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All groups will be finite!!!



Definitions

Definition. A Beauville surface S = C1 ×C2/G is the quotient of the
product of two complex projective varieties by a group, G, where G is
a group of automorphisms of both C1 and C2 and acts freely on their
product.

In addition, we require the projections

βi : Ci → P1(C)

ramify over 3 points.

Remark. A celebrated theorem of Bely̆ı states that if such a
projection exists, then Ci can be defined over the field of algebraic
numbers, Q.
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Why are we interested in them?

1. Since our curves C1, C2 are Bely̆ı we can associate a regular
dessin in the sense of Grothendieck’s theory of dessins d’enfants
to each of them.

2. Since Beauville surfaces are defined over Q we can observe their
behaviour under the action of the absolute Galois group
Gal(Q/Q).

For much much more on Beauville surfaces, see Ben Fairbairn’s article
in the proceedings of this very conference.



Why are we interested in them?

1. Since our curves C1, C2 are Bely̆ı we can associate a regular
dessin in the sense of Grothendieck’s theory of dessins d’enfants
to each of them.

2. Since Beauville surfaces are defined over Q we can observe their
behaviour under the action of the absolute Galois group
Gal(Q/Q).

For much much more on Beauville surfaces, see Ben Fairbairn’s article
in the proceedings of this very conference.



Why are we interested in them?

1. Since our curves C1, C2 are Bely̆ı we can associate a regular
dessin in the sense of Grothendieck’s theory of dessins d’enfants
to each of them.

2. Since Beauville surfaces are defined over Q we can observe their
behaviour under the action of the absolute Galois group
Gal(Q/Q).

For much much more on Beauville surfaces, see Ben Fairbairn’s article
in the proceedings of this very conference.



Definitions

Definition. Let G be a finite group and for x, y ∈ G let

Σ(x, y) =

|G|⋃
i=1

⋃
g∈G

{(xi)g, (yi)g, ((xy)i)g}

We say an unmixed Beauville structure on G is a quadruple
{x1, y1, x2, y2} such that 〈x1, y1〉 = 〈x2, y2〉 = G and

Σ(x1, y1) ∩ Σ(x2, y2) = {1}.

If there exists a Beauville structure on a group, G, then we say that G
is Beauville. The type of a Beauville Group will be
(l1,m1, n1; l2,m2, n2) where li = o(xi),mi = o(yi), ni = o(xiyi).

Remark. From the type of the Beauville structure we can compute a
number of topological invariants associated to our Beauville Surface,
S = C1 × C2/G.
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Definitions
For instance:

1. From the Riemann-Hurwitz formula we can compute the genera
g1, g2 of the curves C1, C2:

gi = 1 +
|G|
2

(
1−

(
1

o(xi)
+

1

o(yi)
+

1

o(xiyi)

))
.

2. Since the irregularity, q, of a Beauville surface is 0 we can
compute the geometric genus, pg:

pg(S) =
(g1 − 1)(g2 − 1)

|G|
+ q − 1.

3. The Euler-Poincaré characteristic: χ = pg − q + 1.

4. From the Zeuthen-Segre Theorem we then get the Euler number:

e(S) = 4
(g1 − 1)(g2 − 1)

|G|
.
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Definitions

Definition. (Fuertes, González-Diez, Jaikin-Zapirain, 2011) Let G be
a finite group. By the Beauville genus spectrum of G we mean the set
Spec(G) of pairs of integers (g1, g2) such that g1 ≤ g2 and there are
curves C1, C2 of genera g1 and g2 with an action of G on C1 ×C2 such
that S = C1 × C2/G is a Beauville surface.

Theorem (Fuertes, González-Diez, Jaikin-Zapirain, 2011)

1. Spec(S5) = {(19, 21)}.
2. Spec(PSL2(7)) = {(8, 49), (15, 49), (17, 22), (22, 33), (22, 49)}.
3. For (n, 6) = 1,

Spec(Z/nZ)2 =

{(
(n− 1)(n− 2)

2
,

(n− 1)(n− 2)

2
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.



Definitions
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Definitions

Proposition (ep, GAP, 2013)
The genus spectrum for the following groups has been computed in:
PGL2(7), PGL2(9), PSL2(8),
PSU3(3) : 2, PΣL2(25), PΣL2(2, 7),
PSL3(3), PSL3(3).2, PSL3(4),
PSU3(3), PSU3(4), PSU4(2),
A6, A7, A8, A9, A10,
S6, S7, S8, S9, S10,
M11, M12, M22, M23,
Sz(8), J1, J2, ...



Examples of Beauville Groups

What groups are known to be Beauville?

Theorem (Catanese, 2000)
The only finite abelian Beauville groups are the groups G = Zn ⊕ Zn

where n > 1 and (n, 6) = 1.

Conjecture (Catanese, 2005)
With the exception of A5, all finite non-abelian simple groups are
Beauville.
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Examples of Beauville Groups

Theorem (Garion, Larsen, Lubotzky; Guralnick, Malle
2012)
Let G be a finite non-abelian simple group other than A5. Then G
admits an unmixed Beauville structure.

Theorem (Fairbairn, Magaard, Parker, 2012)
With the exceptions of A5 and SL2(5), every finite quasisimple group
is a Beauville group.

Remark. Certain families of simple groups had elsewhere been
shown to be Beauville e.g. Fuertes, González-Diez (2010) had shown
the alternating groups An for n > 5 and Fuertes, Jones (2011) had
shown the Suzuki groups and Small Ree groups are Beauville.
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More Examples of Beauville Groups

What else do we know?

What about the almost simple groups?

Definition. Let G be a finite group. We say G is almost simple if
there exists a finite simple group, H, such that H 6 G 6 Aut(H).
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Let n ≥ 5. Then Sn is Beauville.

Theorem (Garion, 2010)
Let q = pe be a prime power where q ≥ 7. Then PGL2(q) is Beauville.

Proposition (ep, 2013)
Let G be a sporadic group whose outer automorphism group is
non-trivial. Then Aut(G) is Beauville.
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Examples of non-Beauville Groups

Definition. The socle of G, soc(G), is the subgroup of G generated
by the minimal normal subgroups of G.

Observation. For x, y ∈ G, if 〈x, y, xy〉 = G then without loss of
generality, x, y ∈ G \ soc(G).
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Examples of non-Beauville Groups

Recall the following:

1. The Suzuki groups Sz(22n+1) do not contain elements of order 3.

2. Their only outer automorphisms come from the Frobenius
automorphims of the underlying field of order 22n+1.

Now consider the case when 3 | 2n+ 1. We have the following:

Proposition
Let G be the automorphism group of the Suzuki group Sz(82n+1).
Then G is not Beauville.

Remark. In particular this argument will also apply to the groups
Aut(PSL2(q)) = PΓL2(q) where q = pe ≥ 7 is a prime power and e is
coprime to q, q − 1 and q + 1.
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Examples of non-Beauville Groups

Recall the outer automorphisms of the group G = PSL2(9)(∼= A6).

1. The diagonal outer automorphism yields PGL2(9) which is
Beauville.

2. The field outer automorphism yields PΣL2(9)(∼= S6) which is
Beauville.

3. The other outer automorphism yields the Mathieu group M10

which is not Beauville. Why?

How does this affect the full automorphism group PΓL2(9)?

What about PSL2(p2) in general?

Proposition
Let H = PSL2(p2) for p > 2 prime. Then both H.2 the non-split
extension by an outer automorphism and Aut(H) the full
automorphism group of H are not Beauville.
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Thank you for your time.


