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.. Word maps

Let w be an element of the free group of rank k and let G be a
group. We can define a word map, w : Gk → G, by substitution:

w : Gk −→ G;

(g1, ..., gk ) 7−→ w(g1, ..., gk ).

For example:
w(x) = xn;
w(x , y) = [x , y ].

We will denote by Gw the verbal image of w over G:

Gw := {w(g1, ..., gk ) : gi ∈ G}.

Define the verbal subgroup, w(G) = ⟨G±1
w ⟩.
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.. Images of Word Maps

.
Theorem (M. Kassabov & N. Nikolov, Dec 2011)
..

.

. ..

.

.

For every n ≥ 7, n ̸= 13 there is a word w(x1, x2) ∈ F2 such that
Alt(n)w consists of the identity and all 3-cycles. When n = 13
there is word w(x1, x2, x3) ∈ F3 with the same property.
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.. Images of Word Maps

.
Theorem (M. Kassabov & N. Nikolov, Dec 2011)
..

.

. ..

.

.

For every n ≥ 7, n ̸= 13 there is a word w(x1, x2) ∈ F2 such that
Alt(n)w consists of the identity and all 3-cycles. When n = 13
there is word w(x1, x2, x3) ∈ F3 with the same property.

Clearly holds for Alt(5), e.g. w(x) = x10.
Also holds for Sym(n).
They go on to give other explicit examples e.g. all p-cycles
with p prime 3 < p < n.
Similar results for SL(n,q).
More examples can be found in [L.].

They were motivated by verbal width.
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.. Verbal Width

Say w has finite width in G if there exists m such that
w(G) = G∗m

w = {g1...gm : gi ∈ G±1
w }.

Otherwise we say w has infinite width.
Define the width to be the least such m.
Clearly, if G is finite we always have finite width bounded by |G|.
.
Theorem (Larsen, Shalev, Tiep)
..

.

. ..

.

.

For any w ̸= 1 we have G = GwGw when G is a sufficiently
large finite simple group.

The requirement of the size of G cannot be removed.
.
Corollary (Kassabov & Nikolov)
..

.

. ..

.

.

For any k, there exists a word w and a finite simple group G,
such that w is not an identity in G, but G ̸= G∗k

w .
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.. Question

Fix a group G and let A be a subset of G. Does there exist a
word w such that Gw = A? i.e. What are the verbal images of
G?
Two necessary conditions:

Clearly we must have e ∈ A (since w(e, ...,e) = e).
For every α ∈ Aut(G), α(A) = A (since
α(w(g1, ..., gk )) = w(α(g1), ..., α(gk )).

If we assume G is a simple group, are these conditions
sufficient?
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.
Theorem (Lubotzky, June 2012)
..

.

. ..

.

.

Let G be a finite simple group and A a subset of G such that
e ∈ A and for every α ∈ Aut(G), α(A) = A. Then there exists a
word w ∈ F2 such that Gw = A.
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Theorem (Lubotzky, June 2012)
..

.

. ..

.

.

Let G be a finite simple group and A a subset of G such that
e ∈ A and for every α ∈ Aut(G), α(A) = A. Then there exists a
word w ∈ F2 such that Gw = A.

Key Theorem:
.
Theorem (Guralnick & Kantor)
..

.

. ..

.

.

Let G be a finite simple group. For every e ̸= a ∈ G there exists
b ∈ G such that G = ⟨a,b⟩.

Note this requires the classification of finite simple groups.
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Main idea:
Let Ω = {(ai ,bi) : i := 1, ..., |G|2} denote the set of all pairs of
elements of G such that the first l pairs generate G and the
remaining pairs generate proper subgroups of G. Let Ω1 denote
the set of the first l pairs and Ω2 denote the set of the remaining
pairs. Consider the homomorphism:

ϕ1 : F2 −→
∏
Ω1

G, (1)

w(x , y) 7−→ (w(ai ,bi))Ω1 . (2)

The image ϕ1(F2) is a subdirect product.
It is well-known that ϕ1(F2) contains a ‘diagonal’ subgroup
isomorphic to Gr where r = l/|Aut(G)|.
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.. Other Groups

How about other groups? Almost Simple Groups? Quasisimple
Groups?
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.. Almost Simple Groups

Let G be an almost simple group, i.e. S ≤ G ≤ Aut(S) where S
is a non-abelian finite simple group.
Suppose further that G E Aut(S).
.
Theorem (L., 2012)
..

.

. ..

.

.

Let G and S be as above. Let A be a subset of S such that
e ∈ A and A is closed under the action of Aut(G). Then there
exists a word w ∈ F2 such that Gw = A.

It remains to describe the situation where A ̸≤ S.
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Note that if we do not require that w ∈ F2 we can immediately
deduce this from the proof of the Ore Conjecture, the fact that
the group of outer automorphisms of a finite simple group has
derived length at most 3 and from Lubotzky’s Theorem.
.
Theorem (Liebeck, O’Brian, Shalev, Tiep)
..

.

. ..

.

.

Every element of any non-abelian finite simple group S is a
commutator.

w = [[[x1, x2], [x3, x4]], [[x5, x6], [x7, x8]]] has image precisely S
where S ≤ G ≤ Aut(S).
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.. Symmetric Groups

Fix n ≥ 5 and consider Sn, an almost simple group
(An ≤ Sn ≤ Aut(An)).
.
Corollary (L., 2012)
..

.

. ..

.

.

The verbal images of Sn are either:
an Aut(Sn)-invariant subset of An including the identity or;
any Aut(Sn)-invariant subset of Sn containing C, where C
is the set of all 2-elements of Sn and the identity.
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.. Quasisimple Groups

A group S is quasisimple if S/Z (S) is simple and S is perfect.
.
Theorem (L., 2012)
..

.

. ..

.

.

There exists a constant C with the following property: Let S be
a universal quasisimple group with |S| > C and let A be a
subset of S such that e ∈ A and A is closed under the action of
the automorphism group of S. Then there exists a word w ∈ F2
such that Sw = A.

In fact, if S is the universal cover of an alternating group then
the condition of sufficiently large can be removed.
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