Four classes of verbal subgroups

Olga Macedonska

Silesian University of Technology, Poland

St.Andrews 2013

Let F be a free group of rank n > 1, and F be a semigroup on a set of free generators.

Let F be a free group of rank n > 1, and F be a semigroup on a set of free generators. A law $u \equiv v$ is called positive if $u, v \in F$.

Proposition

The set of verbal subgroups in F forms a lattice. If V_1, V_2 are verbal then V_1V_2 and $V_1 \cap V_2$ are the verbal subgroups.

Proposition

The set of verbal subgroups in F forms a lattice. If V_1, V_2 are verbal then $V_1 V_2$ and $V_1 \cap V_2$ are the verbal subgroups.

The examples of verbal subgroups: \hat{F}^e , $\gamma_c(F)$.

Proposition

The set of verbal subgroups in F forms a lattice. If V_1, V_2 are verbal then V_1V_2 and $V_1 \cap V_2$ are the verbal subgroups.

The examples of verbal subgroups: \hat{F}^e , $\gamma_c(F)$.

Definition

V is called VN-verbal if F/V is virtually nilpotent.

Proposition

The set of verbal subgroups in F forms a lattice. If V_1, V_2 are verbal then V_1V_2 and $V_1 \cap V_2$ are the verbal subgroups.

The examples of verbal subgroups: \hat{F}^e , $\gamma_c(F)$.

Definition

V is called VN-verbal if F/V is virtually nilpotent.

So a verbal subgroup V is VN-verbal iff it contains $\gamma_c(\hat{F}^e)$.

VN-verbal subgroups in F form a sublattice in the lattice of all subgroups in F.

VN-verbal subgroups in F form a sublattice in the lattice of all subgroups in F.

Proof

VN-verbal subgroups in F form a sublattice in the lattice of all subgroups in F.

Proof Let $V_1 \supseteq \gamma_c(\hat{F}^k)$, $V_2 \supseteq \gamma_d(\hat{F}^\ell)$.

VN-verbal subgroups in F form a sublattice in the lattice of all subgroups in F.

Proof Let
$$V_1 \supseteq \gamma_c(\hat{F}^k)$$
, $V_2 \supseteq \gamma_d(\hat{F}^\ell)$.

$$V_1V_2 \supseteq \gamma_m(\hat{F^e}), \quad m = min(c, d), \quad e = gcd(k, \ell).$$

VN-verbal subgroups in F form a sublattice in the lattice of all subgroups in F.

Proof Let
$$V_1 \supseteq \gamma_c(\hat{F}^k)$$
, $V_2 \supseteq \gamma_d(\hat{F}^\ell)$.

$$V_1V_2 \supseteq \gamma_m(\hat{F^e}), \quad m = min(c,d), \quad e = gcd(k,\ell).$$

$$V_1 \cap V_2 \supseteq \gamma_m(\hat{F^e}), \quad m = \max(c, d), \quad e = lcm(k, \ell).$$

We say that V has VN-property if V is VN-verbal.

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

F/V satisfies a positive law, (A. Maltsev)

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A. Maltsev)

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A. Maltsev)

(F/V)' is finitely generated, (S. Rosset)

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A. Maltsev)

R-property: (F/V)' is finitely generated, (S. Rosset)

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A. Maltsev)

R-property: (F/V)' is finitely generated, (S. Rosset)

 $V \nsubseteq F''(F')^p$ for all prime p. (A. Maltsev)

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A. Maltsev)

R-property: (F/V)' is finitely generated, (S. Rosset)

M-property: $V \nsubseteq F''(F')^p$ for all prime p. (A. Maltsev)

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A. Maltsev)

R-property: (F/V)' is finitely generated, (S. Rosset)

M-property: $V \nsubseteq F''(F')^p$ for all prime p. (A. Maltsev)

The last is equivalent to $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$ for all prime p.

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

P-property: F/V satisfies a positive law, (A. Maltsev) R-property: (F/V)' is finitely generated, (S. Rosset) M-property: $V \nsubseteq F''(F')^p$ for all prime p. (A. Maltsev)

The last is equivalent to $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$ for all prime p. We introduce the following subsets of verbal subgroups in F:

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

```
P-property: F/V satisfies a positive law, (A. Maltsev)
R-property: (F/V)' is finitely generated, (S. Rosset)
M-property: V \nsubseteq F''(F')^p for all prime p. (A. Maltsev)
```

The last is equivalent to $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$ for all prime p. We introduce the following subsets of verbal subgroups in F:

$$\{VN-verbal\} \subseteq \{P-verbal\} \subseteq \{R-verbal\} \subseteq \{M-verbal\}.$$

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

```
P-property: F/V satisfies a positive law, (A. Maltsev)

R-property: (F/V)' is finitely generated, (S. Rosset)

M-property: V \nsubseteq F''(F')^p for all prime p. (A. Maltsev)
```

The last is equivalent to $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$ for all prime p. We introduce the following subsets of verbal subgroups in F:

$$\{VN-verbal\} \subseteq \{P-verbal\} \subseteq \{R-verbal\} \subseteq \{M-verbal\}.$$

 $\{VN-varieties\} \subseteq \{P-varieties\} \subseteq \{R-varieties\} \subseteq \{M-varieties\}.$

We say that V has VN-property if V is VN-verbal.

VN-verbal subgroups have the following 3 properties:

```
P-property: F/V satisfies a positive law, (A. Maltsev)
```

R-property: (F/V)' is finitely generated, (S. Rosset)

M-property: $V \nsubseteq F''(F')^p$ for all prime p. (A. Maltsev)

The last is equivalent to $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$ for all prime p.

We introduce the following subsets of verbal subgroups in F:

$$\{VN-verbal\} \subseteq \{P-verbal\} \subseteq \{R-verbal\} \subseteq \{M-verbal\}.$$

$$\{VN-varieties\}\subseteq \{P-varieties\}\subseteq \{R-varieties\}\subseteq \{M-varieties\}$$

$$\{VN-laws\}\subseteq \{P-laws\}\subseteq \{R-laws\}\subseteq \{M-laws\}.$$

• V is P-verbal iff F/V satisfies a binary balanced positive law $u(x,y) \equiv v(x,y)$.

- V is P-verbal iff F/V satisfies a binary balanced positive law $u(x,y) \equiv v(x,y)$.
- V is P-verbal iff $V \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$.

- V is P-verbal iff F/V satisfies a binary balanced positive law $u(x,y) \equiv v(x,y)$.
- V is P-verbal iff $V \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$.
- By A. Maltsev, VN-verbal subgroup is P-verbal.

- V is P-verbal iff F/V satisfies a binary balanced positive law $u(x,y) \equiv v(x,y)$.
- V is P-verbal iff $V \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$.
- By A. Maltsev, VN-verbal subgroup is P-verbal.

- V is P-verbal iff F/V satisfies a binary balanced positive law $u(x,y) \equiv v(x,y)$.
- V is P-verbal iff $V \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$.
- By A. Maltsev, VN-verbal subgroup is P-verbal.

• The inclusion is proper: there are infinite Burnside groups and examples by A. Yu. Ol'shanskii and A. Storozhev.

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof Let V_1 and V_2 be the *P*-verbal subgroups, providing positive laws $a(x,y) \equiv b(x,y)$ and $u(x,y) \equiv v(x,y)$.

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof Let V_1 and V_2 be the *P*-verbal subgroups, providing positive laws $a(x,y) \equiv b(x,y)$ and $u(x,y) \equiv v(x,y)$. We can assume that the law $a(x,y) \equiv b(x,y)$ is balanced.

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof Let V_1 and V_2 be the P-verbal subgroups, providing positive laws $a(x,y)\equiv b(x,y)$ and $u(x,y)\equiv v(x,y)$. We can assume that the law $a(x,y)\equiv b(x,y)$ is balanced. The join V_1V_2 provides each of these laws.

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof Let V_1 and V_2 be the P-verbal subgroups, providing positive laws $a(x,y)\equiv b(x,y)$ and $u(x,y)\equiv v(x,y)$. We can assume that the law $a(x,y)\equiv b(x,y)$ is balanced. The join V_1V_2 provides each of these laws. The intersection $V_1\cap V_2$ provides the positive law

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof Let V_1 and V_2 be the P-verbal subgroups, providing positive laws $a(x,y) \equiv b(x,y)$ and $u(x,y) \equiv v(x,y)$. We can assume that the law $a(x,y) \equiv b(x,y)$ is balanced. The join V_1V_2 provides each of these laws. The intersection $V_1 \cap V_2$ provides the positive law

$$a(u(x,y),v(x,y)) \equiv b(u(x,y),v(x,y)),$$

The set of P-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof Let V_1 and V_2 be the P-verbal subgroups, providing positive laws $a(x,y) \equiv b(x,y)$ and $u(x,y) \equiv v(x,y)$. We can assume that the law $a(x,y) \equiv b(x,y)$ is balanced. The join V_1V_2 provides each of these laws. The intersection $V_1 \cap V_2$ provides the positive law

$$a(u(x,y),v(x,y)) \equiv b(u(x,y),v(x,y)),$$

because $modV_2$ it has is $a(u, u) \equiv b(u, u)$ and hence $u^k \equiv u^k$.

R-verbal subgroups

Criterion for R-verbal subgroups

Criterion for R-verbal subgroups

Theorem (R-law)

V is *R*-verbal iff $\exists m \in N$, such that F/V satisfies a law $[x, my] \equiv u(x, y)$,

Criterion for R-verbal subgroups

Theorem (R-law)

$$V$$
 is R -verbal iff $\exists m \in N$, such that F/V satisfies a law $[x, my] \equiv u(x, y), \quad u(x, y) \in \langle x, [x, y], [x, 2y], ...[x, m-1y] \rangle.$

Proof is long.

 $[x, {}_{m}y] \equiv u(x, y), \qquad u(x, y) \in \langle x, [x, y], [x, {}_{2}y], ...[x, {}_{m-1}y] \rangle.$

$$[x, {}_{m}y] \equiv u(x, y), \qquad u(x, y) \in \langle x, [x, y], [x, {}_{2}y], ...[x, {}_{m-1}y] \rangle.$$

By means of the above criterion we can prove:

$$[x, my] \equiv u(x, y), \qquad u(x, y) \in \langle x, [x, y], [x, 2y], ...[x, m-1y] \rangle.$$

By means of the above criterion we can prove:

Theorem

The set of R-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

$$[x, my] \equiv u(x, y), \qquad u(x, y) \in \langle x, [x, y], [x, 2y], ...[x, m-1y] \rangle.$$

By means of the above criterion we can prove:

Theorem

The set of R-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof is long.

 \overline{V} is R-verbal if (F/V)' is finitely generated (for $n < \infty$)

\overline{V} is R-verbal if (F/V)' is finitely generated (for $n < \infty$)

By S.Rosset, P-verbal subgroups are R-verbal.

V is R-verbal if (F/V)' is finitely generated (for $n < \infty$)

By S.Rosset. P-verbal subgroups are R-verbal.

V is *R*-verbal if (F/V)' is finitely generated (for $n < \infty$)

By S.Rosset. P-verbal subgroups are R-verbal.

Note that n-Engel laws define R-verbal subgroups.

V is *R*-verbal if (F/V)' is finitely generated (for $n < \infty$)

By S.Rosset. P-verbal subgroups are R-verbal.

Note that *n*-Engel laws define *R*-verbal subgroups. Will the *n*-Engel laws prove that the inclusion is proper?

M-verbal subgroups

 \overline{V} is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

M-verbal subgroups

M-verbal subgroups

V is called M-verbal because a law which is not satisfied in any of $\mathfrak{A}_p\mathfrak{A}$ is called *Milnoridentity* (F.Point 1996).

 \overline{V} is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

 \overline{V} is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $\overline{var}(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

Theorem

A verbal subgroup V is M-verbal if and only if

A verbal subgroup V is M-verbal if and only if

(*)
$$VF'' \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$$
.

A verbal subgroup V is M-verbal if and only if

(*)
$$VF'' \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$$
.

Proof If $V \subseteq F''(F')^p$, then $VF'' \subseteq F''(F')^p$ and by (*)

A verbal subgroup V is M-verbal if and only if

(*)
$$VF'' \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$$
.

Proof If $V \subseteq F''(F')^p$, then $VF'' \subseteq F''(F')^p$ and by (*) $F''(F')^p \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$. The contradiction.

A verbal subgroup V is M-verbal if and only if

(*)
$$VF'' \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$$
.

Proof If $V \subseteq F''(F')^p$, then $VF'' \subseteq F''(F')^p$ and by (*) $F''(F')^p \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$. The contradiction.

Conversely, if $V \nsubseteq F''(F')^p$, then $VF'' \nsubseteq F''(F')^p$,

A verbal subgroup V is M-verbal if and only if

(*)
$$VF'' \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$$
.

Proof If $V \subseteq F''(F')^p$, then $VF'' \subseteq F''(F')^p$ and by (*) $F''(F')^p \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$. The contradiction.

Conversely, if $V \nsubseteq F''(F')^p$, then $VF'' \nsubseteq F''(F')^p$, Then $var(F/VF'') \not\supseteq \mathfrak{A}_p\mathfrak{A}$, and

A verbal subgroup V is M-verbal if and only if

(*)
$$VF'' \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$$
.

Proof If $V \subseteq F''(F')^p$, then $VF'' \subseteq F''(F')^p$ and by (*) $F''(F')^p \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$. The contradiction.

Conversely, if $V \nsubseteq F''(F')^p$, then $VF'' \nsubseteq F''(F')^p$,

Then $var(F/VF'') \not\supseteq \mathfrak{A}_p \mathfrak{A}$, and by result of J. Groves F/VF'' is virtually nilpotent.

A verbal subgroup V is M-verbal if and only if

(*)
$$VF'' \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$$
.

Proof If $V \subseteq F''(F')^p$, then $VF'' \subseteq F''(F')^p$ and by (*) $F''(F')^p \cap \mathcal{F}\mathcal{F}^{-1} \neq 1$. The contradiction.

Conversely, if $V \nsubseteq F''(F')^p$, then $VF'' \nsubseteq F''(F')^p$,

Then $var(F/VF'') \not\supseteq \mathfrak{A}_p \mathfrak{A}$, and by result of J. Groves F/VF'' is virtually nilpotent.

Hence F/VF'' satisfies a positive law, which implies (*).

By means of the criterion $VF'' \cap \mathcal{FF}^{-1} \neq 1$ we can prove:

V is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

By means of the criterion $VF'' \cap \mathcal{FF}^{-1} \neq 1$ we can prove:

Theorem

The set of M-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

V is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

By means of the criterion $VF'' \cap \mathcal{FF}^{-1} \neq 1$ we can prove:

Theorem

The set of M-verbal subgroups forms a sublattice in the lattice of all subgroups in F.

Proof is long.

 \overline{V} is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

Since $(F/F''(F')^p)'$ is infinitely generated, it does not satisfy an R-law.

V is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

Since $(F/F''(F')^p)'$ is infinitely generated, it does not satisfy an R-law. So, if V is R-verbal then $V \nsubseteq F''(F')^p$, Hence R-verbal subgroups are M-verbal.

V is M-verbal if $\forall p, \ V \nsubseteq F''(F')^p$ i.e. $var(F/V) \not\supseteq \mathfrak{A}_p \mathfrak{A}$.

Since $(F/F''(F')^p)'$ is infinitely generated, it does not satisfy an R-law. So, if V is R-verbal then $V \nsubseteq F''(F')^p$, Hence R-verbal subgroups are M-verbal.

Since $(F/F''(F')^p)'$ is infinitely generated, it does not satisfy an R-law. So, if V is R-verbal then $V \nsubseteq F''(F')^p$, Hence R-verbal subgroups are M-verbal.

We know that M-verbal subgroup need not be P-verbal.

Since $(F/F''(F')^p)'$ is infinitely generated, it does not satisfy an R-law. So, if V is R-verbal then $V \nsubseteq F''(F')^p$, Hence R-verbal subgroups are M-verbal.

We know that M-verbal subgroup need not be P-verbal.

Questions

What are R-verbal subgroups which are not P-verbal.

Since $(F/F''(F')^p)'$ is infinitely generated, it does not satisfy an R-law. So, if V is R-verbal then $V \nsubseteq F''(F')^p$, Hence R-verbal subgroups are M-verbal.

We know that M-verbal subgroup need not be P-verbal.

Questions

What are R-verbal subgroups which are not P-verbal. What are M-verbal subgroups which are not R-verbal.

THANK YOU FOR ATTENTION