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Word maps

Let w be an element of the free group of rank k and let G be a
group. We can define a word map, w : GX — G, by substitution:

w: Gk — G;

(g17 ”'7gk) — W(g1 PIRREE gk)
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Word maps

Let w be an element of the free group of rank k and let G be a
group. We can define a word map, w : GX — G, by substitution:

w: Gk — G;

(g17 ”'7gk) — W(g1 PIRREE gk)

For example:
o w(x)=x";
° w(x,y) =[xyl
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Word maps

Let w be an element of the free group of rank k and let G be a
group. We can define a word map, w : GX — G, by substitution:

w: G — G;
(g17”'7gk) — W(g17"‘7gk)‘

For example:
o w(x)=x";
° w(x,y) =[xyl
We will denote by G, the verbal image of w over G:
Gw = {w(91,...,9) : gi € G}.
Define the verbal subgroup, w(G) = (Gi').
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Theorem (M. Kassabov & N. Nikolov, Dec 2011)

For everyn > 7, n+# 13 there is a word w(xq, X2) € F» such that
Alt(n)w consists of the identity and all 3-cycles. When n =13
there is word w(xq, X2, X3) € F3 with the same property.
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Images of Word Maps

Theorem (M. Kassabov & N. Nikolov, Dec 2011)

For everyn > 7, n+# 13 there is a word w(xq, Xo) € F» such that
Alt(n)w consists of the identity and all 3-cycles. When n =13
there is word w(xy, X2, X3) € F3 with the same property.

@ Clearly holds for Alt(5), e.g. w(x) = x'°.
@ Also holds for Sym(n).

@ They go on to give other explicit examples e.g. all p-cycles
with p prime 3 < p < n.

@ Similar results for SL(n, q).
@ More examples can be found in [L.].
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Images of Word Maps

Theorem (M. Kassabov & N. Nikolov, Dec 2011)

For everyn > 7, n+# 13 there is a word w(xq, Xo) € F» such that
Alt(n)w consists of the identity and all 3-cycles. When n =13
there is word w(xy, X2, X3) € F3 with the same property.

@ Clearly holds for Alt(5), e.g. w(x) = x'°.
@ Also holds for Sym(n).

@ They go on to give other explicit examples e.g. all p-cycles
with p prime 3 < p < n.

@ Similar results for SL(n, q).
@ More examples can be found in [L.].

They were motivated by verbal width.
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Verbal Width

Say w has finite width in G if there exists m such that

w(G) = G} ={g1..9m: gi € Gy }.

Otherwise we say w has infinite width.

Define the width to be the least such m.

Clearly, if G is finite we always have finite width bounded by |G|.
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Say w has finite width in G if there exists m such that

w(G) = G} ={g1..9m: gi € Gy }.

Otherwise we say w has infinite width.

Define the width to be the least such m.

Clearly, if G is finite we always have finite width bounded by |G|.

Theorem (Larsen, Shalev, Tiep)

For any w # 1 we have G = Gy Gy when G is a sufficiently
large finite simple group.
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Say w has finite width in G if there exists m such that

w(G) = G} ={g1..9m: gi € Gy }.

Otherwise we say w has infinite width.

Define the width to be the least such m.

Clearly, if G is finite we always have finite width bounded by |G|.

Theorem (Larsen, Shalev, Tiep)

For any w # 1 we have G = Gy Gy when G is a sufficiently
large finite simple group.

The requirement of the size of G cannot be removed.
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Verbal Width

Say w has finite width in G if there exists m such that

w(G) = G} ={g1..9m: gi € Gy }.

Otherwise we say w has infinite width.

Define the width to be the least such m.

Clearly, if G is finite we always have finite width bounded by |G|.

Theorem (Larsen, Shalev, Tiep)

For any w # 1 we have G = Gy Gy when G is a sufficiently
large finite simple group.

The requirement of the size of G cannot be removed.

Corollary (Kassabov & Nikolov)

For any k, there exists a word w and a finite simple group G,
such that w is not an identity in G, but G # Gk.
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Question

Fix a group G and let A be a subset of G. Does there exist a
word w such that G, = A? i.e. What are the verbal images of
G?
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Question

Fix a group G and let A be a subset of G. Does there exist a
word w such that G, = A? i.e. What are the verbal images of
G?
Two necessary conditions:
@ Clearly we must have e € A (since w(e, ..., e) = e).
@ For every a € Aut(G), a(A) = A (since
a(w(gt, .., gk)) = w(a(g1), ..., (Gk))-
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Images of Word Maps

Question

Fix a group G and let A be a subset of G. Does there exist a
word w such that G, = A? i.e. What are the verbal images of
G?
Two necessary conditions:

@ Clearly we must have e € A (since w(e, ..., e) = e).

@ For every a € Aut(G), a(A) = A (since

a(w(gt, .., gk)) = w(a(g1), ..., (Gk))-

If we assume G is a simple group, are these conditions
sufficient?
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Theorem (Lubotzky, June 2012)

Let G be a finite simple group and A a subset of G such that
e € A and for every o € Aut(G), a(A) = A. Then there exists a
word w € F5 such that G, = A.
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Theorem (Lubotzky, June 2012)

Let G be a finite simple group and A a subset of G such that
e € A and for every o € Aut(G), a(A) = A. Then there exists a
word w € F, such that G, = A.

Key Theorem:

Theorem (Guralnick & Kantor)

Let G be a finite simple group. For every e #+ a € G there exists
b € G such that G = (a, b).
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Theorem (Lubotzky, June 2012)

Let G be a finite simple group and A a subset of G such that
e € A and for every o € Aut(G), a(A) = A. Then there exists a
word w € F, such that G, = A.

Key Theorem:

Theorem (Guralnick & Kantor)

Let G be a finite simple group. For every e #+ a € G there exists
b € G such that G = (a, b).

Note this requires the classification of finite simple groups.
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Main idea:

Let Q = {(a;, b)) : i :=1,...,|G|?} denote the set of all pairs of
elements of G such that the first / pairs generate G and the
remaining pairs generate proper subgroups of G.
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Main idea:

LetQ = {(a;, b)) : i :==1,...,|G|?} denote the set of all pairs of
elements of G such that the first / pairs generate G and the
remaining pairs generate proper subgroups of G. Let Q4 denote
the set of the first / pairs and Q. denote the set of the remaining
pairs.
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LetQ = {(a;, b)) : i :==1,...,|G|?} denote the set of all pairs of
elements of G such that the first / pairs generate G and the
remaining pairs generate proper subgroups of G. Let Q4 denote
the set of the first / pairs and Q. denote the set of the remaining
pairs. Consider the homomorphism:

¢1:F—[] G (1)

Q4

w(x,y) — (w(a;, bi))a,- (2)
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Main idea:

LetQ = {(a;, b)) : i :==1,...,|G|?} denote the set of all pairs of
elements of G such that the first / pairs generate G and the
remaining pairs generate proper subgroups of G. Let Q4 denote
the set of the first / pairs and Q. denote the set of the remaining
pairs. Consider the homomorphism:

¢1:F—[] G (1)
Q4
w(x,y) — (w(a;, bi))a,- (2)

The image ¢1(F>) is a subdirect product.



The Simple Groups

Proof (sketch)

Main idea:

LetQ = {(a;, b)) : i :==1,...,|G|?} denote the set of all pairs of
elements of G such that the first / pairs generate G and the
remaining pairs generate proper subgroups of G. Let Q4 denote
the set of the first / pairs and Q. denote the set of the remaining
pairs. Consider the homomorphism:

¢1:F—[] G (1)
Q4
w(x,y) — (w(a;, bi))a,- (2)

The image ¢1(F>) is a subdirect product.
It is well-known that ¢4(F2) contains a ‘diagonal’ subgroup
isomorphic to G" where r = I/|Aut(G)|.
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How about other groups? Almost Simple Groups? Quasisimple
Groups?
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Almost Simple Groups

Let G be an almost simple group, i.e. S < G < Aut(S) where S
is a non-abelian finite simple group.
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Almost Simple Groups

Let G be an almost simple group, i.e. S < G < Aut(S) where S
is a non-abelian finite simple group.
Suppose further that G < Aut(S).
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Almost Simple Groups

Let G be an almost simple group, i.e. S < G < Aut(S) where S
is a non-abelian finite simple group.
Suppose further that G < Aut(S).

Theorem (L., 2012)

Let G and S be as above. Let A be a subset of S such that
e € A and A is closed under the action of Aut(G). Then there
exists a word w € F, such that G,, = A.
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Almost Simple Groups

Let G be an almost simple group, i.e. S < G < Aut(S) where S
is a non-abelian finite simple group.
Suppose further that G < Aut(S).

Theorem (L., 2012)

Let G and S be as above. Let A be a subset of S such that
e € A and A is closed under the action of Aut(G). Then there
exists a word w € F, such that G,, = A.

It remains to describe the situation where A £ S.
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Note that if we do not require that w € F, we can immediately
deduce this from the proof of the Ore Conjecture, the fact that
the group of outer automorphisms of a finite simple group has
derived length at most 3 and from Lubotzky’s Theorem.

Theorem (Liebeck, O’Brian, Shalev, Tiep)

Every element of any non-abelian finite simple group S is a
commutator.

w = [[[x1, x2], [X3, Xa]], [[X5, X6], [x7, Xg]]] has image precisely S
where S < G < Aut(S).
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Symmetric Groups

Fix n > 5 and consider S, an almost simple group
(An < Sp < Aut(Ap)).
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Symmetric Groups

Fix n > 5 and consider S, an almost simple group
(An < Sp < Aut(Ap)).

Corollary (L., 2012)
The verbal images of S, are either:
@ an Aut(Syp)-invariant subset of A, including the identity or;

@ any Aut(Sp)-invariant subset of S, containing C, where C
is the set of all 2-elements of S, and the identity.
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Quasisimple Groups

A group S is quasisimple if S/Z(S) is simple and S is perfect.
Theorem (L., 2012)

There exists a constant C with the following property: Let S be
a universal quasisimple group with |S| > C and let A be a
subset of S such that e € A and A is closed under the action of
the automorphism group of S. Then there exists a word w € F»
such that S,, = A.
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Quasisimple Groups

A group S is quasisimple if S/Z(S) is simple and S is perfect.
Theorem (L., 2012)

There exists a constant C with the following property: Let S be
a universal quasisimple group with |S| > C and let A be a
subset of S such that e € A and A is closed under the action of

the automorphism group of S. Then there exists a word w € F»
such that S,, = A.

In fact, if S is the universal cover of an alternating group then
the condition of sufficiently large can be removed.
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