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Let F be a free group of rank n > 1, and F be a semigroup on a
set of free generators.

A law u ≡ v is called positive if u, v ∈ F .
By V we denote a verbal subgroup in F .
Every word in V is a law in the variety var(F/V ).

Proposition
The set of verbal subgroups in F forms a lattice. If V1,V2 are
verbal then V1V2 and V1 ∩ V2 are the verbal subgroups.

The examples of verbal subgroups: F̂ e , γc(F ).

Definition
V is called VN-verbal if F/V is virtually nilpotent.

So a verbal subgroup V is VN-verbal iff it contains γc(F̂ e).
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Theorem
VN-verbal subgroups in F form a sublattice in the lattice of all
subgroups in F .

Proof Let V1 ⊇ γc(F̂ k), V2 ⊇ γd (F̂ `).

V1V2 ⊇ γm(F̂ e), m = min(c , d), e = gcd(k , `).

V1 ∩ V2 ⊇ γm(F̂ e), m = max(c , d), e = lcm(k , `). �
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VN-property

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A.Maltsev)
R-property: (F/V )′ is finitely generated, (S. Rosset)
M-property: V * F ′′(F ′)p for all prime p. (A.Maltsev)

The last is equivalent to var(F/V ) + ApA for all prime p.
We introduce the following subsets of verbal subgroups in F :{
VN−verbal

}
⊆ {P−verbal} ⊆

{
R−verbal

}
⊆

{
M−verbal

}
.

{
VN−varieties

}
⊆{P−varieties}⊆

{
R−varieties

}
⊆
{
M−varieties

}
{
VN−laws

}
⊆ {P−laws} ⊆

{
R−laws

}
⊆

{
M−laws

}
.
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P-verbal subgroups

V is P-verbal iff F/V satisfies a binary balanced positive law
u(x , y) ≡ v(x , y).
V is P-verbal iff V ∩ FF−1 6= 1.
By A.Maltsev, VN-verbal subgroup is P-verbal.

The inclusion is proper: there are infinite Burnside groups and
examples by A. Yu.Ol’shanskii and A. Storozhev.
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Theorem
The set of P-verbal subgroups forms a sublattice in the lattice of all
subgroups in F .

Proof Let V1 and V2 be the P-verbal subgroups, providing
positive laws a(x , y) ≡ b(x , y) and u(x , y) ≡ v(x , y).
We can assume that the law a(x , y) ≡ b(x , y) is balanced.
The join V1V2 provides each of these laws. The intersection
V1 ∩ V2 provides the positive law

a (u(x , y), v(x , y)) ≡ b (u(x , y), v(x , y)) ,

because modV2 it has is a(u, u) ≡ b(u, u) and hence uk ≡ uk . �
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Note that n-Engel laws define R-verbal subgroups.
Will the n-Engel laws prove that the inclusion is proper?
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V is called M-verbal because a law which is not satisfied in any of
ApA is called Milnor identity (F.Point 1996).
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V is M-verbal if ∀p, V * F ′′(F ′)p i.e. var(F/V ) + ApA.

Theorem
A verbal subgroup V is M-verbal if and only if

(∗) VF ′′ ∩ FF−1 6= 1.

Proof If V ⊆ F ′′(F ′)p, then VF ′′ ⊆ F ′′(F ′)p and by (*)
F ′′(F ′)p ∩ FF−1 6= 1. The contradiction.

Conversely, if V * F ′′(F ′)p, then VF ′′ * F ′′(F ′)p,
Then var(F/VF ′′) + ApA, and by result of J. Groves F/VF ′′ is
virtually nilpotent.
Hence F/VF ′′ satisfies a positive law, which implies (*). �
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V is M-verbal if ∀p, V * F ′′(F ′)p i.e. var(F/V ) + ApA.

Since (F/F ′′(F ′)p)′ is infinitely generated, it does not satisfy an
R-law.

So, if V is R-verbal then V * F ′′(F ′)p, Hence R-verbal
subgroups are M-verbal.

We know that M-verbal subgroup need not be P-verbal.

Questions
What are R-verbal subgroups which are not P-verbal.

What are M-verbal subgroups which are not R-verbal.
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