Algebraic groups and complete reducibility

Groups St Andrews, 8 August 2013

Ben Martin

University of Auckland

Michael Bate, Sebastian Herpel, Gerhard Röhrle, Rudolf Tange, Tomohiro Uchiyama **Idea:** Generalise notion of complete reducibility from $GL_n(k)$ to arbitrary reductive algebraic groups.

- I. Complete reducibility
- II. A geometric approach
- III. Non-algebraically closed fields

I. Complete reducibility

k a field (assume $k = \overline{k}$ for now). char(k) = p.

Recall: A (closed) subgroup H of $GL_n(k)$ is completely reducible if the inclusion $H \rightarrow GL_n(k)$ is a completely reducible representation.

Let G be a reductive algebraic group over k (e.g., $GL_n(k)$, $SO_n(k)$, $Sp_n(k)$, k^*).

Definition (Serre): Let $H \leq G$. We say H is (G-)completely reducible if whenever H is contained in a parabolic subgroup P of G, H is contained in some Levi subgroup L of P.

(Agrees with usual definition when $G = GL_n(k)$.)

Motivation and applications

• Subgroup structure of simple algebraic groups (Liebeck, Seitz, Stewart, Testerman). Given a subgroup H of G, either H is completely reducible or it isn't! In both cases, we gain information about H.

• Maximal subgroups of finite groups of Lie type (Liebeck-M.-Shalev).

• Subcomplexes of spherical buildings.

Idea: Which properties of complete reducibility for $GL_n(k)$ carry over to arbitrary *G*?

II. A geometric approach

R.W. Richardson: Let $N \in \mathbb{N}$. Then G acts on G^N by simultaneous conjugation: if $g = (g_1, \ldots, g_N) \in G^N$ and $g \in G$ then define

$$g \cdot (g_1, \ldots, g_N) := (gg_1g^{-1}, \ldots, gg_Ng^{-1}).$$

Theorem (Richardson 1988, BMR 2005): Let $\mathbf{g} = (g_1, \ldots, g_N) \in G^N$ and let H be the closed subgroup of G generated by the g_i . Then H is completely reducible if and only if the orbit $G \cdot \mathbf{g}$ is a closed subset of G^N .

Allows us to use results from geometric invariant theory to prove results about complete reducibility. **Theorem (M 2003):** Let F be a finite group. Then there are only finitely many conjugacy classes of homomorphisms $\rho: F \rightarrow G$ such that $\rho(F)$ is completely reducible.

Theorem (BMR 2005): If $H \leq G$ is completely reducible then $C_G(H)$ is completely reducible.

Theorem (M 2003, BMR 2005): If $H \leq G$ is completely reducible and N is a normal subgroup of H then N is completely reducible.

Theorem: If $H \leq G$ is not completely reducible then $N_G(H)$ is not completely reducible.

Proof: By the Hilbert-Mumford-Kempf-Rousseau (HMKR) Theorem, there is a **canonical** parabolic subgroup P of G such that P contains H but no Levi subgroup of P contains H. Since P is canonical, $N_G(H)$ normalizes P, so $N_G(H) \leq P$. Clearly no Levi subgroup of P contains $N_G(H)$, so $N_G(H)$ is not completely reducible.

III. Non-algebraically closed fields

Now assume G is defined over k, where we don't assume k to be algebraically closed.

Definition (Serre): Let H be a k-defined subgroup of G. We say H is (G-)completely reducible over k if whenever H is contained in a k-defined parabolic subgroup P of G, H is contained in some k-defined Levi subgroup Lof P.

Note: *H* is completely reducible if and only if *H* is completely reducible over \overline{k} .

Question: Is it the case that H is completely reducible over k if and only if H is completely reducible?

McNinch 2005: No to forward direction. There exists $H \leq SL_p(k)$, k nonperfect, such that H is completely reducible over k but not completely reducible. (Theory of pseudo-reductive groups.)

BMRT 2010: No to reverse direction. There exists $H \cong S_3 \leq G_2$, p = 2, k nonperfect such that H is completely reducible but not completely reducible over k.

Uchiyama 2012, 2013: Further counter-examples to reverse direction p = 2 and $G = E_6, E_7$. Systematic approach.

Geometric characterization (BHMRT 2013): Let $\mathbf{g} = (g_1, \ldots, g_N) \in G(k)^N$ and let H be the closed subgroup of G generated by the g_i . Then H is completely reducible if and only if the orbit $G(k) \cdot \mathbf{g}$ is a "cocharacter-closed" subset of G^N .

But: We do not have a rational version of the HMKR Theorem.

Open problem: If *H* is completely reducible over *k*, is $C_G(H)$ completely reducible over *k*?

Theorem (BMR 2010): Let H be a k-defined subgroup of G. Let k'/k be a finite Galois field extension. Then H is completely reducible over k' if and only if H is completely reducible over k.

Forward direction: Suppose H is not completely reducible over k'. Would like to take P to be the canonical k'-defined parabolic subgroup containing H; the canonical property should imply that P is Gal(k'/k)-stable and hence k-defined, which would imply that H is not completely reducible over k. But: We don't have a rational HMKR Theorem.

Instead apply the Tits Centre Conjecture for spherical buildings (proved by Tits-Mühlherr, Leeb-Ramos-Cuevas, Ramos-Cuevas).

Motivation

• Spherical buildings and complete reducibility.

• Geometric invariant theory over non-algebraically closed k (BHMR). Let V be an affine G-variety, $v \in V(k)$. How does (the closure of) $G(\overline{k}) \cdot v$ split into G(k)-orbits? E.g., if $v, v' \in V(k)$ are in the same $G(\overline{k})$ -orbit, must they be in the same G(k)-orbit?

Kempf's 1978 HMKR Theorem paper has nearly 90 citations!

• Strengthened version of Tits Centre Conjecture for spherical buildings (BMR): motivated by geometric invariant theory.

• Subgroup structure of (pseudo-)reductive groups defined over k.