Zassenhaus Conjecture for cyclic-by-abelian groups

Leo Margolis

Joint work with Mauricio Caicedo and Ángel del Río

University of Murcia, University of Stuttgart

Groups St. Andrews, St. Andrews, August 4th - 10th - 2013

Talk Structure

- 1. The Zassenhaus Conjectures and some results.
- 2. The cyclic-by-abelian case and the proof strategy.
- 3. Some methods used in the proof.

Notations and Setting

- G a finite group
- RG group ring of G over the ring R
- *U*(*RG*) unit group of *RG*
- $\varepsilon : RG \rightarrow R$ augmentation map,

$$\varepsilon(\sum_{g\in G}r_gg)=\sum_{g\in G}r_g$$

- V(RG) the units of augmentation 1 aka normalized units
- If $R = \mathbb{Z}$, then $U(\mathbb{Z}G) = \pm V(\mathbb{Z}G)$, so suffices to study $V(\mathbb{Z}G)$

Notations and Setting

- G a finite group
- RG group ring of G over the ring R
- *U*(*RG*) unit group of *RG*
- $\varepsilon : RG \rightarrow R$ augmentation map,

$$\varepsilon(\sum_{g\in G}r_gg)=\sum_{g\in G}r_g$$

- V(RG) the units of augmentation 1 aka normalized units
- If $R = \mathbb{Z}$, then $U(\mathbb{Z}G) = \pm V(\mathbb{Z}G)$, so suffices to study $V(\mathbb{Z}G)$

Some basic results on torsion units

General results on torsion units ('40s-'60s):

- $u = \sum_{g \in G} z_g g \in V(\mathbb{Z}G)$ of finite order, then $z_1 \neq 0$ implies u = 1 (Berman-Higman).
- A a finite abelian group. Then $U(\mathbb{Z}A) = \pm A \times F$, where F is torsion-free abelian.
- $H \leq V(\mathbb{Z}G)$, H finite. Then |H| divides |G|.
- $\bullet \ \exp(V(\mathbb{Z}G)) = \exp(G).$

The Zassenhaus Conjectures and some results

Conjectures (H.J. Zassenhaus, in the '60s)

- (ZC1): For $u \in V(\mathbb{Z}G)$ of finite order there exists $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}ux \in G$.
- (ZC2): For $H \leq V(\mathbb{Z}G)$ with |H| = |G| there exists $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}Hx = G$.
- (ZC3): For $H \leq V(\mathbb{Z}G)$ with |H| finite there exists $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}Hx \leq G$.

A. Weiss gave a positive answer to (ZC3) for nilpotent groups in 1991. Roggenkamp and Scott gave a couterexample to (ZC2) and so also to (ZC3) in 1991. Hertweck and Blanchard even found a couterxample to (ZC2) of order 96. The only conjecture left open is (ZC1) and for this reason it is called the Zassenhaus Conjecture.

The Zassenhaus Conjectures and some results

Conjectures (H.J. Zassenhaus, in the '60s)

- (ZC1): For $u \in V(\mathbb{Z}G)$ of finite order there exists $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}ux \in G$.
- (ZC2): For $H \leq V(\mathbb{Z}G)$ with |H| = |G| there exists $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}Hx = G$.
- (ZC3): For $H \leq V(\mathbb{Z}G)$ with |H| finite there exists $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}Hx \leq G$.

A. Weiss gave a positive answer to (ZC3) for nilpotent groups in 1991. Roggenkamp and Scott gave a couterexample to (ZC2) and so also to (ZC3) in 1991. Hertweck and Blanchard even found a couterxample to (ZC2) of order 96. The only conjecture left open is (ZC1) and for this reason it is called the Zassenhaus Conjecture.

There has been a lot of work on the Zassenhaus Conjecture, namely it is known to hold for

- Nilpotent groups (Weiss '91)
- Groups having a normal Sylow subgroup with an abelian complement (Hertweck '06)
- Cyclic-by-abelian groups (≥ 8 papers '83-'06; Hertweck '08 and Caicedo, del Río, M. '12)
- Some families of metabelian groups, not necessarily cyclic-by-abelian (Sehgal, Weiss '86; Marciniak, Ritter, Sehgal, Weiss '87)
- Some concrete groups (see A. Bächles talk)

There has been a lot of work on the Zassenhaus Conjecture, namely it is known to hold for

- Nilpotent groups (Weiss '91)
- Groups having a normal Sylow subgroup with an abelian complement (Hertweck '06)
- Cyclic-by-abelian groups (≥ 8 papers '83-'06; Hertweck '08 and Caicedo, del Río, M. '12)
- Some families of metabelian groups, not necessarily cyclic-by-abelian (Sehgal, Weiss '86; Marciniak, Ritter, Sehgal, Weiss '87)
- Some concrete groups (see A. Bächles talk)

There has been a lot of work on the Zassenhaus Conjecture, namely it is known to hold for

- Nilpotent groups (Weiss '91)
- Groups having a normal Sylow subgroup with an abelian complement (Hertweck '06)
- Cyclic-by-abelian groups (≥ 8 papers '83-'06; Hertweck '08 and Caicedo, del Río, M. '12)
- Some families of metabelian groups, not necessarily cyclic-by-abelian (Sehgal, Weiss '86; Marciniak, Ritter, Sehgal, Weiss '87)
- Some concrete groups (see A. Bächles talk)

There has been a lot of work on the Zassenhaus Conjecture, namely it is known to hold for

- Nilpotent groups (Weiss '91)
- Groups having a normal Sylow subgroup with an abelian complement (Hertweck '06)
- Cyclic-by-abelian groups (≥ 8 papers '83-'06; Hertweck '08 and Caicedo, del Río, M. '12)
- Some families of metabelian groups, not necessarily cyclic-by-abelian (Sehgal, Weiss '86; Marciniak, Ritter, Sehgal, Weiss '87)
- Some concrete groups (see A. Bächles talk)

The Cyclic-By-Abelian Case

Theorem (Hertweck '08)

Let G = AX with $A \subseteq G$ cyclic and X abelian. Then (ZC1) holds for G.

This proved especially the metacyclic case, which had been open till then.

Relying on this results and developing the methods further we got:

Theorem (Caicedo, M, del Río '12)

Let G be cyclic-by-abelian, i.e. G has a cyclic normal subgroup A s.t. G/A is abelian. Then (ZC1) holds for G.

Main obstacle in generalizing Hertwecks proof: $C_G(A) \neq AZ(G)$.

The Cyclic-By-Abelian Case

Theorem (Hertweck '08)

Let G = AX with $A \subseteq G$ cyclic and X abelian. Then (ZC1) holds for G.

This proved especially the metacyclic case, which had been open till then.

Relying on this results and developing the methods further we got:

Theorem (Caicedo, M, del Río '12)

Let G be cyclic-by-abelian, i.e. G has a cyclic normal subgroup A s.t. G/A is abelian. Then (ZC1) holds for G.

Main obstacle in generalizing Hertwecks proof: $C_G(A) \neq AZ(G)$.

Partial augmentation

General difficulty: No constructions for torsion units available.

Definition

Let $u=\sum\limits_{g\in G}z_gg$ be a torsion unit in $\mathbb{Z}G$ and denote by g^G the conjugacy class of g in G. Then $\varepsilon_g(u)=\sum\limits_{x\in g^G}z_x$ is called **partial augmentation** of u in respect to g.

Lemma

For a torsion unit $u \in V(\mathbb{Z}G)$ there exists an $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}ux \in G$ if and only if $\varepsilon_g(u^k) \geq 0$ for all $g \in G$ and $k \in \mathbb{N}$.

→ Study ZC1 by studying partial augmentations.

Partial augmentation

General difficulty: No constructions for torsion units available.

Definition

Let $u=\sum\limits_{g\in G}z_gg$ be a torsion unit in $\mathbb{Z}G$ and denote by g^G the conjugacy class of g in G. Then $\varepsilon_g(u)=\sum\limits_{x\in g^G}z_x$ is called **partial augmentation** of u in respect to g.

Lemma

For a torsion unit $u \in V(\mathbb{Z}G)$ there exists an $x \in U(\mathbb{Q}G)$ s.t. $x^{-1}ux \in G$ if and only if $\varepsilon_g(u^k) \geq 0$ for all $g \in G$ and $k \in \mathbb{N}$.

 \rightarrow Study ZC1 by studying partial augmentations.

General knowledge on partial augmentations

Lemma (Berman, Higman)

 $u = \sum_{g \in G} z_g g$, $u \neq 1$ a torsion unit in $\mathbb{Z}G$, then $z_1 = \varepsilon_1(u) = 0$.

Lemma (Marciniak, Ritter, Sehgal, Weiss; Hertweck)

Let $u \in V(\mathbb{Z}G)$ be of finite order. If $\varepsilon_g(u) \neq 0$, then the order of g divides the order of u.

Lemma (Hertweck)

For $u \in V(\mathbb{Z}G)$ suppose that the p-part of u is conjugate in \mathbb{Z}_pG to an element $x \in G$. Then $\varepsilon_g(u) = 0$, if the p-part of g is not conjugate to x. Here \mathbb{Z}_p denotes the p-adic integers.

General knowledge on partial augmentations

Lemma (Berman, Higman)

 $u = \sum_{g \in G} z_g g$, $u \neq 1$ a torsion unit in $\mathbb{Z}G$, then $z_1 = \varepsilon_1(u) = 0$.

Lemma (Marciniak, Ritter, Sehgal, Weiss; Hertweck)

Let $u \in V(\mathbb{Z}G)$ be of finite order. If $\varepsilon_g(u) \neq 0$, then the order of g divides the order of u.

Lemma (Hertweck)

For $u \in V(\mathbb{Z}G)$ suppose that the p-part of u is conjugate in \mathbb{Z}_pG to an element $x \in G$. Then $\varepsilon_g(u) = 0$, if the p-part of g is not conjugate to x. Here \mathbb{Z}_p denotes the p-adic integers.

General knowledge on partial augmentations

Lemma (Berman, Higman)

 $u = \sum_{g \in G} z_g g$, $u \neq 1$ a torsion unit in $\mathbb{Z}G$, then $z_1 = \varepsilon_1(u) = 0$.

Lemma (Marciniak, Ritter, Sehgal, Weiss; Hertweck)

Let $u \in V(\mathbb{Z}G)$ be of finite order. If $\varepsilon_g(u) \neq 0$, then the order of g divides the order of u.

Lemma (Hertweck)

For $u \in V(\mathbb{Z}G)$ suppose that the p-part of u is conjugate in \mathbb{Z}_pG to an element $x \in G$. Then $\varepsilon_g(u) = 0$, if the p-part of g is not conjugate to x. Here \mathbb{Z}_p denotes the p-adic integers.

Proof strategy

Inductive approach:

Assume $u \in V(\mathbb{Z}G)$ is a minimal counterexample to ZC, i.e every proper power of u is rationally conjugate to a group element and ZC holds for proper subgroups and quotients of G. Then a group theoretic observation yields

Theorem (del Río, Sehgal '06)

Let A be an abelian normal subgroup of G with abelian quotient. Then $\varepsilon_g(u) \geq 0$ for $g \in G \setminus C_G(A)$.

Similarly one gets:

Lemma

Let $A \subseteq G$, A cyclic, G/A abelian and set $D = Z(C_G(A))$. Then $\varepsilon_g(u) \ge 0$ for $g \in G \setminus D$.

 \rightarrow Study partial augmentations only in $D = Z(C_G(A))$.

Proof strategy

Inductive approach:

Assume $u \in V(\mathbb{Z}G)$ is a minimal counterexample to ZC, i.e every proper power of u is rationally conjugate to a group element and ZC holds for proper subgroups and quotients of G. Then a group theoretic observation yields

Theorem (del Río, Sehgal '06)

Let A be an abelian normal subgroup of G with abelian quotient. Then $\varepsilon_g(u) \geq 0$ for $g \in G \setminus C_G(A)$.

Similarly one gets:

Lemma

Let $A \subseteq G$, A cyclic, G/A abelian and set $D = Z(C_G(A))$. Then $\varepsilon_g(u) \ge 0$ for $g \in G \setminus D$.

 \rightarrow Study partial augmentations only in $D = Z(C_G(A))$.

Two cases

For a normal subgroup N of G denote by $\omega_N : \mathbb{Z}G \to \mathbb{Z}(G/N)$ the linear extension of the natural homomorphism $G \to G/N$.

Let $A \subseteq G$, A cyclic, G/A abelian, $D = Z(C_G(A))$ and assume u is a minimal counterexample to ZC. Then we study separately:

- $\omega_D(u) = 1$. Using *p*-adic methods, especially Weiss' double action formalism and "Permutation module"-results and Cliff-Weiss Theorem (details below).
- $\omega_D(u) \neq 1$. Using the Luthar-Passi method, which relates eigenvalues under complex representations and partial augmentations (not in this talk).

Two cases

For a normal subgroup N of G denote by $\omega_N : \mathbb{Z}G \to \mathbb{Z}(G/N)$ the linear extension of the natural homomorphism $G \to G/N$.

Let $A \subseteq G$, A cyclic, G/A abelian, $D = Z(C_G(A))$ and assume u is a minimal counterexample to ZC. Then we study separately:

- $\omega_D(u) = 1$. Using *p*-adic methods, especially Weiss' double action formalism and "Permutation module"-results and Cliff-Weiss Theorem (details below).
- $\omega_D(u) \neq 1$. Using the Luthar-Passi method, which relates eigenvalues under complex representations and partial augmentations (not in this talk).

Weiss' double action formalism

Translating questions about units into questions about modules: For a group homomorphism $\alpha: H \to \operatorname{GL}_k(RG)$ the set $(RG)^k$ becomes a $R(G \times H)$ -module by linearly extending the operation

$$x\cdot(g,h)=g^{-1}x\alpha(h).$$

This module is denoted M^{α} . If $\beta: H \to \operatorname{GL}_k(RG)$ is another group homomorphism, then $M^{\alpha} \cong M^{\beta}$ if and only if α and β are conjugate in $\operatorname{GL}_k(RG)$, i.e. there exists $u \in \operatorname{GL}_k(RG)$ s.t. $u^{-1}\alpha(h)u = \beta(h)$ for all $h \in H$.

Let $N \subseteq G$ with |G:N| = k and $\langle c \rangle = H \cong \langle u \rangle$ with u a torsion unit in $\mathbb{Z}G$. Then u operates on $(\mathbb{Z}N)^k = \bigcup \mathbb{Z}(g_iN) = \mathbb{Z}G$ via multiplication, so u can be seen as an element A in $GL_k(\mathbb{Z}N)$. Set $\alpha: c \mapsto A$, then u is rationally conjugate to $g \in G$ if and only if $\mathbb{Q} \otimes M^\alpha \cong \mathbb{Q} \otimes M^\beta$, where $\beta: c \mapsto g$. The character of this module is

$$\chi(g,h)=|C_G(g)|arepsilon_g(lpha(h)).$$

Weiss' double action formalism

Translating questions about units into questions about modules: For a group homomorphism $\alpha: H \to \operatorname{GL}_k(RG)$ the set $(RG)^k$ becomes a $R(G \times H)$ -module by linearly extending the operation

$$\mathbf{x}\cdot(\mathbf{g},\mathbf{h})=\mathbf{g}^{-1}\mathbf{x}\alpha(\mathbf{h}).$$

This module is denoted M^{α} . If $\beta: H \to \operatorname{GL}_k(RG)$ is another group homomorphism, then $M^{\alpha} \cong M^{\beta}$ if and only if α and β are conjugate in $\operatorname{GL}_k(RG)$, i.e. there exists $u \in \operatorname{GL}_k(RG)$ s.t. $u^{-1}\alpha(h)u = \beta(h)$ for all $h \in H$.

Let $N \subseteq G$ with |G:N| = k and $\langle c \rangle = H \cong \langle u \rangle$ with u a torsion unit in $\mathbb{Z}G$. Then u operates on $(\mathbb{Z}N)^k = \bigcup \mathbb{Z}(g_iN) = \mathbb{Z}G$ via multiplication, so u can be seen as an element A in $GL_k(\mathbb{Z}N)$. Set $\alpha: c \mapsto A$, then u is rationally conjugate to $g \in G$ if and only if $\mathbb{Q} \otimes M^\alpha \cong \mathbb{Q} \otimes M^\beta$, where $\beta: c \mapsto g$. The character of this module is

$$\chi(g,h) = |C_G(g)| arepsilon_g(lpha(h)).$$

The Matrix-Method of Marciniak, Ritter, Sehgal, Weiss

Let $\varepsilon_k : \operatorname{GL}_k(\mathbb{Z}G) \to \operatorname{GL}_k(\mathbb{Z})$ be the augmentation map applied elementwise and set $\operatorname{SGL}_k(\mathbb{Z}G) = \ker(\varepsilon_k)$. A stronger version of the Zassenhaus Conjecture is:

Is every $A \in SGL_k(\mathbb{Z}G)$ of finite order conjugate in $GL_k(\mathbb{Q}G)$ to a diagonal matrix with entries in G?

Theorem (Cliff, Weiss '00)

For a nilpotent group G every $A \in SGL_k(\mathbb{Z}G)$ of finite order is conjugate in $GL_k(\mathbb{Q}G)$ to a diagonal matrix with entries in G for every k if and only if at most one Sylow subgroup of G is non-cyclic.

If $N \subseteq G$, |G:N| = k, then under the homomorphism $\langle u \rangle \to \operatorname{GL}_k(\mathbb{Z}N)$ described above, u is mapped into $\operatorname{SGL}_k(\mathbb{Z}N)$ if and only if $\omega_N(u) = 1$.

 \rightarrow Use Cliff-Weiss Theorem to prove ZC for such units, if *G* has a nilpotent normal subgroup with at most one non-cyclic Sylow subgroup.

The Matrix-Method of Marciniak, Ritter, Sehgal, Weiss

Let $\varepsilon_k : \operatorname{GL}_k(\mathbb{Z}G) \to \operatorname{GL}_k(\mathbb{Z})$ be the augmentation map applied elementwise and set $\operatorname{SGL}_k(\mathbb{Z}G) = \ker(\varepsilon_k)$. A stronger version of the Zassenhaus Conjecture is:

Is every $A \in SGL_k(\mathbb{Z}G)$ of finite order conjugate in $GL_k(\mathbb{Q}G)$ to a diagonal matrix with entries in G?

Theorem (Cliff, Weiss '00)

For a nilpotent group G every $A \in SGL_k(\mathbb{Z}G)$ of finite order is conjugate in $GL_k(\mathbb{Q}G)$ to a diagonal matrix with entries in G for every k if and only if at most one Sylow subgroup of G is non-cyclic.

If $N \subseteq G$, |G:N| = k, then under the homomorphism $\langle u \rangle \to \operatorname{GL}_k(\mathbb{Z}N)$ described above, u is mapped into $\operatorname{SGL}_k(\mathbb{Z}N)$ if and only if $\omega_N(u) = 1$.

ightarrow Use Cliff-Weiss Theorem to prove ZC for such units, if G has a nilpotent normal subgroup with at most one non-cyclic Sylow subgroup.

The Matrix-Method of Marciniak, Ritter, Sehgal, Weiss

Let $\varepsilon_k : \operatorname{GL}_k(\mathbb{Z}G) \to \operatorname{GL}_k(\mathbb{Z})$ be the augmentation map applied elementwise and set $\operatorname{SGL}_k(\mathbb{Z}G) = \ker(\varepsilon_k)$. A stronger version of the Zassenhaus Conjecture is:

Is every $A \in SGL_k(\mathbb{Z}G)$ of finite order conjugate in $GL_k(\mathbb{Q}G)$ to a diagonal matrix with entries in G?

Theorem (Cliff, Weiss '00)

For a nilpotent group G every $A \in SGL_k(\mathbb{Z}G)$ of finite order is conjugate in $GL_k(\mathbb{Q}G)$ to a diagonal matrix with entries in G for every k if and only if at most one Sylow subgroup of G is non-cyclic.

If $N \subseteq G$, |G:N| = k, then under the homomorphism $\langle u \rangle \to \operatorname{GL}_k(\mathbb{Z}N)$ described above, u is mapped into $\operatorname{SGL}_k(\mathbb{Z}N)$ if and only if $\omega_N(u) = 1$.

 \rightarrow Use Cliff-Weiss Theorem to prove ZC for such units, if G has a nilpotent normal subgroup with at most one non-cyclic Sylow subgroup.

The proof

Hertweck can reduce the case $\omega_{C_G(A)}(u)=1$ to the case $\omega_A(u)=1$, where Cliff-Weiss is available, since A is cyclic. We use $D=Z(C_G(A))$ instead and this is in general not cyclic.

Lemma (extracted out of Cliff and Weiss' paper)

Let N be an abelian normal subgroup of G, u a torsion unit in $\mathbb{Z}G$ satisfying $\omega_N(u)=1$, η an irreducible character of N and $n\in N$. Then

$$\sum_{h\in \ker\eta} |C_G(hn):N| \varepsilon_{hn}^G(u) \geq 0.$$

Combining this with the following Theorem analogues to a Theorem of Hertweck, but with a more technical proof, we obtain our result. (\mathbb{Z}_p denotes the *p*-adic integers.)

Theorem

If the order of u is the power of a prime p, then u is conjugate in $\mathbb{Z}_p G$ to an element in D.

The proof

Hertweck can reduce the case $\omega_{C_G(A)}(u)=1$ to the case $\omega_A(u)=1$, where Cliff-Weiss is available, since A is cyclic. We use $D=Z(C_G(A))$ instead and this is in general not cyclic.

Lemma (extracted out of Cliff and Weiss' paper)

Let N be an abelian normal subgroup of G, u a torsion unit in $\mathbb{Z}G$ satisfying $\omega_N(u)=1$, η an irreducible character of N and $n\in N$. Then

$$\sum_{h\in \ker\eta} |C_G(hn):N|\varepsilon_{hn}^G(u)\geq 0.$$

Combining this with the following Theorem analogues to a Theorem of Hertweck, but with a more technical proof, we obtain our result. (\mathbb{Z}_p denotes the *p*-adic integers.)

Theorem

If the order of u is the power of a prime p, then u is conjugate in \mathbb{Z}_pG to an element in D.

Thank You!

Thank you for your attention!

Enjoy the other Zassenhaus-Conjecture-talks!