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Known results

There are some known results for small values of n and m.

» Y(m,2) is elementary abelian of order 2
» Y(m,3) is Carmichael’s presentation for the alternating group
» Y(1,n)is C, (1)

> Y(2,n) is a metabelian group of order 2"~1n by a result of
Coxeter. It is equal to the augmentation ideal / , of F2C,
extended by C,.

» If n|n’, then Y(m, n) is a quotient of Y (m, n’)
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A new presentation

Define:

y(m,n):=(a,Sm:a"=1,[(1,2)",(1,2)] =1 Vs
(1,2) e+ =,

For n odd, Sidki showed that Y (m, n) = y(m, n).
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When m = 3, consider the following map:

a+—><(ga91>, (1’2)'—>( (1)>’ (2’3)H<20>

where « is an element of order n in a field F of characteristic 2.

= =
[y

These matrices satisfy the desired relations, so this is a
representation which embeds y(3, n) into SLy(IF).

Sidki goes on to show that Y'(3, n) is SLy(k,,) when n is odd
(Notation: SLy(/) := ker(SL2(R) — SL2(R/1))). This is also
finite.

The map above can be extended to give an embedding
y(m, n) = SLyn—(F).
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Define:

y(m) :=(a,Sm:[(1,2)7,(1,2)] =1 Vs
At — a7l for2 < i< m— 1)

We will try to identify y(m, n) by seeing it as a quotient of y(m).

This is what Sidki managed for m = 3; he showed that
y(3) = SLy(Fa[t, t71]) and y(3,n) = SLa(h,,) can be obtained as
a quotient of this.

The problem: Identify the group y(m)
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A quick crash course in geometries:

Definition
A geometry I = (I',~, T) of rank n is a non-empty set of objects I
with a type function 7 : T — {1,...,n} and an incidence relation

~ which is reflexive and symmetric.
Also require that every maximal flag has maximal rank.

For example: projective spaces, or subsets of a set.

Suppose Q2 = {1,...,m+ 1}. Let I' be the set of all non-empty
proper subsets of 2. The type of an element is its size. Two
elements are incident if one is contained in the other. Then a
maximal flag contains elements of every type, so we have a
geometry.
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Definition

An amalgam A = (A, {G;}ic) is a non-empty set A endowed with
partial multiplication, together with a collection of subsets G; such
that

2. the partial multiplication restricted to G;, for all i € |, makes
G; into a group

3. for any a, b € A, the product ab is only defined when
a,b € G;j, for someic€l

4. forall'i,j €1, GiN Gj is a subgroup of both G; and G;
The Gj are called the members of the amalgam.
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Definition

A completion of an amalgam A is a pair (G, ¢), where G is a group
and ¢ : A — G is a map such that the restriction ¢|g. : Gi — G of
¢ to some group G;, fori € I, is a group homomorphism.

A completion (6‘, $) is the universal completion if given any other
completion (G, ¢), there exists a unique group homomorphism
0 : G — G such that

¢

o)

A
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Geometries and amalgams

Back to our example

In our example, we have a natural group action of 5,11 on our set
Q={1,...,m+1}. We want to show we have an amalgam.

Let F be a maximal flag {x1} C --- C {x1,...,xp}. Define G; to
be the stabiliser of the i element in the flag. So,
G;i = S; X Spp1—i- Then, | G; is an amalgam.
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Tits' Lemma

How do we link the geometry and the amalgam?

Theorem (Tits' Lemma)

Let I be a connected, residually connected geometry and let
G < Aut(T") be a group which acts transitively on the maximal
flags of . Then,

I" is simply connected < G is the universal completion of the
amalgam of flag-stabilisers.
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It is easy to see that 5,41 acts transitively on the maximal flags in
our geometry.

We also know that our geometry is a simplex. So topologically it is
contractible and hence simply connected.

So, by Tits’ Lemma, Sp,41 is the universal completion of our
amalgam |J G;. We also obtain the following as a direct
consequence:

The Coxeter presentation.

5m+1 = <al, ey am|a,2 = ].7 (a,-a,-+1)3 =1 VI', (a,-aj)z = l,Vi #j)
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Sidki’s problem

Back to Sidki's problem

We want to have an amalgam for the group

y(m) :=(a,Sm:[(1,2)7,(1,2)] =1 Vs
alhi ) — a7l for2<i<m—1)

Let s1,...,Sm_1 be the standard generators for S,.
Define

» G =(s1,...,5m-1) = Spm

» Gi=1{(a,51,..-,5" 1, Sm-1) Zy(i—1): Sp—j
A= U:'T;l Gi
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s; and inverting a.

Let y(m) = (7,a,7s1,...TSm—1) = (7)y(m)

> Gl = <7',7'51,...,7‘5m,1> >~ 9% Sm
> Gi=(T,a,7TS1,...,TSi—1,...,TSm-1) = y(i — 1) : Sp_;
'A:U,mzl G

15/21



Sidki’s problem

From the computational results, we want to find an embedding of
y(m) in some orthogonal group of dimension m + 1.

16/21



Sidki’s problem

From the computational results, we want to find an embedding of
y(m) in some orthogonal group of dimension m + 1.

Want to find a quadratic form g with associated bilinear form (-, -)

» glau) = a?q(u) foralla €F, ue V
» q(u+v) =q(u) + q(v) + (u,v) for all u,v € V

16/21



Sidki’s problem

From the computational results, we want to find an embedding of
y(m) in some orthogonal group of dimension m + 1.

Want to find a quadratic form g with associated bilinear form (-, -)

» glau) = a?q(u) foralla €F, ue V
» q(u+v) =q(u) + q(v) + (u,v) for all u,v € V

Recall that [ is a field of characteristic 2.

16/21



Sidki’s problem

From the computational results, we want to find an embedding of
y(m) in some orthogonal group of dimension m + 1.

Want to find a quadratic form g with associated bilinear form (-, -)

» glau) = a?q(u) foralla €F, ue V
» q(u+v) =q(u) + q(v) + (u,v) for all u,v € V

Recall that F is a field of characteristic 2. Hence, (-,-) is a
symplectic form.

ie. (uyu)y=0forallueV
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Choosing forms

Assume that V has a basis u, vi,..., vy and S, < y(m) acts
naturally by permuting the v;.

So, g(v1) = -+ = q(vm) and similarly (v;, v;) is the same for all
i # j. So we get a Gram matrix for the bilinear form:

0 o« a o
« 01 11
o 10 11
o 11 .01
« 11 .10

We may scale u to get a = 1.

17/21



Sidki’s problem

Now q is defined by g(v;) = 8 and g(u) = 7.
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Recall that for m = 2,6,10,... the group had a radical. This
corresponds to a degenerate form. Note that u+ vy 4+ - 4+ vy, is
perpendicular to all vectors of V precisely when m = 2 4 4k.

0=gq(ut+vi+w)=q(u)+1+1+qg(v1)+q(v)+1
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Sidki’s problem

Now q is defined by g(v;) = 8 and g(u) = 7.

Recall that for m = 2,6,10,... the group had a radical. This
corresponds to a degenerate form. Note that u+ vy 4+ - 4+ vy, is
perpendicular to all vectors of V precisely when m = 2 4 4k.

O=qu+vi+w)=q(u)+1+1+qg(vi)+q(wv)+1
=q(u)+1

So, q(u) = 1.
The relations imply that g(v;) = 8 must be transcendental.

So we choose g(v;) =t~ and F = Fy[t, t71].

18/21



Sidki’s problem

Clifford algebra

Definition
Let T(V) be the tensor algebra for /. Then, the Clifford algebra
C(V) is the factor algebra T(V)/{w? — g(w)).
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Sidki’s problem

Clifford algebra

Definition
Let T(V) be the tensor algebra for /. Then, the Clifford algebra
C(V) is the factor algebra T(V)/{w? — g(w)).

We get map from y(m) into the Clifford group by

THUu
ar—>t1/2uv1

§i =TSj — Vi + Vi1

19/21
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» Show that this is a homomorphism.
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Problems:

v

Show that this is a homomorphism. Done

v

Show that the map is injective.

v

Identify the image.

v

Identify the geometry.
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Sidki’s problem

Thank you for listening!

[@ S. Sidki, A generalization of the alternating groups—a
question on finiteness and representation, J. Algebra 75
(1982), 324-372.

[§ S. Sidki, SLy over group Rings of Cyclic Groups, J. Algebra
134 (1990), 60-79.

[§ S.Sidki, Around some experimentations in combinatorial group
theory, GAC2010, Allahabad, Sep 2010.
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