Variations on a theme of I.D. Macdonald

Luise-Charlotte Kappe
Binghamton University
menger@math.binghamton.edu

Gabriela Mendoza Riverside Community College gabriela.mendoza@rcc.edu I.D. Macdonald, On cyclic commutator subgroups, J. London Math. Soc. 38 (1963), pp. 419-422.

Theorem 1. If G' is cyclic and either G is nilpotent or G' is infinite, then G' is generated by a suitable commutator. For any given positive integer n, however, there is a group G in which G' is cyclic and is generated by no set of less than n commutators.

The general question:

Given a word $f(x_1, \ldots, x_k)$ in the variables x_1, x_2, \ldots, x_k , let

 $F(G) = \{f(g_1, \dots, g_k); g_1, \dots, g_k \in G\},$ the set of values of f in a group G, and $f(G) = \langle F(G) \rangle$, the word subgroup of f in G.

Question 1. Under what conditions is f(G) = F(G)?

Question 2. Let $f(G) = \langle c \rangle$. Under what conditions do we have $c \in F(G)$?

Question 3. Let $f(G) = \langle c \rangle$ with $c \in F(G)$. Is f(G) = F(G)?

Notation. $K(G) = \{[a,b] | a,b \in G\}$, the set of commutators in G. (K(G) = F(G)) for f(x,y) = [x,y].

D.M. Rodney, On cyclic derived subgroups, J. London Math. Soc. (2) 8 (1974), pp. 642-643.

Theorem 2. There exist groups G with $G' = \langle [a,b] \rangle$ but $G' \neq K(G)$. If the automorphism group induced on G' is cyclic, then G' = K(G).

Words of the lower central series:

$$f(x_1, \dots, x_n) = [x_1, x_2, \dots, x_n]$$

 $f(G) = G_n, \ F(G) = K_n(G).$

L.-C. Kappe, Groups with a cyclic term in the lower central series, Arch. Math. 30 (1978) pp. 561-569.

Theorem 3. If G_n is cyclic and either G is nilpotent or G_n is infinite cyclic, then G_n is generated by a suitable commutator of weight n. For any given integer m, however, there is a group G in which G_n is cyclic and generated by no set of less than m commutators of weight n.

Powers:

$$f(x) = x^n$$
, n an integer > 0 ;
 $F(G) = G^{(n)}$, $f(G) = G^n$.

L.C. Kappe and G. Mendoza, Groups of minimal order which are not n-Power closed, AMS Contemporary Math. 511 (2010), pp. 93-107.

Classification of minimal counterexamples to the conjecture $G^{(n)} = G^n$ for given n > 1, $n = 2^{\alpha} \cdot k$, $\alpha = 0, 1, 2, 3, k$ odd.

Theorem 4. Let n be an odd integer and p the smallest prime dividing n. Then $G^{(n)} = G^n$ for all G with $|G| \leq 2p$, except for

$$G \cong Dp = \langle a, b | a^p = b^2 = 1, a^b = a^{-1} \rangle$$
, the dihedral group of order $2p$, for which $G^n \neq G^{(n)}$.

Example: There exist groups G and integers n > 1 with G^n cyclic but G^n cannot be generated by the n-th power of an element in G:

Let p and q be distinct primes, $q|p-1, \alpha, \beta, \gamma$ integers with $\alpha, \beta \geq 2$ and $\gamma \not\equiv 1 \mod p^{\alpha}$ but $\gamma^q \equiv 1 \mod p^{\alpha}$. Let

 $G = \langle a, b; a^{p^{\alpha}} = b^{q^{\beta}} = 1, \ a^b = a^{\gamma} \rangle.$

Then $G^{p\sigma}q^{\tau}$ is cyclic, $1 \leq \sigma < \alpha, 1 \leq \tau < \beta$, but not generated by an element in $G^{(p\sigma}q^{\tau})$.

Remark 1. $G^{p^{\sigma}q^{\tau}}$ is generated by two elements in $G^{(p^{\sigma}q^{\tau})}$. Are there groups G and integers n such that G^n cyclic but every generator of G^n is the product of more than two elements in $G^{(n)}$?

Remark 2. Obviously $G^n = \langle g^n \rangle$ always implies $G^n = G^{(n)}$.

Remark 3. We are looking for sufficient conditions on n or G such that G^n cyclic implies $G^n = \langle g^n \rangle$.

Theorem 5. Let G be a group of square-free order. Then G^n cyclic implies $G^n = \langle g^n \rangle$.

Theorem 6. Let G be locally nilpotent with G^n cyclic. Then there exists $g \in G$ such that $G^n = \langle g^n \rangle$.

The case G^n infinite cyclic:

Theorem 7. Let G be a group and n an integer with G^n infinite cyclic. Then there exists $g \in G$ with $G^n = \langle g^n \rangle$ provided one of the following conditions holds:

- (i) G is locally nilpotent;
- $(ii) n = p^m, p \ a \ prime;$
- (iii) G/G^n is locally finite;
- $(iv) G^n \subseteq Z(G)$.

•