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Talk Structure

1. The Zassenhaus Conjectures and some results.

2. The cyclic-by-abelian case and the proof strategy.

3. Some methods used in the proof.

Zassenhaus Conjecture for cyclic-by-abelian groups



university-logo

Notations and Setting

G a finite group

RG group ring of G over the ring R

U(RG) unit group of RG

ε : RG → R augmentation map,

ε(
∑

g∈G
rgg) =

∑
g∈G

rg

V (RG) the units of augmentation 1 aka normalized units

If R = Z, then U(ZG) = ±V (ZG), so suffices to study
V (ZG)
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Some basic results on torsion units

General results on torsion units (’40s-’60s):

u =
∑

g∈G
zgg ∈ V (ZG) of finite order,

then z1 6= 0 implies u = 1 (Berman-Higman).

A a finite abelian group. Then U(ZA) = ±A × F , where F
is torsion-free abelian.

H ≤ V (ZG), H finite. Then |H| divides |G|.

exp(V(ZG)) = exp(G).
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The Zassenhaus Conjectures and some results

Conjectures (H.J. Zassenhaus, in the ’60s)

(ZC1): For u ∈ V (ZG) of finite order there exists x ∈ U(QG)
s.t. x−1ux ∈ G.

(ZC2): For H ≤ V (ZG) with |H| = |G| there exists x ∈ U(QG)
s.t. x−1Hx = G.

(ZC3): For H ≤ V (ZG) with |H| finite there exists x ∈ U(QG)
s.t. x−1Hx ≤ G.

A. Weiss gave a positive answer to (ZC3) for nilpotent groups in
1991. Roggenkamp and Scott gave a couterexample to (ZC2)
and so also to (ZC3) in 1991. Hertweck and Blanchard even
found a couterxample to (ZC2) of order 96. The only conjecture
left open is (ZC1) and for this reason it is called the
Zassenhaus Conjecture.
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Results on (ZC1)

There has been a lot of work on the Zassenhaus Conjecture,
namely it is known to hold for

Nilpotent groups (Weiss ’91)

Groups having a normal Sylow subgroup with an abelian
complement (Hertweck ’06)

Cyclic-by-abelian groups (≥ 8 papers ’83-’06; Hertweck ’08
and Caicedo, del Río, M. ’12)

Some families of metabelian groups, not necessarily
cyclic-by-abelian (Sehgal, Weiss ’86; Marciniak, Ritter,
Sehgal, Weiss ’87)

Some concrete groups (see A. Bächles talk)

Often also weaker forms of the Zassenhaus Conjecture are
considered (see also A. Bächles talk).
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The Cyclic-By-Abelian Case

Theorem (Hertweck ’08)

Let G = AX with A E G cyclic and X abelian. Then (ZC1) holds
for G.

This proved especially the metacyclic case, which had been
open till then.

Relying on this results and developing the methods further we
got:

Theorem (Caicedo, M, del Río ’12)

Let G be cyclic-by-abelian, i.e. G has a cyclic normal subgroup
A s.t. G/A is abelian. Then (ZC1) holds for G.

Main obstacle in generalizing Hertwecks proof:
CG(A) 6= AZ (G).
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Partial augmentation

General difficulty: No constructions for torsion units available.

Definition

Let u =
∑

g∈G
zgg be a torsion unit in ZG and denote by gG the

conjugacy class of g in G. Then εg(u) =
∑

x∈gG

zx is called

partial augmentation of u in respect to g.

Lemma

For a torsion unit u ∈ V (ZG) there exists an x ∈ U(QG) s.t.
x−1ux ∈ G if and only if εg(uk ) ≥ 0 for all g ∈ G and k ∈ N.

→ Study ZC1 by studying partial augmentations.
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General knowledge on partial augmentations

Lemma (Berman, Higman)

u =
∑

g∈G
zgg, u 6= 1 a torsion unit in ZG, then z1 = ε1(u) = 0.

Lemma (Marciniak, Ritter, Sehgal, Weiss; Hertweck)

Let u ∈ V (ZG) be of finite order. If εg(u) 6= 0, then the order of
g divides the order of u.

Lemma (Hertweck)

For u ∈ V (ZG) suppose that the p-part of u is conjugate in ZpG
to an element x ∈ G. Then εg(u) = 0, if the p-part of g is not
conjugate to x . Here Zp denotes the p-adic integers.
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Proof strategy

Inductive approach:
Assume u ∈ V (ZG) is a minimal counterexample to ZC, i.e
every proper power of u is rationally conjugate to a group
element and ZC holds for proper subgroups and quotients of G.
Then a group theoretic observation yields

Theorem (del Río, Sehgal ’06)

Let A be an abelian normal subgroup of G with abelian
quotient. Then εg(u) ≥ 0 for g ∈ G \ CG(A).

Similarly one gets:

Lemma

Let A E G, A cyclic, G/A abelian and set D = Z (CG(A)). Then
εg(u) ≥ 0 for g ∈ G \ D.

→ Study partial augmentations only in D = Z (CG(A)).
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Two cases

For a normal subgroup N of G denote by ωN : ZG → Z(G/N)
the linear extension of the natural homomorphism G → G/N.

Let A E G, A cyclic, G/A abelian, D = Z (CG(A)) and assume u
is a minimal counterexample to ZC. Then we study separately:

ωD(u) = 1. Using p-adic methods, especially Weiss’
double action formalism and "Permutation module"-results
and Cliff-Weiss Theorem (details below).

ωD(u) 6= 1. Using the Luthar-Passi method, which relates
eigenvalues under complex representations and partial
augmentations (not in this talk).
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Weiss’ double action formalism

Translating questions about units into questions about modules:
For a group homomorphism α : H → GLk (RG) the set (RG)k

becomes a R(G × H)-module by linearly extending the
operation

x · (g,h) = g−1xα(h).

This module is denoted Mα. If β : H → GLk (RG) is another
group homomorphism, then Mα ∼= Mβ if and only if α and β are
conjugate in GLk (RG), i.e. there exists u ∈ GLk (RG) s.t.
u−1α(h)u = β(h) for all h ∈ H.

Let N E G with |G : N| = k and 〈c〉 = H ∼= 〈u〉 with u a torsion
unit in ZG. Then u operates on (ZN)k =

⋃
Z(giN) = ZG via

multiplication, so u can be seen as an element A in GLk (ZN).
Set α : c 7→ A, then u is rationaly conjugate to g ∈ G if and only
if Q⊗ Mα ∼= Q⊗ Mβ , where β : c 7→ g. The character of this
module is

χ(g,h) = |CG(g)|εg(α(h)).
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The Matrix-Method of Marciniak, Ritter, Sehgal, Weiss

Let εk : GLk (ZG) → GLk (Z) be the augmentation map applied
elementwise and set SGLk (ZG) = ker(εk). A stronger version of
the Zassenhaus Conjecture is:
Is every A ∈ SGLk (ZG) of finite order conjugate in GLk (QG) to
a diagonal matrix with entries in G?

Theorem (Cliff, Weiss ’00)

For a nilpotent group G every A ∈ SGLk (ZG) of finite order is
conjugate in GLk (QG) to a diagonal matrix with entries in G for
every k if and only if at most one Sylow subgroup of G is
non-cyclic.

If N E G, |G : N| = k , then under the homomorphism
〈u〉 → GLk (ZN) described above, u is mapped into SGLk (ZN)
if and only if ωN(u) = 1.
→ Use Cliff-Weiss Theorem to prove ZC for such units, if G has
a nilpotent normal subgroup with at most one non-cyclic Sylow
subgroup.
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The proof

Hertweck can reduce the case ωCG(A)(u) = 1 to the case
ωA(u) = 1, where Cliff-Weiss is available, since A is cyclic. We
use D = Z (CG(A)) instead and this is in general not cyclic.

Lemma (extracted out of Cliff and Weiss’ paper)

Let N be an abelian normal subgroup of G, u a torsion unit in
ZG satisfying ωN(u) = 1, η an irreducible character of N and
n ∈ N. Then ∑

h∈kerη

|CG(hn) : N|εG
hn(u) ≥ 0.

Combining this with the following Theorem analogues to a
Theorem of Hertweck, but with a more technical proof, we
obtain our result. (Zp denotes the p-adic integers.)

Theorem

If the order of u is the power of a prime p, then u is conjugate in
ZpG to an element in D.
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Thank You!

Thank you for your attention!

Enjoy the other Zassenhaus-Conjecture-talks!
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