Sidki's Conjecture; showing finiteness of group presentations using amalgams

Justin M^cInroy

University of Leicester

4th August 2013, Groups St Andrews

Joint work with Sergey Shpectorov (University of Birmingham)

The following is a well-known presentation for the Alternating group A_{m+2} :

$$\langle a_1,\ldots,a_m:a_i^3=1,\ \forall i,(a_ia_j)^2=1,i\neq j\rangle$$

The following is a well-known presentation for the Alternating group A_{m+2} :

$$\langle a_1,\ldots,a_m:a_i^3=1, \ \forall i,(a_ia_j)^2=1, i\neq j\rangle$$

(Think of the a_i as being (1, 2, i + 2)). It was given by Carmichael in 1923.

The following is a well-known presentation for the Alternating group A_{m+2} :

$$\langle a_1,\ldots,a_m:a_i^3=1, \ \forall i,(a_ia_j)^2=1, i\neq j\rangle$$

(Think of the a_i as being (1, 2, i + 2)). It was given by Carmichael in 1923.

In 1982, Sidki generalised this to:

$$Y(m,n) := \langle a_1, \ldots, a_m : a_i^n = 1, \ \forall i, (a_i^s a_j^s)^2 = 1, i \neq j, \ \forall s \rangle$$

The following is a well-known presentation for the Alternating group A_{m+2} :

$$\langle a_1,\ldots,a_m:a_i^3=1, \ \forall i,(a_ia_j)^2=1, i\neq j\rangle$$

(Think of the a_i as being (1, 2, i + 2)). It was given by Carmichael in 1923.

In 1982, Sidki generalised this to:

$$Y(m,n) := \langle a_1, \ldots, a_m : a_i^n = 1, \ \forall i, (a_i^s a_j^s)^2 = 1, i \neq j, \ \forall s \rangle$$

Conjecture:

The following is a well-known presentation for the Alternating group A_{m+2} :

$$\langle a_1, \ldots, a_m : a_i^3 = 1, \ \forall i, (a_i a_j)^2 = 1, i \neq j \rangle$$

(Think of the a_i as being (1, 2, i + 2)). It was given by Carmichael in 1923.

In 1982, Sidki generalised this to:

$$Y(m,n) := \langle a_1, \ldots, a_m : a_i^n = 1, \ \forall i, (a_i^s a_j^s)^2 = 1, i \neq j, \ \forall s \rangle$$

Conjecture: This presentation is finite.

There are some known results for small values of n and m.

▶ Y(m,2) is elementary abelian of order 2^m

- ▶ Y(m,2) is elementary abelian of order 2^m
- ightharpoonup Y(m,3) is Carmichael's presentation for the alternating group

- ▶ Y(m,2) is elementary abelian of order 2^m
- ightharpoonup Y(m,3) is Carmichael's presentation for the alternating group
- ► Y(1, n) is C_n (!)

- ▶ Y(m,2) is elementary abelian of order 2^m
- ightharpoonup Y(m,3) is Carmichael's presentation for the alternating group
- ► Y(1, n) is C_n (!)
- ▶ Y(2, n) is a metabelian group of order $2^{n-1}n$ by a result of Coxeter. It is equal to the augmentation ideal $I_{2,n}$ of $\mathbb{F}_2 C_n$ extended by C_n .

- ▶ Y(m,2) is elementary abelian of order 2^m
- ightharpoonup Y(m,3) is Carmichael's presentation for the alternating group
- ► Y(1, n) is C_n (!)
- ▶ Y(2, n) is a metabelian group of order $2^{n-1}n$ by a result of Coxeter. It is equal to the augmentation ideal $I_{2,n}$ of $\mathbb{F}_2 C_n$ extended by C_n .
- ▶ If n|n', then Y(m,n) is a quotient of Y(m,n')

A new presentation

A new presentation

Define:

$$y(m,n) := \langle a, S_m : a^n = 1, [(1,2)^{a^s}, (1,2)] = 1 \quad \forall s$$

$$(1,2)^{1+a+\dots+a^{n-1}} = 1,$$

$$a^{(i,i+1)} = a^{-1} \text{ for } 2 < i < m-1 \rangle$$

A new presentation

Define:

$$y(m,n) := \langle a, S_m : a^n = 1, [(1,2)^{a^s}, (1,2)] = 1 \quad \forall s$$

$$(1,2)^{1+a+\dots+a^{n-1}} = 1,$$

$$a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$$

For n odd, Sidki showed that $Y(m, n) \cong y(m, n)$.

When m = 3, consider the following map:

$$a \mapsto \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array}\right), \quad (1,2) \mapsto \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right), \quad (2,3) \mapsto \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

where α is an element of order n in a field \mathbb{F} of characteristic 2.

When m = 3, consider the following map:

$$a \mapsto \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array}\right), \quad (1,2) \mapsto \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right), \quad (2,3) \mapsto \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

where α is an element of order n in a field \mathbb{F} of characteristic 2.

These matrices satisfy the desired relations, so this is a representation which embeds y(3, n) into $SL_2(\mathbb{F})$.

When m = 3, consider the following map:

$$a \mapsto \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array}\right), \quad (1,2) \mapsto \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right), \quad (2,3) \mapsto \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

where α is an element of order n in a field \mathbb{F} of characteristic 2.

These matrices satisfy the desired relations, so this is a representation which embeds y(3, n) into $SL_2(\mathbb{F})$.

Sidki goes on to show that Y(3, n) is $SL_2(I_{2,n})$ when n is odd (Notation: $SL_2(I) := \ker(SL_2(R) \to SL_2(R/I))$). This is also finite.

When m = 3, consider the following map:

$$a \mapsto \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array}\right), \quad (1,2) \mapsto \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right), \quad (2,3) \mapsto \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

where α is an element of order n in a field \mathbb{F} of characteristic 2.

These matrices satisfy the desired relations, so this is a representation which embeds y(3, n) into $SL_2(\mathbb{F})$.

Sidki goes on to show that Y(3, n) is $SL_2(I_{2,n})$ when n is odd (Notation: $SL_2(I) := \ker(SL_2(R) \to SL_2(R/I))$). This is also finite.

The map above can be extended to give an embedding $y(m, n) \hookrightarrow SL_{2^{m-2}}(\mathbb{F})$.

For small values of m and n we can use a computer to construct and identify the group. These calculations are due to J. Neubuser and W. Felsch and the larger ones to O'Brien.

► $Y(3,5) \cong SL_2(16)$

- ► $Y(3,5) \cong SL_2(16)$
- $Y(4,5) \cong \Omega(5,4)$

- ► $Y(3,5) \cong SL_2(16)$
- ▶ $Y(4,5) \cong \Omega(5,4)$
- ► $Y(5,5) \cong \Omega^{-}(6,4)$

- $Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$
- $Y(4,5) \cong \Omega(5,4)$
- ► $Y(5,5) \cong \Omega^{-}(6,4)$

- $Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$
- $Y(4,5) \cong \Omega(5,4)$
- ► $Y(5,5) \cong \Omega^{-}(6,4)$
- $Y(6,5) \cong 4^6 : \Omega^-(6,4)$

- $Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$
- $Y(4,5) \cong \Omega(5,4)$
- ► $Y(5,5) \cong \Omega^{-}(6,4)$
- $Y(6,5) \cong 4^6 : \Omega^-(6,4)$
- ► $Y(7,5) \cong \Omega^{-}(8,4)$

•
$$Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$$

►
$$Y(4,5) \cong \Omega(5,4)$$

►
$$Y(5,5) \cong \Omega^{-}(6,4)$$

•
$$Y(6,5) \cong 4^6 : \Omega^-(6,4)$$

►
$$Y(7,5) \cong \Omega^{-}(8,4)$$

►
$$Y(8,5) \cong \Omega(9,4)$$

•
$$Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$$

$$Y(4,5) \cong \Omega(5,4)$$

►
$$Y(5,5) \cong \Omega^{-}(6,4)$$

•
$$Y(6,5) \cong 4^6 : \Omega^-(6,4)$$

►
$$Y(7,5) \cong \Omega^{-}(8,4)$$

►
$$Y(8,5) \cong \Omega(9,4)$$

►
$$Y(9,5) \cong \Omega^{-}(10,4)$$

•
$$Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$$

$$Y(4,5) \cong \Omega(5,4)$$

►
$$Y(5,5) \cong \Omega^{-}(6,4)$$

•
$$Y(6,5) \cong 4^6 : \Omega^-(6,4)$$

►
$$Y(7,5) \cong \Omega^{-}(8,4)$$

►
$$Y(8,5) \cong \Omega(9,4)$$

►
$$Y(9,5) \cong \Omega^{-}(10,4)$$

•
$$Y(10,5) \cong 4^{10} : \Omega^{-}(10,4)$$

•
$$Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$$

$$Y(4,5)\cong \Omega(5,4)$$

►
$$Y(5,5) \cong \Omega^{-}(6,4)$$

•
$$Y(6,5) \cong 4^6 : \Omega^-(6,4)$$

$$Y(7,5) \cong \Omega^{-}(8,4)$$

►
$$Y(8,5) \cong \Omega(9,4)$$

►
$$Y(9,5) \cong \Omega^{-}(10,4)$$

•
$$Y(10,5) \cong 4^{10} : \Omega^{-}(10,4)$$

►
$$Y(3,7) \cong \Omega^+(4,8)$$

•
$$Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$$

$$Y(4,5) \cong \Omega(5,4)$$

►
$$Y(5,5) \cong \Omega^{-}(6,4)$$

•
$$Y(6,5) \cong 4^6 : \Omega^-(6,4)$$

$$Y(7,5) \cong \Omega^{-}(8,4)$$

$$Y(8,5) \cong \Omega(9,4)$$

•
$$Y(9,5) \cong \Omega^{-}(10,4)$$

•
$$Y(10,5) \cong 4^{10} : \Omega^-(10,4)$$

►
$$Y(3,7) \cong \Omega^+(4,8)$$

►
$$Y(4,7) \cong \Omega(5,8)$$

- $Y(3,5) \cong SL_2(16) \cong \Omega^-(4,4)$
- $Y(4,5) \cong \Omega(5,4)$
- ► $Y(5,5) \cong \Omega^{-}(6,4)$
- $Y(6,5) \cong 4^6 : \Omega^-(6,4)$
- $Y(7,5) \cong \Omega^{-}(8,4)$
- ► $Y(8,5) \cong \Omega(9,4)$
- $Y(9,5) \cong \Omega^{-}(10,4)$
- $Y(10,5) \cong 4^{10} : \Omega^-(10,4)$
- ► $Y(3,7) \cong \Omega^+(4,8)$
- ► $Y(4,7) \cong \Omega(5,8)$
- ► $Y(5,7) \cong \Omega^+(6,8)$

Define:

$$y(m) := \langle a, S_m : [(1,2)^{a^s}, (1,2)] = 1 \quad \forall s$$

 $a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

Define:

$$y(m) := \langle a, S_m : [(1,2)^{a^s}, (1,2)] = 1 \quad \forall s$$

 $a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

We will try to identify y(m, n) by seeing it as a quotient of y(m).

Define:

$$y(m) := \langle a, S_m : [(1,2)^{a^s}, (1,2)] = 1 \quad \forall s$$

 $a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

We will try to identify y(m, n) by seeing it as a quotient of y(m).

This is what Sidki managed for m=3; he showed that $y(3)\cong SL_2(\mathbb{F}_2[t,t^{-1}])$ and $y(3,n)\cong SL_2(I_{2,n})$ can be obtained as a quotient of this.

Yet another presentation

Define:

$$y(m) := \langle a, S_m : [(1, 2)^{a^s}, (1, 2)] = 1 \quad \forall s$$

 $a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

We will try to identify y(m, n) by seeing it as a quotient of y(m).

This is what Sidki managed for m=3; he showed that $y(3)\cong SL_2(\mathbb{F}_2[t,t^{-1}])$ and $y(3,n)\cong SL_2(I_{2,n})$ can be obtained as a quotient of this.

The problem: Identify the group y(m)

A quick crash course in geometries:

A quick crash course in geometries:

Definition

A geometry $\Gamma = (\Gamma, \sim, \tau)$ of rank n is a non-empty set of objects Γ with a type function $\tau : \Gamma \to \{1, \dots, n\}$ and an incidence relation \sim which is reflexive and symmetric.

A quick crash course in geometries:

Definition

A geometry $\Gamma = (\Gamma, \sim, \tau)$ of rank n is a non-empty set of objects Γ with a type function $\tau : \Gamma \to \{1, \ldots, n\}$ and an incidence relation \sim which is reflexive and symmetric. Also require that every maximal flag has maximal rank.

A quick crash course in geometries:

Definition

A geometry $\Gamma = (\Gamma, \sim, \tau)$ of rank n is a non-empty set of objects Γ with a type function $\tau : \Gamma \to \{1, \ldots, n\}$ and an incidence relation \sim which is reflexive and symmetric.

Also require that every maximal flag has maximal rank.

For example: projective spaces, or subsets of a set.

A quick crash course in geometries:

Definition

A geometry $\Gamma = (\Gamma, \sim, \tau)$ of rank n is a non-empty set of objects Γ with a type function $\tau : \Gamma \to \{1, \ldots, n\}$ and an incidence relation \sim which is reflexive and symmetric.

Also require that every maximal flag has maximal rank.

For example: projective spaces, or subsets of a set.

Suppose
$$\Omega = \{1, \dots, m+1\}$$
.

A quick crash course in geometries:

Definition

A geometry $\Gamma = (\Gamma, \sim, \tau)$ of rank n is a non-empty set of objects Γ with a type function $\tau : \Gamma \to \{1, \ldots, n\}$ and an incidence relation \sim which is reflexive and symmetric.

Also require that every maximal flag has maximal rank.

For example: projective spaces, or subsets of a set.

Suppose $\Omega = \{1, \dots, m+1\}$. Let Γ be the set of all non-empty proper subsets of Ω . The type of an element is its size. Two elements are incident if one is contained in the other.

A quick crash course in geometries:

Definition

A geometry $\Gamma = (\Gamma, \sim, \tau)$ of rank n is a non-empty set of objects Γ with a type function $\tau : \Gamma \to \{1, \ldots, n\}$ and an incidence relation \sim which is reflexive and symmetric.

Also require that every maximal flag has maximal rank.

For example: projective spaces, or subsets of a set.

Suppose $\Omega = \{1, \dots, m+1\}$. Let Γ be the set of all non-empty proper subsets of Ω . The type of an element is its size. Two elements are incident if one is contained in the other. Then a maximal flag contains elements of every type, so we have a geometry.

Amalgams

Definition

An amalgam $A = (A, \{G_i\}_{i \in I})$ is a non-empty set A endowed with partial multiplication, together with a collection of subsets G_i such that

Amalgams

Definition

An amalgam $A = (A, \{G_i\}_{i \in I})$ is a non-empty set A endowed with partial multiplication, together with a collection of subsets G_i such that

- 1. $A = \bigcup_{i \in I} G_i$
- 2. the partial multiplication restricted to G_i , for all $i \in I$, makes G_i into a group
- 3. for any $a, b \in A$, the product ab is only defined when $a, b \in G_i$, for some $i \in I$
- 4. for all $i, j \in I$, $G_i \cap G_j$ is a subgroup of both G_i and G_j

Amalgams

Definition

An amalgam $A = (A, \{G_i\}_{i \in I})$ is a non-empty set A endowed with partial multiplication, together with a collection of subsets G_i such that

- 1. $A = \bigcup_{i \in I} G_i$
- 2. the partial multiplication restricted to G_i , for all $i \in I$, makes G_i into a group
- 3. for any $a, b \in A$, the product ab is only defined when $a, b \in G_i$, for some $i \in I$
- 4. for all $i, j \in I$, $G_i \cap G_j$ is a subgroup of both G_i and G_j . The G_i are called the members of the amalgam.

Definition

A completion of an amalgam A is a pair (G, ϕ) , where G is a group and $\phi : A \to G$ is a map such that the restriction $\phi|_{G_i} : G_i \to G$ of ϕ to some group G_i , for $i \in I$, is a group homomorphism.

Definition

A completion of an amalgam A is a pair (G, ϕ) , where G is a group and $\phi : A \to G$ is a map such that the restriction $\phi|_{G_i} : G_i \to G$ of ϕ to some group G_i , for $i \in I$, is a group homomorphism.

A completion $(\widehat{G},\widehat{\phi})$ is the universal completion if given any other completion (G,ϕ) , there exists a unique group homomorphism $\theta:\widehat{G}\to G$ such that

Back to our example

In our example, we have a natural group action of S_{m+1} on our set $\Omega = \{1, \dots, m+1\}.$

Back to our example

In our example, we have a natural group action of S_{m+1} on our set $\Omega = \{1, \dots, m+1\}$. We want to show we have an amalgam.

Back to our example

In our example, we have a natural group action of S_{m+1} on our set $\Omega = \{1, \dots, m+1\}$. We want to show we have an amalgam.

Let \mathcal{F} be a maximal flag $\{x_1\} \subset \cdots \subset \{x_1, \ldots, x_n\}$. Define G_i to be the stabiliser of the i^{th} element in the flag. So, $G_i \cong S_i \times S_{n+1-i}$. Then, $\bigcup G_i$ is an amalgam.

Tits' Lemma

How do we link the geometry and the amalgam?

Tits' Lemma

How do we link the geometry and the amalgam?

Theorem (Tits' Lemma)

Let Γ be a connected, residually connected geometry and let $G \leq Aut(\Gamma)$ be a group which acts transitively on the maximal flags of Γ . Then,

 Γ is simply connected \Leftrightarrow G is the universal completion of the amalgam of flag-stabilisers.

It is easy to see that S_{m+1} acts transitively on the maximal flags in our geometry.

It is easy to see that S_{m+1} acts transitively on the maximal flags in our geometry.

We also know that our geometry is a simplex. So topologically it is contractible and hence simply connected.

It is easy to see that S_{m+1} acts transitively on the maximal flags in our geometry.

We also know that our geometry is a simplex. So topologically it is contractible and hence simply connected.

So, by Tits' Lemma, S_{m+1} is the universal completion of our amalgam $\bigcup G_i$.

It is easy to see that S_{m+1} acts transitively on the maximal flags in our geometry.

We also know that our geometry is a simplex. So topologically it is contractible and hence simply connected.

So, by Tits' Lemma, S_{m+1} is the universal completion of our amalgam $\bigcup G_i$. We also obtain the following as a direct consequence:

It is easy to see that S_{m+1} acts transitively on the maximal flags in our geometry.

We also know that our geometry is a simplex. So topologically it is contractible and hence simply connected.

So, by Tits' Lemma, S_{m+1} is the universal completion of our amalgam $\bigcup G_i$. We also obtain the following as a direct consequence:

The Coxeter presentation.

$$S_{m+1} = \langle a_1, \dots, a_m | a_i^2 = 1, (a_i a_{i+1})^3 = 1 \ \forall i, (a_i a_j)^2 = 1, \forall i \neq j \rangle$$

We want to have an amalgam for the group

$$y(m) := \langle a, S_m : [(1,2)^{a^s}, (1,2)] = 1 \quad \forall s$$

 $a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

We want to have an amalgam for the group

$$y(m) := \langle a, S_m : [(1,2)^{a^s}, (1,2)] = 1 \quad \forall s$$

 $a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

Let s_1, \ldots, s_{m-1} be the standard generators for S_m .

We want to have an amalgam for the group

$$y(m) := \langle a, S_m : [(1, 2)^{a^s}, (1, 2)] = 1 \quad \forall s$$

 $a^{(i,i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

Let s_1, \ldots, s_{m-1} be the standard generators for S_m .

Define

$$G_1 = \langle s_1, \ldots, s_{m-1} \rangle \cong S_m$$

$$G_i = \langle a, s_1, \ldots, s_{i-1}, \ldots, s_{m-1} \rangle \cong y(i-1) : S_{m-i}$$

We want to have an amalgam for the group

$$y(m) := \langle a, S_m : [(1, 2)^{a^s}, (1, 2)] = 1 \quad \forall s$$

 $a^{(i, i+1)} = a^{-1} \text{ for } 2 \le i \le m-1 \rangle$

Let s_1, \ldots, s_{m-1} be the standard generators for S_m .

Define

$$G_1 = \langle s_1, \ldots, s_{m-1} \rangle \cong S_m$$

$$G_i = \langle a, s_1, \ldots, s_{i-1}, \ldots, s_{m-1} \rangle \cong y(i-1) : S_{m-i}$$

$$A = \bigcup_{i=1}^m G_i$$

There exists an involution τ which acts on y(m) by centralising the s_i and inverting a.

There exists an involution τ which acts on y(m) by centralising the s_i and inverting a.

Let
$$\tilde{y}(m) = \langle \tau, a, \tau s_1, \dots \tau s_{m-1} \rangle \cong \langle \tau \rangle y(m)$$

$$G_1 = \langle \tau, \tau s_1, \dots, \tau s_{m-1} \rangle \cong 2 \times S_m$$

$$G_i = \langle \tau, a, \tau s_1, \dots, \tau \hat{s_{i-1}}, \dots, \tau s_{m-1} \rangle \cong \tilde{y}(i-1) : S_{m-i}$$

There exists an involution τ which acts on y(m) by centralising the s_i and inverting a.

Let
$$\tilde{y}(m) = \langle \tau, a, \tau s_1, \dots \tau s_{m-1} \rangle \cong \langle \tau \rangle y(m)$$

$$G_1 = \langle \tau, \tau s_1, \dots, \tau s_{m-1} \rangle \cong 2 \times S_m$$

$$\blacktriangleright G_i = \langle \tau, a, \tau s_1, \ldots, \tau \hat{s_{i-1}}, \ldots, \tau s_{m-1} \rangle \cong \tilde{y}(i-1) : S_{m-i}$$

$$A = \bigcup_{i=1}^m G_i$$

Want to find a quadratic form q with associated bilinear form (\cdot, \cdot)

•
$$q(\alpha u) = \alpha^2 q(u)$$
 for all $\alpha \in \mathbb{F}$, $u \in V$

▶
$$q(u + v) = q(u) + q(v) + (u, v)$$
 for all $u, v \in V$

Want to find a quadratic form q with associated bilinear form (\cdot, \cdot)

•
$$q(\alpha u) = \alpha^2 q(u)$$
 for all $\alpha \in \mathbb{F}$, $u \in V$

$$q(u+v) = q(u) + q(v) + (u,v) \text{ for all } u,v \in V$$

Recall that \mathbb{F} is a field of characteristic 2.

Want to find a quadratic form q with associated bilinear form (\cdot, \cdot)

•
$$q(\alpha u) = \alpha^2 q(u)$$
 for all $\alpha \in \mathbb{F}$, $u \in V$

▶
$$q(u + v) = q(u) + q(v) + (u, v)$$
 for all $u, v \in V$

Recall that $\mathbb F$ is a field of characteristic 2. Hence, (\cdot,\cdot) is a symplectic form.

i.e.
$$(u, u) = 0$$
 for all $u \in V$

Choosing forms

Assume that V has a basis u, v_1, \ldots, v_m and $S_m < \tilde{y}(m)$ acts naturally by permuting the v_i .

Assume that V has a basis u, v_1, \ldots, v_m and $S_m < \tilde{y}(m)$ acts naturally by permuting the v_i .

So,
$$q(v_1) = \cdots = q(v_m)$$

Assume that V has a basis u, v_1, \ldots, v_m and $S_m < \tilde{y}(m)$ acts naturally by permuting the v_i .

So, $q(v_1) = \cdots = q(v_m)$ and similarly (v_i, v_j) is the same for all $i \neq j$.

Assume that V has a basis u, v_1, \ldots, v_m and $S_m < \tilde{y}(m)$ acts naturally by permuting the v_i .

So, $q(v_1) = \cdots = q(v_m)$ and similarly (v_i, v_j) is the same for all $i \neq j$. So we get a Gram matrix for the bilinear form:

$$\begin{pmatrix} 0 & \alpha & \alpha & \dots & \alpha & \alpha \\ \hline \alpha & 0 & 1 & \dots & 1 & 1 \\ \alpha & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha & 1 & 1 & \dots & 0 & 1 \\ \alpha & 1 & 1 & \dots & 1 & 0 \end{pmatrix}$$

Assume that V has a basis u, v_1, \ldots, v_m and $S_m < \tilde{y}(m)$ acts naturally by permuting the v_i .

So, $q(v_1) = \cdots = q(v_m)$ and similarly (v_i, v_j) is the same for all $i \neq j$. So we get a Gram matrix for the bilinear form:

$$\begin{pmatrix} 0 & \alpha & \alpha & \dots & \alpha & \alpha \\ \hline \alpha & 0 & 1 & \dots & 1 & 1 \\ \alpha & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha & 1 & 1 & \dots & 0 & 1 \\ \alpha & 1 & 1 & \dots & 1 & 0 \end{pmatrix}$$

We may scale u to get $\alpha = 1$.

Recall that for m = 2, 6, 10, ... the group had a radical.

Recall that for $m = 2, 6, 10, \ldots$ the group had a radical. This corresponds to a degenerate form.

$$0=q(u+v_1+v_2)$$

$$0 = q(u + v_1 + v_2) = q(u) + 1 + 1 + q(v_1) + q(v_2) + 1$$

$$0 = q(u + v_1 + v_2) = q(u) + 1 + 1 + q(v_1) + q(v_2) + 1$$

= $q(u) + 1$

$$0 = q(u + v_1 + v_2) = q(u) + 1 + 1 + q(v_1) + q(v_2) + 1$$

= $q(u) + 1$

So,
$$q(u) = 1$$
.

Recall that for $m=2,6,10,\ldots$ the group had a radical. This corresponds to a degenerate form. Note that $u+v_1+\cdots+v_m$ is perpendicular to all vectors of V precisely when m=2+4k.

$$0 = q(u + v_1 + v_2) = q(u) + 1 + 1 + q(v_1) + q(v_2) + 1$$

= $q(u) + 1$

So,
$$q(u) = 1$$
.

The relations imply that $q(v_i) = \beta$ must be transcendental.

Recall that for $m=2,6,10,\ldots$ the group had a radical. This corresponds to a degenerate form. Note that $u+v_1+\cdots+v_m$ is perpendicular to all vectors of V precisely when m=2+4k.

$$0 = q(u + v_1 + v_2) = q(u) + 1 + 1 + q(v_1) + q(v_2) + 1$$

= $q(u) + 1$

So,
$$q(u) = 1$$
.

The relations imply that $q(v_i) = \beta$ must be transcendental.

So we choose
$$q(v_i) = t^{-1}$$
 and $\mathbb{F} = \mathbb{F}_2[t, t^{-1}]$.

Definition

Let T(V) be the tensor algebra for V. Then, the Clifford algebra C(V) is the factor algebra $T(V)/\langle w^2 - q(w) \rangle$.

Definition

Let T(V) be the tensor algebra for V. Then, the Clifford algebra C(V) is the factor algebra $T(V)/\langle w^2 - q(w) \rangle$.

Definition

Let T(V) be the tensor algebra for V. Then, the Clifford algebra C(V) is the factor algebra $T(V)/\langle w^2 - q(w) \rangle$.

$$\tau \mapsto u$$

Definition

Let T(V) be the tensor algebra for V. Then, the Clifford algebra C(V) is the factor algebra $T(V)/\langle w^2 - q(w) \rangle$.

$$au \mapsto u$$
 $a \mapsto t^{1/2}uv_1$

Definition

Let T(V) be the tensor algebra for V. Then, the Clifford algebra C(V) is the factor algebra $T(V)/\langle w^2 - q(w) \rangle$.

$$au \mapsto u$$

$$a \mapsto t^{1/2}uv_1$$

$$\tilde{s}_i = \tau s_i \mapsto v_i + v_{i+1}$$

▶ Show that this is a homomorphism.

▶ Show that this is a homomorphism. Done

- ▶ Show that this is a homomorphism. Done
- Show that the map is injective.

- ▶ Show that this is a homomorphism. Done
- Show that the map is injective.
- ▶ Identify the image.

- ▶ Show that this is a homomorphism. Done
- Show that the map is injective.
- Identify the image.
- Identify the geometry.

Thank you for listening!

S. Sidki, SL_2 over group Rings of Cyclic Groups, *J. Algebra* **134** (1990), 60–79.

S.Sidki, Around some experimentations in combinatorial group theory, GAC2010, Allahabad, Sep 2010.