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Group matrices

Let G be a finite group of order n with a listing of elements
{g1 = e, g2, ..., gn} and let {xg1 , xg2 , ..., xgn} be a set of
independent commuting variables indexed by the elements of G .

Definition
The (full) group matrix XG is the matrix whose rows and columns
are indexed by the elements of G and whose (g , h)th entry is xgh−1 .

The group matrix is a patterned matrix: it is determined by its first
row (or column)

Example

The group matrix of C3 is (abbreviating xgi by i) the circulant

C (1, 2, 3) =

 1 3 2
2 1 3
3 2 1

 .



Further example

Example

The group matrix of S3 is the matrix

1 3 2 4 5 6
2 1 3 6 4 5
3 2 1 5 6 4
4 6 5 1 2 3
5 4 6 3 1 2
6 5 4 2 3 1

 =

[
C (1, 2, 3) C (4, 6, 5)
C (4, 5, 6) C (1, 3, 2)

]



group matrices obtained from the cosets of an arbitrary
subgroup

If |G | = kr and H is any cyclic subgroup of order k then the
elements of G can be listed such that XG is a block matrix of the
form 

B11 B12 ... B1r

B21 B22 ... B2r

... .. ... ..
Br1 Br2 ... Brr

 ,
where each Bij is a circulant of size k × k . A corresponding result
holds for any subgroup H. (Dickson 1907) If in the above H is
arbitrary, XG is as above, but the blocks are now all of the form
XH(gi1 , gi2 ...gik ). Here elements in the vector (gi1 , gi2 ...gik ) are
elements in G , and not necessarily arising from any specific coset
of H.



Example for arbitrary subgroup

Example

Let G = S4 and H =< (1, 2, 3, 4), (1, 4)(2, 3) > be a copy of D8.
With the ordering of G on the cosets of H, XG = {Bij}3i ,j=1 where
each Bij is of the form XH(ui ,j) with

u1,1 = (1, 2, 3, 4, 5, 6, 7, 8) u1,2 = (11, 12, 22, 15, 13, 24, 10, 9)
u1,3 = (9, 23, 16, 18, 21, 11, 20, 14) u2,1 = (9, 10, 11, 12, 13, 14, 15, 16)
u2,2 = (1, 20, 6, 23, 21, 8, 18, 3) u2,3 = (17, 7, 24, 2, 5, 19, 4, 22)
u3,1 = (17, 18, 19, 20, 21, 22, 23, 24) u3,2 = (9, 4, 14, 7, 5, 16, 2, 11)
u3,3 = (1, 11, 2, 16, 5, 7, 14, 4)



Dickson’s results on the mod p case

The group determinant mod p of a p-group.

Lemma
Let H be any p-group of order r = ps . Let P be the upper
triangular matrix of the form

1 1 1 1 ... 1
1 2 3 r − 1

1 3 (r − 1)(r − 2)/2
1 ...

... r − 1
1

 .

Then a suitable ordering of H exists such that, modulo p, PXHP
−1

is a lower triangular matrix with identical diagonal entries of the
form α =

∑r
i=1 xhi .

The group determinant ΘH modulo p is thus αr .



Example

G = C5. Then P = 
1 1 1 1 1

1 2 3 4
1 3 6

1 4
1


and modulo 5

PXGP
−1 =


α 0 0 0 0
β α 0 0 0
γ β α 0 0
δ γ β α 0
µ δ γ β α


where α =

∑5
i=1 xgi , β = 4x2 + 3x3 + 2x4 + x5, γ = x2 + 3x3 + x4,

δ = 4x2 + x3 and µ = x2.
Question: does this have any relevance to the FFT?



Lemma
Let G be a group of order n divisible by p and H be a Sylow-p
subgroup of index k and order r . Then, an ordering of G exists
such that, modulo p, XG is similar to a matrix which has a block
diagonal part of the form

diag(B,B, ...,B) (r occurences of B)

with the upper triangular part above the diagonal 0. Moreover B
encodes the permutation representation of G on the cosets of H.

This is proved by acting on the XG obtained by ordering G by the
left cosets of H and acting by diag(P,P, ...,P) and rearranging.
Thus it follows that, modulo p, ΘG = det(B)r .
Question: is there an explanation of all this using the standard
techniques of modular representation theory?



Superalgebras

Superalgebras arose in physics. A superalgebra is a Z2-graded
algebra, i.e. it is an algebra over a commutative ring or field with a
decomposition into “even” and “odd” pieces, with a multiplication
operator which respects the grading. More formally
Let K be a commutative ring. A superalgebra over K is a
K -module A with a direct sum decomposition

A = A0 ⊕ A1

with a bilinear multiplication A× A→ A such that

AiAj ⊂ Ai+j

where the subscripts are read mod 2.



Superalgebras continued

Usually, K is taken to be R or C. The elements of Ai , i = 1, 2 are
said to be homogeneous. The parity of a homogeneous element x ,
denoted by |x |, is 0 or 1 depending on whether it is in A0 or A1.
Elements of parity 0 are said to be even and those of parity 1 are
said to be odd. If x and y are both homogeneous, then so is the
product and |xy | = |x |+ |y |.
A superalgebra is associative if its multiplication is associative. It
is unital if it has a multiplicative identity, which is necessarily even.
It is usual to assume that superalgebras are both associative and
unital.
A superalgebra A is commutative if for all homogeneous x , y ∈ A,

yx = (−1)|x ||y |xy .

The standard example is an exterior algebra over K . Another
example is the algebra A of symmetric and alternating polynomials,
with A0 the symmetric polynomials and A1 being the alternating
polynomials.



Supermatrices

Definition
Let R be a superalgebra, which is unital and associative. Let
p, q, r , s be nonnegative integers. A supermatrix of dimension
(r |s)× (p|q) is an (r + s)× (p + q) matrix X with entries in R
which is partitioned into a 2× 2 block structure

X =

[
X00 X01

X10 X11

]
,

so that X00 has dimensions r × p and X11 has dimensions s × q.
An ordinary (ungraded) matrix may be interpreted as a
supermatrix with q = s = 0.

Definition
A square supermatrix X has (r |s) = (p|q).

This implies that X , X00 and X11 are all square in the usual sense.



Even and odd supermatrices

An even supermatrix X has diagonal blocks X00 and X11 consisting
of even elements of R, and X01 and X10 consisting of odd elements
of R, i.e. it is of the form[

even odd
odd even

]
.

An odd supermatrix X has diagonal blocks which are odd and the
remaining blocks even, i.e. it is of the form[

odd even
even odd

]
.

If the scalars R are purely even then there are no nonzero odd
elements, so the even supermatrices are the block diagonal ones

X =

[
X00 0

0 X11

]
,



Even and odd supermatrices continued

and an odd supermatrix is of the form

X =

[
0 X01

X10 0

]
.

A supermatrix is homogenous if it is either even or odd. The
parity, |X |, of a non-zero homogeneous supermatrix X is 0 or 1
according to whether it is even or odd. Every supermatrix can be
written uniquely as the sum of an even matrix and an odd one.



Operations

Let X , Y be supermatrices. X + Y is defined entrywise, so that

X + Y =

[
X00 + Y00 X01 + Y01

X10 + Y10 X11 + Y11

]
.

The sum of even matrices is even, and the sum of odd matrices is
odd.
XY is defined by ordinary block matrix multiplication, i.e.

XY =

[
X00Y00 + X01Y10 X00Y01 + X01Y11

X10Y00 + X11Y10 X10Y01 + X11Y11

]
.

If X and Y are both even or both odd, then XY is even, and if
they differ in parity XY is odd.
The scalar multiplication differs from the ungraded case. It is
necessary to define left and right scalar multiplication. If
α̂ = (−1)|α|α left scalar multiplication by α ∈ R is defined by

α.X =

[
αX00 αX01

α̂X10 α̂X11

]
,

where. Right scalar multiplication is defined similarly



X .α =

[
X00α X01α̂
X10α X11α̂

]
.

If α is even then α̂ = α and both operations are the same as the
ungraded versions. If α and X are homogeneous, then both α.X
and X .α are homogeneous with parity |α|+ |X |. If R is
supercommutative, then α.X = (−1)|α||X |X .α.



supertranspose

The supertranspose of the homogeneous supermatrix X is the
(p|q)× (r |s) supermatrix

X st =

[
X t
00 (−1)|X |X10

−(−1)|X |X01 X t
11

]
where Mt denotes the usual transpose of a matrix. This can be
extended to arbitrary supermatrices by linearity. The
supertranspose is not an involution: if X is an arbitrary
supermatrix, then

(X st)st =

[
X00 −X01

−X10 X11
.

]
If R is supercommutative then for arbitrary supermatrices X ,Y

(XY )st = (−1)|X ||Y |Y stX st .



Parity Transpose

There is a new operation, the parity transpose. This is denoted by
X π. If X is a supermatrix, then

Xπ =

[
X11 X10

X01 X00

]
,

and the following are satisfied

(X + Y )π = Xπ + Y π,

(XY )π = X πY π,

(α.X )π = α̂.X π,

(X .α)π = X π.α̂

and in addition
π2 = 1

π ◦ st ◦ π = (st)3.



Supertrace and Berezinian

The supertrace of a square supermatrix is defined on homogeneous
supermatrices by the formula

str(X ) = tr(X00)− (−1)|X |tr(X11).

If R is supercommutative then

str(XY ) = (−1)|X ||Y |str(YX ).

for homogeneous supermatrices X ,Y .
The Berezinian or superdeterminant Ber(X ) of a square
supermatrix X is only well-defined on even invertible supermatrices
over a commutative superalgebra R. In this case

Ber(X ) = det(X00 − X01X
−1
11 X10) det(X11)−1,

where det denotes the ordinary determinant of square matrices with
entries in the commutative algebra R0. The Berezinian satisfies
similar properties to the ordinary determinant. In particular, it is
multiplicative and invariant under the supertranspose.



Moreover
Ber(eX ) = estr(X ).

In particular, if R is purely even and X is even, then

Ber(X ) = det(X00) det(X11)−1.



The ring of virtual representations

Let Irr(G ) = {χi}ri=1and take supermatrices of the form

XG =

[
X1G 0

0 X2G

]
,

where X1G and X2G are group matrices. The supertrace of XG is
tr(X1G )− tr(X2G ). Then

Ber(XG ) = det(X1G ) det(X2G )−1

where det is the ordinary determinant.
Consider a virtual representation of G with generalized character

ψ =
r∑

i=1

siχi −
r∑

i=1

tiχi



For any character
∑r

i=1 siχi of G there is naturally associated the

group matrix
∑

g∈G
∑r

i=1 siρi (g). Denote this by X
∑

siρi
G .

Then associate to ψ the super group matrix[
X

∑
siρi

G 0

0 X
∑

tiρi
G

]
.

The ring of virtual group representations may be obtained by
factoring out by the equivalence relation ≡ on arbitrary group
supermatrices defined by[

X1G 0
0 X2G

]
≡

[
X̂1G 0

0 X̂2G

]

if and only if X1G is similar to X
∑

siρi
G , X1G is similar to X

∑
tiρi

G ,

X̂1G is similar to X
∑

ŝiρi
G , X̂2G is similar to X

∑
t̂iρi

G such that
si − ti = ŝi − t̂i for i = 1...r



Additional ideas
A random walk on a group G associated to a probability p on G .
Equivalent to a Markov chain with transition matrix XG (p)
(obtained by replacing xg by p(g) for all g ∈ G )
If p is constant on conjugacy classes, then XG (p) can be
diagonalised
(equivalent to the specialised version of XG having linear factors)
The question can be formulated in terms of S-rings (Wielandt)
Call an S-ring S on a group a fission if the classes of S are
obtained by splitting the conjugacy classes. If S is commutative it
gives rise to a diagonalised XG .



Result (Humphries):
The maximum number of classes in an S-ring S giving rise to
a diagonalised XG is τ(G ) =

∑
χ∈Irr(G) deg(χ) (the dimension of a

Gelfand model).
Strange fact: the Jucy’s Murphy elements in the group ring of the
symmetric group produce a commutative subring of the group ring
of dimension τ(G ), but this is not an S-ring


