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Introduction
Geometries and amalgams

Sidki’s problem

Some presentations

The following is a well-known presentation for the Alternating
group Am+2:

〈a1, . . . , am : a3i = 1, ∀i , (aiaj)
2 = 1, i 6= j〉

(Think of the ai as being (1, 2, i + 2)). It was given by Carmichael
in 1923.
In 1982, Sidki generalised this to:

Y (m, n) := 〈a1, . . . , am : ani = 1, ∀i , (asi asj )2 = 1, i 6= j , ∀s〉

Conjecture: This presentation is finite.
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Sidki’s problem

Known results

There are some known results for small values of n and m.

I Y (m, 2) is elementary abelian of order 2m

I Y (m, 3) is Carmichael’s presentation for the alternating group

I Y (1, n) is Cn (!)

I Y (2, n) is a metabelian group of order 2n−1n by a result of
Coxeter. It is equal to the augmentation ideal I2,n of F2Cn

extended by Cn.

I If n|n′, then Y (m, n) is a quotient of Y (m, n′)
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Sidki’s problem

A new presentation

Define:

y(m, n) := 〈a,Sm : an = 1, [(1, 2)a
s
, (1, 2)] = 1 ∀s

(1, 2)1+a+···+an−1
= 1,

a(i ,i+1) = a−1 for 2 ≤ i ≤ m − 1〉

For n odd, Sidki showed that Y (m, n) ∼= y(m, n).
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Geometries and amalgams

Sidki’s problem

An embedding

When m = 3, consider the following map:

a 7→
(
α 0
0 α−1

)
, (1, 2) 7→

(
1 0
1 1

)
, (2, 3) 7→

(
0 1
1 0

)
where α is an element of order n in a field F of characteristic 2.

These matrices satisfy the desired relations, so this is a
representation which embeds y(3, n) into SL2(F).

Sidki goes on to show that Y (3, n) is SL2(I2,n) when n is odd
(Notation: SL2(I ) := ker(SL2(R)→ SL2(R/I ))). This is also
finite.

The map above can be extended to give an embedding
y(m, n) ↪→ SL2m−2(F).
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Sidki’s problem

Some computational results

For small values of m and n we can use a computer to construct
and identify the group. These calculations are due to J. Neubuser
and W. Felsch and the larger ones to O’Brien.

I Y (3, 5) ∼= SL2(16)

∼= Ω−(4, 4)

I Y (4, 5) ∼= Ω(5, 4)
I Y (5, 5) ∼= Ω−(6, 4)

I Y (6, 5) ∼= 46 : Ω−(6, 4)
I Y (7, 5) ∼= Ω−(8, 4)
I Y (8, 5) ∼= Ω(9, 4)
I Y (9, 5) ∼= Ω−(10, 4)
I Y (10, 5) ∼= 410 : Ω−(10, 4)

I Y (3, 7) ∼= Ω+(4, 8)
I Y (4, 7) ∼= Ω(5, 8)
I Y (5, 7) ∼= Ω+(6, 8)
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Sidki’s problem

Yet another presentation

Define:

y(m) := 〈a,Sm : [(1, 2)a
s
, (1, 2)] = 1 ∀s

a(i ,i+1) = a−1 for 2 ≤ i ≤ m − 1〉

We will try to identify y(m, n) by seeing it as a quotient of y(m).

This is what Sidki managed for m = 3; he showed that
y(3) ∼= SL2(F2[t, t−1]) and y(3, n) ∼= SL2(I2,n) can be obtained as
a quotient of this.

The problem: Identify the group y(m)
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Sidki’s problem

Geometries

A quick crash course in geometries:

Definition
A geometry Γ = (Γ,∼, τ) of rank n is a non-empty set of objects Γ
with a type function τ : Γ→ {1, . . . , n} and an incidence relation
∼ which is reflexive and symmetric.
Also require that every maximal flag has maximal rank.

For example: projective spaces, or subsets of a set.

Suppose Ω = {1, . . . ,m + 1}. Let Γ be the set of all non-empty
proper subsets of Ω. The type of an element is its size. Two
elements are incident if one is contained in the other. Then a
maximal flag contains elements of every type, so we have a
geometry.
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Introduction
Geometries and amalgams

Sidki’s problem

Amalgams

Definition
An amalgam A = (A, {Gi}i∈I ) is a non-empty set A endowed with
partial multiplication, together with a collection of subsets Gi such
that

1. A =
⋃

i∈I Gi

2. the partial multiplication restricted to Gi , for all i ∈ I , makes
Gi into a group

3. for any a, b ∈ A, the product ab is only defined when
a, b ∈ Gi , for some i ∈ I

4. for all i , j ∈ I , Gi ∩ Gj is a subgroup of both Gi and Gj

The Gi are called the members of the amalgam.

9 / 21



Introduction
Geometries and amalgams

Sidki’s problem

Amalgams

Definition
An amalgam A = (A, {Gi}i∈I ) is a non-empty set A endowed with
partial multiplication, together with a collection of subsets Gi such
that

1. A =
⋃

i∈I Gi

2. the partial multiplication restricted to Gi , for all i ∈ I , makes
Gi into a group

3. for any a, b ∈ A, the product ab is only defined when
a, b ∈ Gi , for some i ∈ I

4. for all i , j ∈ I , Gi ∩ Gj is a subgroup of both Gi and Gj

The Gi are called the members of the amalgam.

9 / 21



Introduction
Geometries and amalgams

Sidki’s problem

Amalgams

Definition
An amalgam A = (A, {Gi}i∈I ) is a non-empty set A endowed with
partial multiplication, together with a collection of subsets Gi such
that

1. A =
⋃

i∈I Gi

2. the partial multiplication restricted to Gi , for all i ∈ I , makes
Gi into a group

3. for any a, b ∈ A, the product ab is only defined when
a, b ∈ Gi , for some i ∈ I

4. for all i , j ∈ I , Gi ∩ Gj is a subgroup of both Gi and Gj

The Gi are called the members of the amalgam.

9 / 21



Introduction
Geometries and amalgams

Sidki’s problem

Definition
A completion of an amalgam A is a pair (G , φ), where G is a group
and φ : A → G is a map such that the restriction φ|Gi

: Gi → G of
φ to some group Gi , for i ∈ I , is a group homomorphism.

A completion (Ĝ , φ̂) is the universal completion if given any other
completion (G , φ), there exists a unique group homomorphism
θ : Ĝ → G such that

A Ĝ

G

φ̂

φ θ
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Introduction
Geometries and amalgams

Sidki’s problem

Back to our example

In our example, we have a natural group action of Sm+1 on our set
Ω = {1, . . . ,m + 1}.

We want to show we have an amalgam.

Let F be a maximal flag {x1} ⊂ · · · ⊂ {x1, . . . , xn}. Define Gi to
be the stabiliser of the i th element in the flag. So,
Gi
∼= Si × Sn+1−i . Then,

⋃
Gi is an amalgam.

11 / 21



Introduction
Geometries and amalgams

Sidki’s problem

Back to our example

In our example, we have a natural group action of Sm+1 on our set
Ω = {1, . . . ,m + 1}. We want to show we have an amalgam.

Let F be a maximal flag {x1} ⊂ · · · ⊂ {x1, . . . , xn}. Define Gi to
be the stabiliser of the i th element in the flag. So,
Gi
∼= Si × Sn+1−i . Then,

⋃
Gi is an amalgam.

11 / 21



Introduction
Geometries and amalgams

Sidki’s problem

Back to our example

In our example, we have a natural group action of Sm+1 on our set
Ω = {1, . . . ,m + 1}. We want to show we have an amalgam.

Let F be a maximal flag {x1} ⊂ · · · ⊂ {x1, . . . , xn}. Define Gi to
be the stabiliser of the i th element in the flag. So,
Gi
∼= Si × Sn+1−i . Then,

⋃
Gi is an amalgam.

11 / 21



Introduction
Geometries and amalgams

Sidki’s problem

Tits’ Lemma

How do we link the geometry and the amalgam?

Theorem (Tits’ Lemma)

Let Γ be a connected, residually connected geometry and let
G ≤ Aut(Γ) be a group which acts transitively on the maximal
flags of Γ. Then,

Γ is simply connected ⇔ G is the universal completion of the
amalgam of flag-stabilisers.
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Introduction
Geometries and amalgams

Sidki’s problem

Our example continued...

It is easy to see that Sm+1 acts transitively on the maximal flags in
our geometry.

We also know that our geometry is a simplex. So topologically it is
contractible and hence simply connected.

So, by Tits’ Lemma, Sm+1 is the universal completion of our
amalgam

⋃
Gi . We also obtain the following as a direct

consequence:

The Coxeter presentation.

Sm+1 = 〈a1, . . . , am|a2i = 1, (aiai+1)3 = 1 ∀i , (aiaj)
2 = 1, ∀i 6= j〉
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Sidki’s problem

Back to Sidki’s problem

We want to have an amalgam for the group

y(m) := 〈a,Sm : [(1, 2)a
s
, (1, 2)] = 1 ∀s

a(i ,i+1) = a−1 for 2 ≤ i ≤ m − 1〉

Let s1, . . . , sm−1 be the standard generators for Sm.

Define

I G1 = 〈s1, . . . , sm−1〉 ∼= Sm

I Gi = 〈a, s1, . . . , ˆsi−1, . . . , sm−1〉 ∼= y(i − 1) : Sm−i

A =
⋃m

i=1 Gi

14 / 21
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Sidki’s problem

But before we do, one more thing:

There exists an involution τ which acts on y(m) by centralising the
si and inverting a.

Let ỹ(m) = 〈τ, a, τs1, . . . τsm−1〉 ∼= 〈τ〉y(m)

I G1 = 〈τ, τs1, . . . , τsm−1〉 ∼= 2× Sm

I Gi = 〈τ, a, τs1, . . . , ˆτsi−1, . . . , τsm−1〉 ∼= ỹ(i − 1) : Sm−i

A =
⋃m

i=1 Gi
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Introduction
Geometries and amalgams

Sidki’s problem

From the computational results, we want to find an embedding of
y(m) in some orthogonal group of dimension m + 1.

Want to find a quadratic form q with associated bilinear form (·, ·)
I q(αu) = α2q(u) for all α ∈ F, u ∈ V

I q(u + v) = q(u) + q(v) + (u, v) for all u, v ∈ V

Recall that F is a field of characteristic 2. Hence, (·, ·) is a
symplectic form.

i.e. (u, u) = 0 for all u ∈ V
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Sidki’s problem

Choosing forms

Assume that V has a basis u, v1, . . . , vm and Sm < ỹ(m) acts
naturally by permuting the vi .

So, q(v1) = · · · = q(vm) and similarly (vi , vj) is the same for all
i 6= j . So we get a Gram matrix for the bilinear form:

0 α α . . . α α

α
α
...
α
α

0 1 . . . 1 1
1 0 . . . 1 1
...

...
. . .

...
...

1 1 . . . 0 1
1 1 . . . 1 0


We may scale u to get α = 1.
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Geometries and amalgams

Sidki’s problem

Now q is defined by q(vi ) = β and q(u) = γ.

Recall that for m = 2, 6, 10, . . . the group had a radical. This
corresponds to a degenerate form. Note that u + v1 + · · ·+ vm is
perpendicular to all vectors of V precisely when m = 2 + 4k .

0 = q(u + v1 + v2)

= q(u) + 1 + 1 + q(v1) + q(v2) + 1

= q(u) + 1

So, q(u) = 1.

The relations imply that q(vi ) = β must be transcendental.

So we choose q(vi ) = t−1 and F = F2[t, t−1].

18 / 21
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Sidki’s problem

Clifford algebra

Definition
Let T (V ) be the tensor algebra for V . Then, the Clifford algebra
C (V ) is the factor algebra T (V )/〈w2 − q(w)〉.

We get map from ỹ(m) into the Clifford group by

τ 7→ u

a 7→ t1/2uv1

s̃i = τsi 7→ vi + vi+1
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Problems:

I Show that this is a homomorphism. Done

I Show that the map is injective.

I Identify the image.

I Identify the geometry.
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Sidki’s problem

Thank you for listening!

S. Sidki, A generalization of the alternating groups—a
question on finiteness and representation, J. Algebra 75
(1982), 324–372.

S. Sidki, SL2 over group Rings of Cyclic Groups, J. Algebra
134 (1990), 60–79.

S.Sidki, Around some experimentations in combinatorial group
theory, GAC2010, Allahabad, Sep 2010.
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