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Introduction

Let G be a group. By a derived subgroup in G is meant the commutator
subgroup H ′ of a subgroup H of G .

We denote by
C(G )

the set of all derived subgroups in the group G :

C(G ) = {H ′ | H ≤ G}.

For example G ′, 1 ∈ C(G ).

Question

How important is the subset C(G ) within the lattice S(G ) of all
subgroups of G?
What are the consequences for the structure of G if conditions are
imposed on the set C(G )?
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Introduction

Recently this problem has been investigated by many authors. For
example F. de Giovanni, D.J.S. Robinson, and M. Herzog, P. L., M. Maj
studied when C(G ) is finite.

A sample result is the following:

Theorem (F. de Giovanni, D.J.S. Robinson; M. Herzog, P. L., M. Maj ,
2005)

Let G be a locally graded group.
The set C(G ) is finite if and only if the derived subgroup G ′ is finite.
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Now, if n is a positive integer, let

Dn

denote the class of groups in which the number of the isomorphism
classes of derived subgroups is at most n.
Obviously

D1 ⊆ D2 ⊆ . . . ⊆ Dn ⊆ . . .

We write

D :=
⋃
n∈N

Dn.
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Introduction

Examples

• A group G is a D1-group if H ′ ' {1}, for any subgroup H of G .

· Therefore D1 is the class of all abelian groups.

• A group G is a D2-group if either G is abelian, or H ′ ' G ′, for any
non-abelian subgroup H of G .

· If G ′ is infinite cyclic or cyclic of order a prime p, then G ∈ D2.

· Free groups of countable rank are in D2.

· Groups with all proper subgroups abelian (in particular Tarski groups)
are in D2.
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• A group G is a D2-group if either G is abelian, or H ′ ' G ′, for any
non-abelian subgroup H of G .

· Q ∗ Z (a locally free group) is in D2.

· A4, ZwrZ, ZpwrZ (p a prime) are soluble D2-groups.

• If A is a direct product of n copies of a group C where C is infinite
cyclic or of order an odd prime p and x inverts the elements of A, then
G = 〈x〉 n A is in Dn and not in Dn−1.
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• D2-groups
P. L., M. Maj, D.J.S. Robinson, H. Smith
On Groups with Two Isomorphism Classes of Derived Subgroups,
Glasgow Mathematical Journal, available on CJO2013
doi:10.1017/S0017089512000821.

• Locally finite D3-groups
• Some general results about the classes Dn and D

P. L., M. Maj, D.J.S. Robinson
Locally Finite Groups with Finitely Many Isomorphism Classes of Derived
Subgroups, Journal of Algebra, to appear.
Recent Results on Groups with Few Isomorphism Classes of Derived
Subgroups, Contemporary Mathematics, to appear.
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Dn-groups and D-groups

D1 is exactly the class of all abelian groups.

A group G is a D2-group if either G is abelian, or H ′ ' G ′, for any
non-abelian subgroup H of G .

Proposition

A locally finite D2-group G is soluble.

Proof. In fact, assume G not soluble. Then there exist two
non-commuting elements x , y ∈ G . Write H = 〈x , y〉. H is finite since G
is locally finite and H is not abelian. Hence H has a minimal non-abelian
subgroup K and G ′ ' K ′. By a classical result of G.A. Miller and H.C.
Moreno, K is soluble. Thus G ′ is soluble and G is soluble, a
contradiction. //
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Dn-groups and D-groups

Notice that:

Proposition

A soluble Dn-group has derived length at most n.

Now we can ask:

Problem
What is the maximum integer m such that every locally finite group in
Dm is soluble?

The answer is m = 4.

In fact, we have the following:
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Theorem

A locally finite D4 − group is soluble, but A5 is a D5 − group.

Sketch of the Proof. It is enough to prove the result for a finite group.
Let G be a finite insoluble D4-group of least order.
. . .
Then there are at least five non-isomorphic derived subgroups in G , a
contradiction.

On the other hand, A5 is a D5-group since its non-trivial derived
subgroups are A5, Z5, Z3,V4. //
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A group G is a D2-group if either G is abelian, or H ′ ' G ′, for any
non-abelian subgroup H of G .

Examples

· Abelian groups are in D2.
· If G ′ is infinite cyclic or cyclic of prime order p, then G ∈ D2.

· Free groups of countable rank are in D2.
· Groups with all proper subgroups abelian (in particular Tarski groups)
are in D2.

The class D2 is subgroup closed .

If G is a D2-group, N is normal in G and
G ′ satisfies min, the minimal condition on subgroups, then
G/N is in D2.
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Locally finite D2-groups

Let G a locally finite D2-group. By previous results G is metabelian.
Moreover G ′ is finite.

Example

Let p be a prime and m > 1 an integer prime to p. Let n = |p|m be the
order of p modulo m, i.e. the smallest n > 0 such that pn ≡ 1 (mod m).
Let F be a finite field of order pn. Then F ∗ has a subgroup X = 〈x〉 of
order m.
Then X acts on A = F+ via the field multiplication and we can define

G (p,m) = X n A,

which is a metabelian group of order mpn.
When G (p,m) ∈ D2?
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Locally finite D2-groups

Let p be a prime and m > 1 an integer prime to p.
We say that (p,m) is an allowable pair if |p|m = |p|d for any divisor
d > 1 of m.

Hence (p,m) is an allowable pair if and only if G (p,m) is a D2-group.

Theorem

Let G be a non-nilpotent group with G ′ finite.
Then G is a D2-group if and only if the following hold:
(i) G = X n A where A = G ′ is an elementary abelian p-group and
X/CX (A) is cyclic of order m;
(ii) CX (A) = Z (G ), G/Z (G ) ' G (p,m) and (p,m) is allowable.
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Allowable pairs

Let p be a prime and m > 1 an integer prime to p.
We say that (p,m) is an allowable pair if |p|m = |p|d for any divisor
d > 1 of m.

· If m is a prime, then (p,m) is allowable.

· (p,m) is allowable if and only if |p|m = |p|q for all primes q dividing m.

· Let m = qe1
1 · · · qek

k be the primary decomposition of m. Then (p,m) is
allowable if and only if each (p, qei

i ) is allowable and |p|q1 = · · · = |p|qk .
This reduces the problem of finding allowable pairs (p,m) to the case
m = qe , with q a prime.
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Allowable pairs

Lemma

If q 6= p is a prime, then (p, qe) is allowable if and only if

pq−1 ≡ 1 (mod qe).

The previous condition always holds if e = 1, by Fermat’s little theorem,
but rarely if e > 1.

Problem
Given a prime p, does there exist a prime q such that

pq−1 ≡ 1 (mod q2)?

Group theoretically we are asking if G (p, q2) ∈ D2.
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Allowable pairs

This is a hard number theoretic problem.

A prime q such that

pq−1 ≡ 1 (mod q2)

is called a base-p Wieferich prime (after Arthur Wieferich 1884-1954).

Examples

11 is a Wieferich base-3 prime.
In fact, 310 − 1 = 112 · 488.
1093 is a Wieferich base-2 prime (Meissener (1913)).
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A computer search shows that for all p < 100, with the possible
exception of p = 47, there is at least one base-p Wieferich prime.
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There are no others < 6 · 109.

It is unknown whether infinitely many exist.
It is also unknown whether infinitely many non base-2 Wieferich primes
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base-p Wieferich primes

Wieferich discovered a connection with Fermat’s Last Theorem.
In 1909 he proved that if there is a non-trivial solution of

xq + yq = zq

with q a prime not dividing xyz , then q is a base 2-Wieferich prime.
One year later Mirimanoff proved that q is also a base-3 Wieferich prime.

There are many interesting open questions concerning base-p Wieferich
primes.
An unsolved question is whether is possible for a number to be a base-2
and base-3 Wieferich prime simultaneously.



Soluble D2-groups

If G is a soluble D2-group, then G ′ is abelian.

More can be said on the structure of G ′.

Proposition

If G is a soluble D2-group, then G ′ is either an elementary abelian
p-group for some prime p, or it is free abelian, or it is torsion-free of
finite rank.

In fact all three possibilities can occur. Indeed the commutator subgroup
of the wreath product Zp wr Z is an elementary abelian p-group, the
commutator subgroup of the wreath product Z wr Z is free abelian and
the commutator subgroup of the infinite dihedral group is infinite cyclic.
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Other classes of infinite D2-groups

Theorem
Let G be a perfect group in D2. Then G has no proper subgroups of
finite index.

Corollary

Let G be a D2-group and assume that G ′ has a proper subgroup of finite
index. Then G is a hypoabelian group.

Question
Is a residually finite D2-group always residually soluble?

Remark
Let G be a locally graded D2-group. If G is periodic, then G is soluble.

Question
What is the structure of a locally graded D2-group?
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D3-groups

A group G is a D3-group if there exist at most three types of
non-isomorphic derived subgroups.

Examples

· If |G ′| = p2 (p a prime), then G is a D3-group.

· If G = 〈a, x , y〉 is a finite p-group of class 2 and G ′ is elementary
abelian of order p3, then G is a D3-group.
In fact, for every proper non-abelian subgroup X of G either X ′ = G ′ or
|X ′| = p.
(See the book by Berkovich and Janko, Groups of Prime Power Order ,
vol. 3)

· If G = 〈a, x〉 is a finite p-group of class 3, p > 2, G ′ is elementary
abelian of order p3 and {gp | g ∈ G} ⊆ Z (G ), then G is a D3-group.
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Locally finite D3-groups

Theorem

Let G be a nilpotent locally finite group.

Then G ∈ D3 if and only if one of the following holds:

(i) |G ′| divides p2 (p a prime);

(ii) G = Z (G )S, where S = 〈a, x , y〉 is a finite p-group of class 2 and S ′

is elementary abelian of order p3;

(iii) G = Z (G )S, where S = 〈a, x〉 is a finite p-group of class 3, p > 2,
S ′ is elementary abelian of order p3 and {gp | g ∈ S} ⊆ Z (S).

The proof uses some old results on Camina p-groups due to MacDonald
and some recent results due to M. Lewis.
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Locally finite D3-groups

Let G be a non-nilpotent locally finite D3-group.

Proposition

G ′ is a finite p-group of nilpotence class at most 2 for some prime p.

Then
G/G ′ = P/G ′ × Q/G ′,

where P = Op(G ) and Q/G ′ is a p′-group.

Proposition

G = X n P where P = Op(G ) and X is an abelian p′-group for some
prime p. Moreover X/CX (P) is finite.
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Proposition

The subgroup Op(G ) is abelian or it is an extraspecial p-group, with
exponent p if p > 2.

First we deal with the groups for which Op(G ) is abelian: once again
finite fields play an essential part here.
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Locally finite D3-groups

Example

Let p be a prime and m > 1 an integer prime to p. Let n = |p|m be the
order of p modulo m, i.e. the smallest n > 0 such that pn ≡ 1 (mod m).
Let F be a finite field of order pn. Then F ∗ has a subgroup X = 〈x〉 of
order m.
Then X acts on A = F+ via the field multiplication and we can define

G (p,m) = X n A,

which is a metabelian group of order mpn.
When G (p,m) ∈ D3?



Locally finite D3-groups

Example

Let p be a prime and m > 1 an integer prime to p. Let n = |p|m be the
order of p modulo m, i.e. the smallest n > 0 such that pn ≡ 1 (mod m).
Let F be a finite field of order pn. Then F ∗ has a subgroup X = 〈x〉 of
order m.
Then X acts on A = F+ via the field multiplication and we can define

G (p,m) = X n A,

which is a metabelian group of order mpn.
When G (p,m) ∈ D3?



Locally finite D3-groups

Example

Let p be a prime and m > 1 an integer prime to p. Let n = |p|m be the
order of p modulo m, i.e. the smallest n > 0 such that pn ≡ 1 (mod m).
Let F be a finite field of order pn. Then F ∗ has a subgroup X = 〈x〉 of
order m.
Then X acts on A = F+ via the field multiplication and we can define

G (p,m) = X n A,

which is a metabelian group of order mpn.
When G (p,m) ∈ D3?



Locally finite D3-groups

Example

Let p be a prime and m > 1 an integer prime to p. Let n = |p|m be the
order of p modulo m, i.e. the smallest n > 0 such that pn ≡ 1 (mod m).
Let F be a finite field of order pn. Then F ∗ has a subgroup X = 〈x〉 of
order m.
Then X acts on A = F+ via the field multiplication and we can define

G (p,m) = X n A,

which is a metabelian group of order mpn.
When G (p,m) ∈ D3?



Locally finite D3-groups

We say that the pair (p,m) is 2− allowable if, for any d > 1 dividing m,
it is true that

|p|d = |p|m or
1
2
|p|m.

Lemma

The group G (p,m) is a D3-group if and only if (p,m) is a 2-allowable
pair.

Let A be an X -module. We say that A is strongly X − simple if it is a
simple Y -module for every non-trivial subgroup Y of X .

For example if X ,A are abelian, A is strongly X -simple if and only if
X n A is a D2-groups.
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Locally finite D3-groups

Theorem
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abelian. Then
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(ii) P1 is elementary abelian and P = S1 × S2 where Si is a strongly
simple X -module and S1 ' S2;
(iii) P1 is homocyclic of exponent p2 and Pp

1 ' P1/Pp
1 (as X -module) is

strongly X -simple.

Conversely all groups with the previous structures are D3-groups.
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Locally finite D3-groups

Now suppose that G is a locally finite non-nilpotent D3-group,

G = X n Op(G )

with P = Op(G ) non-abelian, X an abelian p′-group. Then

P/P ′ = P1P ′ × C/P ′,

where P1 = [P,X ] and C/P ′ = CP/P′(X ).

Hence
G = C (X n P1).
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non-abelian. Write P1 = [P,X ] and C/P ′ = CP/P′(X ), P = CP1. Then
G = X n P where X is an abelian p′-group and P ′

1 = P ′. In addition one
of the following holds:
(i) P1 is an extra-special group, of exponent p if p > 2, and P1/P ′ is a
strongly simple X -module;
(ii) p > 2 ,P1 is non-abelian of order p3 and exponent p, C is abelian,
and X̄ = X/CX (P1) ≤ GF (p2)∗ acts on P1/P ′ = GF (p2) via the field
multiplication as a subgroup of GF (p2) of order 2m such that
X̄ ∩ GF (p) = 〈−1〉 and 1 < m|p + 1;
(iii) p > 2, P1 is non-abelian of order p3 and exponent p, C is abelian,
and X̄ = X/CX (P1) = 〈xCX (P1)〉, P1 = 〈a, b,P ′〉 where ax = ai ,
bx = bj and ij = 1(mod p);
(iv) |G ′| divides p2.
Conversely all groups with the previous structures are D3-groups.
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