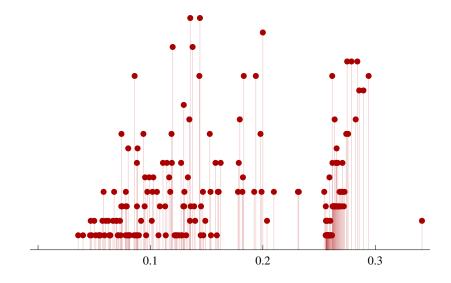
Global Analyse the image of cp.

Local Study the impact cp(G) has on the structure of G.

As a function on groups of order ≤ 256



As a function on groups of order \leq 256 +



Joseph's conjectures

Conjecture (Joseph 1977)

- 1. The limit points of im cp are rational.
- 2. If ℓ is a limit point of im cp, then there is an $\varepsilon > 0$ such that im cp $\cap (\ell \varepsilon, \ell) = \emptyset$.
- 3. $\operatorname{im} \operatorname{cp} \cup \{0\}$ is a closed subset of [0,1].

• 1. and 2. hold for limit points > 2/9.

As a measure of being abelian

- If cp(G) > 5/8, then G is abelian.
- If cp(G) > 1/2, then G is nilpotent.
- $cp(G) < |G: Fit(G)|^{-1/2}$

Gustafson 1973

Lescot 1988

Guralnick, Robinson 2006

As a measure of being abelian

- If cp(G) > 5/8, then G is abelian.
- If cp(G) > 1/2, then G is nilpotent.
- $cp(G) < |G| : Fit(G)|^{-1/2}$

Gustafson 1973

Lescot 1988

Guralnick. Robinson 2006

General principle

Bounding cp(G) away from zero ensures abelian-like properties of G.

Setting up the terrain

The **exterior square** $G \wedge G$ of G is the group generated by the symbols $x \wedge y$ for all $x, y \in G$, subject to *universal commutator relations*:

$$x \wedge x = 1$$
, $xy \wedge z = (x^y \wedge z^y)(y \wedge z)$, $x \wedge yz = (x \wedge z)(x^z \wedge y^z)$.

Setting up the terrain

The **exterior square** $G \wedge G$ of G is the group generated by the symbols $x \wedge y$ for all $x, y \in G$, subject to *universal commutator relations*:

$$x \wedge x = 1$$
, $xy \wedge z = (x^y \wedge z^y)(y \wedge z)$, $x \wedge yz = (x \wedge z)(x^z \wedge y^z)$.

The **curly exterior square** $G \downarrow G$ of G is the group generated by the symbols $x \downarrow y$ for all $x, y \in G$, subject to *universal commutator relations*, but without redundancies, i.e.

$$G \curlywedge G = \frac{G \land G}{\langle x \land y \mid [x, y] = 1 \rangle}.$$

Bogomolov multiplier

There is a natural commutator homomorphism $\kappa \colon G \curlywedge G \to [G, G]$.

The kernel of κ consists of non-universal commutator relations. This is the **Bogomolov multiplier** of the group G, denoted by $B_0(G)$.

Bogomolov multiplier

There is a natural commutator homomorphism $\kappa \colon G \curlywedge G \to [G, G]$.

The kernel of κ consists of non-universal commutator relations. This is the **Bogomolov multiplier** of the group G, denoted by $B_0(G)$.

The group $B_0(G)$ is isomorphic to the unramified Brauer group of G, an obstruction to Noether's problem of stable rationality of fixed fields.

• $\operatorname{Br}_{nr}(\mathbb{C}(G)/\mathbb{C})$ embeds into $\operatorname{H}^2(G,\mathbb{Q}/\mathbb{Z})$.

Bogomolov 1987

• The image of the embedding is $B_0(G)^*$.

Moravec 2012

Bogomolov multiplier: examples

$B_0 = 0$

- Abelian-by-cyclic groups
- Finite simple groups
- Frobenius groups with abelian kernel
- p-groups of order $\leq p^4$
- Most groups of order p⁵
- Unitriangular p-groups

Bogomolov 1988

Kunyavskiĭ 2010 Moravec 2012

1000

Bogomolov 1988

Moravec 2012

$B_0 \neq 0$

- Smallest possible order is 64. Chu, Hu, Kang, Kunyavskiĭ 2010
- $\langle a, b, c, d \mid [a, b] = [c, d], \exp 4, \operatorname{cl} 2 \rangle$

The general principle universally

Theorem

If cp(G) > 1/4, then $B_0(G) = 0$.

The general principle universally

Theorem

If cp(G) > 1/4, then $B_0(G) = 0$.

Outline of proof

Assume that G is a group of the smallest possible order satisfying $\operatorname{cp}(G)>1/4$ and $\operatorname{B}_0(G)\neq 0$. By standard arguments, G is a stem p-group.

Proper subgroups and quotients of G have a larger commuting probability than G, so: $B_0(G) \neq 0$, but all proper subgroups and quotients of G have a trivial Bogomolov multiplier. Groups with the latter property are called B_0 -minimal.

B₀-minimal groups

A B_0 -minimal group enjoys the following properties.

- Is a capable *p*-group with an abelian Frattini subgroup.
- Is of Frattini rank ≤ 4.
- For stem groups, the exponent is bounded by a function of class alone.

B₀-minimal groups

A B_0 -minimal group enjoys the following properties.

- Is a capable p-group with an abelian Frattini subgroup.
- Is of Frattini rank < 4.
- For stem groups, the exponent is bounded by a function of class alone.

- Given the nilpotency class, there are only finitely many isoclinism families containing a B₀-minimal group of this class.
- Classification of B_0 -minimal groups of class 2, hence of class 2 groups of orders p^7 with non-trivial Bogomolov multipliers.
- Construction of a sequence of 2-groups with non-trivial Bogomolov multipliers and arbitrarily large nilpotency class.

The general principle universally

Theorem

If cp(G) > 1/4, then $B_0(G) = 0$.

Outline of proof

Assume that G is a group of the smallest possible order satisfying $\operatorname{cp}(G)>1/4$ and $\operatorname{B}_0(G)\neq 0$. By standard arguments, G is a stem p-group.

Proper subgroups and quotients of G have a larger commuting probability than G, so: $B_0(G) \neq 0$, but all proper subgroups and quotients of G have a trivial Bogomolov multiplier. Groups with the latter property are called B_0 -minimal.

The general principle universally

Theorem

If cp(G) > 1/4, then $B_0(G) = 0$.

Outline of proof

Assume that G is a group of the smallest possible order satisfying $\operatorname{cp}(G)>1/4$ and $\operatorname{B}_0(G)\neq 0$. By standard arguments, G is a stem p-group.

Proper subgroups and quotients of G have a larger commuting probability than G, so: $B_0(G) \neq 0$, but all proper subgroups and quotients of G have a trivial Bogomolov multiplier. Groups with the latter property are called B_0 -minimal.

Considering the structure of B_0 -minimal groups of coclass 3, use the class equation to obtain bounds on the sizes of conjugacy classes of a *suitably* chosen generating set of G. This restricts the nilpotency class of G. Finish with the help of NQ.